Formulas to represent band edges in Kikuchi pattern
[English / Japanese]
Herein, the origin is considered as the projection center, and the axes and the unit of the length is fixed so that
the phosphor screen is included in the plane z=1.
The following vectors are used in the following discussion:
- ${\mathbf z} = (0, 0, 1)^T$,
- a reciprocal lattice vector ${\mathbf a}^*$,
- ${\mathbf u} = {\mathbf a}^* / | {\mathbf a}^* |$.
The band center line in a Kikuchi pattern is the intersection of
the phosphor screen ${\mathbf z} \cdot {\mathbf x} = 1$ and the diffracting plane ${\mathbf a}^* \cdot {\mathbf x} = 0$.
The Bragg equation $2 d \sin \theta = n \lambda$ ($n=1, 2, \ldots$)
provides the relation between the Bragg angle θ and the d-spacing
$d = 1/|{\mathbf a}^* |$.
For any point ${\mathbf x}$ of the Kossel Cone as in the following figure,
$({\mathbf x} \cdot {\mathbf u}) {\mathbf u}$ is the projection of ${\mathbf x}$
in the direction of ${\mathbf a}^*$,
and ${\mathbf x} - ({\mathbf x} \cdot {\mathbf u}) {\mathbf u}$
is the projection in the plane orthogonal to ${\mathbf a}^*$.
Hence, their lengths satisfy the right-hand equality:
|
$$
\frac{ | ({\mathbf u} \cdot {\mathbf x}) {\mathbf u} |^2 }{ | {\mathbf x} - ({\mathbf u} \cdot {\mathbf x}) {\mathbf u} |^2 } = \tan^2 \theta.
$$
|
---|
Therefore, the Kossel cone is a conical surface defined by:
$$
({\mathbf u} \cdot {\mathbf x})^2 = | {\mathbf x} |^2 \sin^2 \theta.
$$
The band edges are the intersections of the Kossel cone and ${\mathbf z} \cdot {\mathbf x} = 1$.
For simplicity,
we rotate the coordinate axes of the phosphor screen,
and assume ${\mathbf u} = (-\cos \sigma, 0, \sin \sigma)$.
In this case, from ${\mathbf u} \cdot {\mathbf x} = 0$, the equation of the band center line
is provided by:
$$
x = \tan \sigma.
$$
As for the equation of the band edges, we have:
$$
(-x \cos \sigma + \sin \sigma)^2 = (x^2 + y^2 + 1) \sin^2 \theta.
$$
As a result, the band edges are represented as the following hypebola:
$$
(\cos^2 \sigma-\sin^2 \theta) \left( x - \frac{ \cos \sigma \sin \sigma }{\cos^2 \sigma-\sin^2 \theta} \right)^2 - (\sin^2 \theta) y^2 = \frac{ \cos^2 \theta \sin^2 \theta }{\cos^2 \sigma-\sin^2 \theta}.
$$
The above is also equivalent to:
$$
\left( \frac{\cos 2 \sigma + \cos 2 \theta}{ \sin 2 \theta } \right)^2 \left( x - \frac{ \sin 2 \sigma }{ \cos 2 \sigma + \cos 2 \theta } \right)^2
- \frac{ \cos 2 \sigma + \cos 2 \theta }{ 2 \cos^2 \theta } y^2 = 1.
$$
In the case of EBSD images, $\cos 2 \sigma + \cos 2 \theta = \cos 2 \sigma + \cos 2 \theta > 0$ holds.
The band width equals the distance between
the two intersections $\sigma_{begin}, \sigma_{end}$ of the $x$-axis and the band edges:
Furthermore, we have:
\begin{eqnarray*}
\tan \sigma_{begin}
&=& \frac{ \sin 2\sigma - \sin 2 \theta }{ \cos 2 \sigma + \cos 2 \theta }
= \frac{ (e^{i(\sigma + \theta)} + e^{-i(\sigma + \theta)})(e^{i(\sigma - \theta)} - e^{-i(\sigma - \theta)}) }
{ i (e^{i(\sigma + \theta)} + e^{-i(\sigma + \theta)})(e^{i(\sigma - \theta)} + e^{-i(\sigma - \theta)}) } = \tan (\sigma - \theta), \\
\tan \sigma_{end}
&=& \frac{ \sin 2\sigma + \sin 2 \theta }{ \cos 2 \sigma + \cos 2 \theta } =
\frac{ (e^{i(\sigma + \theta)} - e^{-i(\sigma + \theta)})(e^{i(\sigma - \theta)} + e^{-i(\sigma - \theta)}) }
{ i (e^{i(\sigma + \theta)} + e^{-i(\sigma + \theta)})(e^{i(\sigma - \theta)} + e^{-i(\sigma - \theta)}) } =
\tan (\sigma + \theta).
\end{eqnarray*}
As a result, $\sigma_{begin} = \sigma - \theta$, $\sigma_{end} = \sigma + \theta$ are also obtained.
[Back to top]
[Go to the page of the EBSD ab-initio indexing software]
[Go to my research page (list of software)]