Cloudl &

A Cloud as an Interface

ErLounge, San Francisco CA USA
May 5" 2011



Amazon Web Services

 Fault Tolerance for an Instance

* Light-Weight Integration of Diverse Source
Code Grouped Into Services

e Scalable Service Communication



A Cloud Computing
Software Solution

Private Usage with Implicit Security

Public Usage with Scalable Connection
Handling

Extends the Erlang Process/Actor Model into
C/C++, Java, Python, Ruby, ...

Provid

Fault 7

es Dynamic Configuration

‘olerant Supervision of Supported
Programming Languages



Flexible Integration

Cloudl! API
HTTP
ZeroMQ

Databases

e CouchDB
Memcached
PostgreSQL
MySQL
TokyoTyrant



Control + Isolation

* Cloudl Job API for Dynamic Configuration

» Access Control List (ACL) Configuration
Controls All Service Communication

e Services are Managed in the Same Way as
Child Processes of an Erlang OTP Supervisor



Where to Start

 http://cloudi.org/fag.html

* http://groups.google.com/group/cloudi-questions


http://cloudi.org/faq.html
http://groups.google.com/group/cloudi-questions

Code Reuse:
Erlang Trie Data Structure

dict Module Interface Supported
_Ist of Integers (string) to any Type Mapping

_ookup Performance Equivalent to the Process
Dictionary (often the fastest Erlang data structure)

Useful for String Lookups that are both more
Efficient and more Scalable than ETS

Used in Cloudl's list_pg.erl and list_pg_data.erl to
Provide a more Scalable pg2 Module

https://github.com/okeuday/trie


https://github.com/okeuday/trie

Code Reuse:
Erlang Native UUID Generation

 UUID Versions 1, 3, 4, and 5 Implemented

* Version 1 Generation is Unique to an Erlang pid
and Distributed Erlang Node

e Version 1 is Used to Uniquely Identify Cloudl
Service Messages

 https://github.com/okeuday/uuid


https://github.com/okeuday/uuid

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

