Package ‘Biobase’

October 15, 2025

Title Biobase: Base functions for Bioconductor

Description Functions that are needed by many other packages or which
replace R functions.

biocViews Infrastructure
URL https://bioconductor.org/packages/Biobase

BugReports https://github.com/Bioconductor/Biobase/issues

Version 2.68.0

License Artistic-2.0

Suggests tools, tkWidgets, ALL, RUnit, golubEsets, BiocStyle, knitr,
limma

Depends R (>=2.10), BiocGenerics (>= 0.27.1), utils

Imports methods

VignetteBuilder knitr

LazyLoad yes

Collate tools.R strings.R environment.R vignettes.R packages.R
AllGenerics.R VersionsClass.R VersionedClasses.R
methods-VersionsNull.R methods- VersionedClass.R DataClasses.R
methods-aggregator.R methods-container.R methods-MIAXE.R
methods-MIAME.R methods-AssayData.R
methods-AnnotatedDataFrame.R methods-eSet.R
methods-ExpressionSet.R methods-MultiSet.R methods-SnpSet.R
methods-NChannelSet.R anyMissing.R rowOp-methods.R
updateObjectTo.R methods-ScalarObject.R zzz.R

git_url https://git.bioconductor.org/packages/Biobase
git_branch RELEASE_3_21

git_last_commit 9fd33ea

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

https://bioconductor.org/packages/Biobase
https://github.com/Bioconductor/Biobase/issues

Author R. Gentleman [aut],
V. Carey [aut],
M. Morgan [aut],
S. Falcon [aut],
Haleema Khan [ctb] ('esApply' and 'BiobaseDevelopment' vignette
translation from Sweave to Rmarkdown / HTML),
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Contents

Biobase-package
abstract e e e
addVigs2WinMenu L.
AZEregate o e e e
AZEIEZAOT .« . . v v v e e e e e e e e e e e e e
AnnotatedDataFrame oo
annotatedDataFrameFrom-methods
anyMIiSSINg e
assayDatao
AssayData-class
cache L
channel e
channelNames
classicharacterORMIAME
classVersion L e
CONLAINGT v v v i e
CONEENES o e e e e e e e e e
copyEnvo
COpySUbSHItULE e e e
createPackage L L
data:aaMap oL
data:geneData
data:sample.ExpressionSet oo
data:sample.MultiSet
Deprecated and Defunct oL oo
description.
dumpPackTxXt e
eSAPDPLY e e
ESEL . . e
ExpressionSet L
EXPIS - o v v e e e e e e e e e e e e e
featureData L
featureNames e
getPkgVigs L
Internals
ISCUITENt e e e e e e e e

Contents

Contents

Index

3

ISUNIQUE o s e e e e e 42
isVersioned e e e e e e 43
IeSuffix e e e e 44
listhen o e 45
makeDataPackage 46
matchpt e 47
MIAME . . . e 48
MIAXE . . . e 50
multiasSign e e 51
MultiSet e 52
NChannelSet-class o e e e e e 54
NOLE . . . v ot e e e e e e e e e e e e e e e e e 56
NOES . . v v o e i e e e e e e e e e e e e e 57
openPDF 58
openVignette Ll e e e 59
package.version e e e e e e e 60
phenoData L 61
protocolData 62
read.AnnotatedDataFrame L L 62
read MIAME e e e e 64
readExpressionSet. L 65
() 1) 1 (3 O 67
reverseSplit 68
rowMedians L e e e 69
TOWQ . L e e e 70
ScalarObject-class 71
selectChannels e 71
selectSome L e 72
snpCall L e 73
SnpSeto 74
storageMode L e e e e 76
strbreak L e e e e e e e 76
subListExtract e 77
testBioCConnection e 78
updateObjectTo e 79
updateOldESet 80
USErQUETY . . . o o o e e e e e e e e e e e e 81
validMSg 81
Versioned L e e e e e e e 82
VersionedBiobase 83
VEISIONS o o o e e e e e e e e 84
VersionsNull e e e 86
87

4 abstract

Biobase-package Biobase Package Overview

Description

Biobase Package Overview

Details
Important data classes: ExpressionSet, AnnotatedDataFrame MIAME. Full help on methods and
associated functions is available from within class help pages.

Additional data classes: eSet, MIAXE, MultiSet. Additional manipulation and data structuring
classes: Versioned, VersionedBiobase, aggregator, container.

Vignette routines: openVignette, getPkgVigs, openPDF.

Package manipulation functions: createPackage and package.version
Data sets: aaMap, sample.ExpressionSet, geneData.

Introductory information is available from vignettes, type openVignette().

Full listing of documented articles is available in HTML view by typing help.start() and select-
ing Biobase package from the Packages menu or via library(help="Biobase").

Author(s)
O. Sklyar

abstract Retrieve Meta-data from eSets and ExpressionSets.

Description

These generic functions access generic data, abstracts, PubMed IDs and experiment data from in-
stances of the eSet-class or ExpressionSet-class.

Usage

abstract(object)
pubMedIds(object)
pubMedIds(object) <- value
experimentData(object)
experimentData(object) <- value

Arguments

object Object, possibly derived from eSet-class or MIAME-class

value Value to be assigned; see class of object (e.g., eSet-class) for specifics.

addVigs2WinMenu 5

Value

abstract returns a character vector containing the abstract (as in a published paper) associated
with object.

pubMedIds returns a character vector of PUBMED IDs associated with the experiment.

experimentData returns an object representing the description of an experiment, e.g., an object of
MIAME-class

Author(s)

Biocore

See Also

ExpressionSet-class, eSet-class, MIAME-class

addVigs2WinMenu Add Menu Items to an Existing/New Menu of Window

Description

This function adds a menu item for a package’s vignettes.

Usage

addVigs2WinMenu(pkgName)

Arguments

pkgName pkgName - a character string for the name of an R package

Details

The original functions addVig2Menu, addVig4Win, addvVig4Unix, addNonExisting, addPDF2Vig
have been replaced by addVigs2WinMenu, please use those instead.

Value

The functions do not return any value.

Author(s)

Jianhua Zhang and Jeff Gentry

6 Aggregate

Examples

Only works for windows now

if(interactive() && .Platform$0S.type == "windows" &&
.Platform$GUI == "Rgui”){
addVigs2WinMenu("Biobase")
}
Aggregate A Simple Aggregation Mechanism.
Description

Given an environment and an aggregator (an object of class aggregate simple aggregations are
made.

Usage

Aggregate(x, agg)

Arguments
X The data to be aggregated.
agg The aggregator to be used.
Details

Given some data, x the user can accumulate (or aggregate) information in env using the two supplied
functions. See the accompanying documentation for a more complete example of this function and
its use.

Value
No value is returned. This function is evaluated purely for side effects. The symbols and values in

env are altered.

Author(s)

R. Gentleman

See Also

new.env, class:aggregator

aggregator 7

Examples

aggl <- new("aggregator")

Aggregate(letters[1:10], aggl)

the first 10 letters should be symbols in envl with values of 1

Aggregate(letters[5:11], aggl)

now letters[5:10] should have value 2

bb <- mget(letters[1:11], env=aggenv(aggl), ifnotfound=NA)

t1 <- as.numeric(bb); names(t1) <- names(bb)

t1
#abcdefghiijk
#11112222221

aggregator A Simple Class for Aggregators

Description

A class of objects designed to help aggregate calculations over an iterative computation. The aggre-
gator consists of three objects. An environment to hold the values. A function that sets up an initial
value the first time an object is seen. An aggregate function that increments the value of an object
seen previously.

Details

This class is used to help aggregate different values over function calls. A very simple example is to
use leave one out cross-validation for prediction. At each stage we first perform feature selection and
then cross-validate. To keep track of how often each feature is selected we can use an aggregator.
At the end of the cross-validation we can extract the names of the features chosen from aggenv.

Creating Objects

new('aggregator', aggenv = [environment], initfun = [function], aggfun = [function])

Slots

aggenv: Object of class "environment’, holds the values between iterations

initfun: Object of class *function’ specifies how to initialize the value for a name the first time it
is encountered

aggfun: Object of class ’function’ used to increment (or perform any other function) on a name

Methods

aggenv (aggregator): Used to access the environment of the aggregator
aggfun(aggregator): Used to access the function that aggregates

initfun(aggregator): Used to access the initializer function

8 AnnotatedDataFrame

See Also
Aggregate
AnnotatedDataFrame Class Containing Measured Variables and Their Meta-Data Descrip-
tion.
Description

An AnnotatedDataFrame consists of two parts. There is a collection of samples and the values of
variables measured on those samples. There is also a description of each variable measured. The
components of an AnnotatedDataFrame can be accessed with pData and varMetadata.

Extends

Versioned

Creating Objects

AnnotatedDataFrame(data, varMetadata, dimLabels=c("rowNames"”, "columnNames"), ...)

AnnotatedDataFrame instances are created using AnnotatedDataFrame. The function can take
three arguments, data is a data. frame of the samples (rows) and measured variables (columns).
varMetadata is a data.frame with the number of rows equal to the number of columns of the
data argument. varMetadata describes aspects of each measured variable. dimLabels provides
aesthetic control for labeling rows and columns in the show method. varMetadata and dimLabels
can be missing.

as(data.frame, "AnnotatedDataFrame"”) coerces a data. frame to an AnnotatedDataFrame.

annotatedDataFrameFrom may be a convenient way to create an AnnotatedDataFrame from
AssayData-class.

Slots

Class-specific slots:

data: A data.frame containing samples (rows) and measured variables (columns).

dimLabels: A character vector of length 2 that provides labels for the rows and columns in the
show method.

varMetadata: A data.frame with number of rows equal number of columns in data, and at least
one column, named labelDescription, containing a textual description of each variable.

.__classVersion__: A Versions object describing the R and Biobase version numbers used to
created the instance. Intended for developer use.

AnnotatedDataFrame 9

Methods

Class-specific methods.

as(annotatedDataFrame, "data.frame”) Coerce objects of AnnotatedDataFrame to data. frame.

combine(<AnnotatedDataFrame>, <AnnotatedDataFrame>: Bind data from one AnnotatedDataFrame
to a second AnnotatedDataFrame, returning the result as an AnnotatedDataFrame. Row
(sample) names in each argument must be unique. Variable names present in both arguments
occupy a single column in the resulting AnnotatedDataFrame. Variable names unique to ei-
ther argument create columns with values assigned for those samples where the variable is
present. varMetadata in the returned AnnotatedDataFrame is updated to reflect the combi-
nation.

pData(<AnnotatedDataFrame>), pData(<AnnotatedDataFrame>)<-<data.frame>: Setandre-
trieve the data (samples and variables) in the AnnotatedDataFrame

varMetadata(<AnnotatedDataFrame>), varMetadata(<AnnotatedDataFrame>)<-<data.frame>:
Set and retrieve the meta-data (variables and their descriptions) in the AnnotatedDataFrame

featureNames(<AnnotatedDataFrame>), featureNames(<AnnotatedDataFrame>)<-<ANY>: Set
and retrieve the feature names in AnnotatedDataFrame; a synonym for sampleNames.

sampleNames(<AnnotatedDataFrame>), sampleNames(<AnnotatedDataFrame>)<-<ANY>: Setand
retrieve the sample names in AnnotatedDataFrame

varLabels(<AnnotatedDataFrame>), varLabels(<AnnotatedDataFrame>)<-<data.frame>: Set
and retrieve the variable labels in the AnnotatedDataFrame

dimLabels(<AnnotatedDataFrame>), dimLabels(<AnnotatedDataFrame>) <- <character> Retrieve
labels used for display of AnnotatedDataFrame, e.g., ‘rowNames’, ‘columnNames’.

Standard generic methods:

initialize(<AnnotatedDataFrame>): Object instantiation, used by new; not to be called directly
by the user.

as(<data.frame>, "AnnotatedDataFrame"”): Convertadata.frame to an AnnotatedDataFrame.

as(<phenoData>,<AnnotatedDataFrame>): Convert old-style phenoData-class objects to AnnotatedDataFrame,
issuing warnings as appropriate.

validObject(<AnnotatedDataFrame>): Validity-checking method, ensuring coordination between
data and varMetadata elements

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.
See updateObject

isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

show(<AnnotatedDataFrame>) Abbreviated display of object

[<sample>,<variable>: Subset operation, taking two arguments and indexing the sample and
variable. Returns an AnnotatedDataFrame, i.e., including relevant metadata. Unlike a data. frame,
setting drop=TRUE generates an error.

[[<variable>, $<variable>: Selector returning a variable (column of pData).

10 annotatedDataFrameFrom-methods

[[<variable>, ...]]<-<new_value>, $<variable> <- <new_value>: Replace or add a variable
to pData. ... can include named arguments (especially labelDescription) to be added to
varMetadata.

head(<AnnotatedDataFrame>, n=6L, ...), tail(<AnnotatedDataFrame>, n=6L, ...) Select
the first (last for tail) n rows; negative n returns the first (last) nrow() - n rows.

dim(<AnnotatedDataFrame>), ncol(<AnnotatedDataFrame>): Number of samples and variables
(dim) and variables (ncol) in the argument.

dimnames (<AnnotatedDataFrame>), rownames (<AnnotatedDataFrame>), colnames(<AnnotatedDataFrame>):
row and column names.
Author(s)

V.J. Carey, after initial design by R. Gentleman

See Also

eSet, ExpressionSet, read.AnnotatedDataFrame

Examples

df <- data.frame(x=1:6,
y=rep(c("Low", "High"),3),
z=I(LETTERS[1:61),

row.names=paste(”Sample”, 1:6, sep="_"))
metaData <-
data.frame(labelDescription=c(
"Numbers”,
"Factor levels”,
"Characters"))
AnnotatedDataFrame()

AnnotatedDataFrame(data=df)
AnnotatedDataFrame(data=df, varMetadata=metaData)
as(df, "AnnotatedDataFrame")

obj <- AnnotatedDataFrame()
pData(obj) <- df
varMetadata(obj) <- metaData
validObject(obj)

annotatedDataFrameFrom-methods
Methods for Function annotatedDataFrameFrom in Package
‘Biobase’

Description

annotatedDataFrameFrom is a convenience for creating AnnotatedDataFrame objects.

anyMissing 11

Methods

Use the method with annotatedDataFrameFrom(object, byrow=FALSE, ...);the argument byrow
must be specified.

signature(object="assayData") This method creates an AnnotatedDataFrame using sample
(when byrow=FALSE) or feature (byrow=TRUE) names and dimensions of an AssayData object
as a template.

signature(object="matrix") This method creates an AnnotatedDataFrame using column (when
byrow=FALSE) or row (byrow=TRUE) names and dimensions of a matrix object as a template.

signature(object="NULL") This method (called with 'NULL’ as the object) creates an empty
AnnotatedDataFrame; provides dimLabels based on value of byrow.

Author(s)

Biocore team

anyMissing Checks if there are any missing values in an object or not

Description

Checks if there are any missing values in an object or not.

Usage

anyMissing(x=NULL)

Arguments

X A vector.

Details

The implementation of this method is optimized for both speed and memory.

Value

Returns TRUE if a missing value was detected, otherwise FALSE.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

Examples

X <= rnorm(n=1000)
x[seq(300,length(x),by=100)] <- NA
stopifnot(anyMissing(x) == any(is.na(x)))

http://www.braju.com/R/

12 AssayData-class

assayData Retrieve assay data from eSets and ExpressionSets.

Description

This generic function accesses assay data stored in an object derived from the eSet or ExpressionSet
class.

Usage

assayData(object)
assayData(object) <- value

Arguments
object Object derived from class eSet
value Named list or environment containing one or more matrices with identical di-
mensions
Value

assayData applied to eSet-derived classes returns a list or environment; applied to ExpressionSet,
the method returns an environment. See the class documentation for specific details.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

AssayData-class Class "AssayData"

Description

Container class defined as a class union of 1list and environment. Designed to contain one or
more matrices of the same dimension.

AssayData-class 13

Methods
combine signature(x = "AssayData", y = "AssayData"”): This method uses cbind to create
new AssayData elements that contain the samples of both arguments x and y.

Both AssayData arguments to combine must have the same collection of elements. The ele-
ments must have identical numbers of rows (features). The numerical contents of any columns
(samples) present in the same element of different AssayData must be identical. The storage-
Mode of the AssayData arguments must be identical, and the function returns an AssayData
with storageMode matching the incoming mode. See also combine,eSet,eSet-method

featureNames signature(object = "AssayData")

featureNames<- signature(object = "AssayData”, value = "ANY"): Return or set the feature
names as a character vector. These are the row names of the AssayData elements. value can
be a character or numeric vector; all entries must be unique.

sampleNames signature(object = "AssayData")

sampleNames<- signature(object = "AssayData”, value="ANY"): Return or set the sample
names. These are the column names of the the AssayData elements and the row names of
phenoData. value can be a character or numeric vector.

storageMode signature(object = "AssayData")

storageMode<- signature(object = "AssayData"”,value="character"): Return or set the stor-
age mode for the instance. value can be one of three choices: "lockedEnvironment”,
"environment”, and "list"”. Environments offer a mechanism for storing data that avoids
some of the copying that occurs when using lists. Locked environment help to ensure data
integrity. Note that environments are one of the few R objects that are pass-by-reference. This
means that if you modify a copy of an environment, you also modify the original. For this
reason, we recommend using lockedEnvironment whenever possible.

Additional functions operating on AssayData include:

assayData[[name]] Select element name from assayData.

assayDataNew(storage.mode = c(''lockedEnvironment'', "'environment'', "'list"), ...) Use storage.mode
to create a new list or environment containing the named elements in . . .

assayDataValidMembers(assayData, required) Validate assayData, ensuring that the named el-
ements required are present, matrices are of the same dimension, and featureNames (row-
names) are consistent (identical or NULL) across entries.

assayDataElement(object, element) See eSet-class
assayDataElementReplace(object, element, value, validate=TRUE) See eSet-class

assayDataElementNames(object) See eSet-class

Author(s)

Biocore

See Also

eSet-class ExpressionSet-class

14 cache

cache Evaluate an expression if its value is not already cached.

Description

Cache the evaluation of an expression in the file system.

Usage
cache(expr, dir=".", prefix="tmp_R_cache_")
Arguments
expr An expression of the form LHS <- RHS, Where LHS is a variable name, RHS is any
valid expression, and <- must be used (= will not work).
dir A string specifying the directory into which cache files should be written (also
where to go searching for an appropriate cache file).
prefix A string giving the prefix to use when naming and searching for cache files. The
default is "tmp_R_cache_"
Details

This function can be useful during the development of computationally intensive workflows, for
example in vignettes or scripts. The function uses a cache file in dir which defaults to the current
working directory whose name is obtained by paste(prefix, name, ".RData"”, sep="").

When cache is called and the cache file exists, it is loaded and the object whose name is given on
the left of <- in expr is returned. In this case, expr is not evaluted.

When cache is called and the cache file does not exist, expr is evaluted, its value is saved into a
cache file, and then its value is returned.

The expr argument must be of the form of someVar <- {expressions}. That is, the left hand side
must be a single symbol name and the next syntactic token must be <-.

To flush the cache and force recomputation, simply remove the cache files. You can use file.remove
to do this.

Value

The (cached) value of expr.

Note

The first version of this function had a slightly different interface which is no longer functional. The
old version has arguments name and expr and the intended usage is: foo <- cache("foo", expr).

Author(s)
Wolfgang Huber, <huber@ebi.ac.uk> Seth Falcon, <sfalcon@fhcrc.org>

channel 15

Examples

bigCalc <- function() runif(10)
cache(myComplicatedObject <- bigCalc())
aCopy <- myComplicatedObject
remove (myComplicatedObject)
cache(myComplicatedObject <- bigCalc())
stopifnot(all.equal (myComplicatedObject, aCopy))
allCacheFiles <-
list.files(".", pattern="*tmp_R_cache_.x\\.RData$", full.name=TRUE)
file.remove(allCacheFiles)

channel Create a new ExpressionSet instance by selecting a specific channel

Description

This generic function extracts a specific element from an object, returning a instance of the Expres-
sionSet class.

Usage
channel(object, name, ...)
Arguments
object An S4 object, typically derived from class eSet
name The name of the channel, a (Iength one) character vector.
Additional arguments.
Value

An instance of class ExpressionSet.

Author(s)

Biocore

Examples

obj <- NChannelSet(
R=matrix(runif(100), 20, 5),
G=matrix(runif(100), 20, 5))
G channel as ExpressionSet
channel(obj, "G")

16 channelNames

channelNames Retrieve and set channel names from object

Description

This generic function reports or updates the channels in an object.

Usage
channelNames(object, ...)
channelNames(object, ...) <- value
Arguments
object An S4 object, typically derived from class eSet
value Replacement value, either a character vector (to re-order existing channel names
or a named character vector or list (to change channel names from the vector
elements to the corresponding names).
Additional argument, not currently used.
Details

channelNames returns the names of the channels in a defined order. Change the order using the
replacement method with a permuation of the channel names as value. Rename channels using the
replacement method with a named list, where the vector elements are a permutation of the current
channels, with corresponding names the new identifier for the channel.

Value

character.

Author(s)

Biocore

Examples

channelNames default to alphabetical order of channels
obj <- NChannelSet(
R=matrix(runif(100), 20, 5),
G=matrix(-runif(100), 20, 5))

channelNames (obj)
channelNames(obj) <- c(Gn="G", Rd="R") ## rename
channelNames(obj)
channelNames(obj) <- c("Rd"”, "Gn") ## reorder
channelNames(obj)

all(assayData(obj)[["Gn"]1] <= @)
all(assayData(obj)[["Rd"1] >= @)

class:characterORMIAME 17

class:characterORMIAME
Class to Make Older Versions Compatible

Description

This class can be either character or MIAME.

Methods

No methods defined with class "characterORMIAME" in the signature.

See Also

See also MIAME

classVersion Retrieve information about versioned classes

Description

These generic functions return version information for classes derived from Versioned-class, or
VersionsNull-class for unversioned objects. The version information is an object of Versions-class.
By default, classVersion has the following behaviors:

classVersion(Versioned-instance) Returns a Versions-class object obtained from the ob-

ject.

classVersion{"class"} Consults the definition of class and return the current version informa-
tion, if available.

classVersion(ANY) Return a VersionsNull-class object to indicate no version information
available.

By default, the classVersion<- method has the following behavior:

classVersion(Versioned-instance)["”id"] <- value Assign (update or add) value to Versions-instance.
value is coerced to a valid version description. see Versions-class for additional access
methods.

Usage

classVersion(object)
classVersion(object) <- value

18 container

Arguments

object Object whose version is to be determined, as described above.

value Version-class object to assign to object of Versioned-class object.
Value

classVersion returns an instance of Versions-class

Author(s)

Biocore team

See Also

Versions-class

Examples

obj <- new("VersionedBiobase")

classVersion(obj)

classVersion(obj)["Biobase"]

classVersion(1:10) # no version

classVersion("ExpressionSet"”) # consult ExpressionSet prototype

classVersion(obj)["MyVersion”] <- "1.0.0"
classVersion(obj)

container A Lockable List Structure with Constraints on Content

Description

Container class that specializes the list construct of R to provide content and access control

Creating Objects

new('container', x =[1list], content = [character], locked = [logical])

Slots

x list of entities that are guaranteed to share a certain property
content tag describing container contents

locked boolean indicator of locked status. Value of TRUE implies assignments into the container
are not permitted

contents 19

Methods
Class-specific methods:

content(container) returns content slot of argument

locked(container) returns locked slot of argument
Standard methods defined for ’container’:

show(container) prints container
length(container) returns number of elements in the container
[[(index) and [[(index, value) access and replace elements in the container

[(index) make a subset of a container (which will itself be a container)

Examples

x1 <- new("container”, x=vector("list”, length=3), content="1m")
Im1 <= Im(rnorm(10)~runif(10))
x1[[1]] <= 1ml

contents Function to retrieve contents of environments

Description

The contents method is used to retrieve the values stored in an environment.

Usage

contents(object, all.names)

Arguments
object The environment (data table) that you want to get all contents from
all.names a logical indicating whether to copy all values in as.list.environment
Value

A named list is returned, where the elements are the objects stored in the environment. The names
of the elements are the names of the objects.

The all.names argument is identical to the one used in as.list.environment.

Author(s)

R. Gentleman

20 copyEnv

See Also

as.list.environment

Examples

z <- new.env()
multiassign(letters, 1:26, envir=z)
contents(z)

copyEnv List-Environment interactions

Description
These functions can be used to make copies of environments, or to get/assign all of the objects
inside of an environment.

Usage
copyEnv(oldEnv, newEnv, all.names=FALSE)

Arguments
oldEnv An environment to copy from
newEnv An environment to copy to. If missing, a new environment with the same parent
environment as oldEnv.
all.names Whether to retrieve objects with names that start with a dot.
Details

copyEnv: This function will make a copy of the contents from oldEnv and place them into newEnv.

Author(s)

Jeff Gentry and R. Gentleman

See Also

environment, as.list

Examples

z <- new.env(hash=TRUE, parent=emptyenv(), size=29L)
multiassign(c(”"a”,"b","c"), c(1,2,3), z)

a <- copyEnv(z)
1s(a)

copySubstitute 21

copySubstitute Copy Between Connections or Files with Configure-Like Name-Value
Substitution

Description

Copy files, directory trees or between connections and replace all occurences of a symbol by the
corresponding value.

Usage
copySubstitute(src, dest, symbolValues, symbolDelimiter="@", allowUnresolvedSymbols=FALSE,
recursive = FALSE, removeExtension = "\\.in$")
Arguments
src Source, either a character vector with filenames and/or directory names, or a
connection object.
dest Destination, either a character vector of length 1 with the name of an existing,

writable directory, or a connection object. The class of the dest argument must
match that of the src argument.
symbolValues A named list of character strings.
symbolDelimiter
A character string of length one with a single character in it.
allowUnresolvedSymbols
Logical. If FALSE, then the function will execute stop if it comes across symbols
that are not defined in symbolValues.

recursive Logical. If TRUE, the function works recursively down a directory tree (see de-
tails).

removeExtension
Character. Matches to this regular expression are removed from filenames and
directory names.

Details

Symbol substitution: this is best explained with an example. If the list symbolValues contains an
element with name FOO and value bar, and symbolDelimiter is @, then any occurrence of @F00@ is
replaced by bar. This applies both the text contents of the files in src as well as to the filenames.
See examples.

If recursive is FALSE, both src and dest must be connection or a filenames. The text in src is
read through the function readLines, symbols are replaced by their values, and the result is written
to dest through the function writelLines.

If recursive is TRUE, copySubstitute works recursively down a directory tree (see details and
example). src must be a character vector with multiple filenames or directory names, dest a
directory name.

One use of this function is in createPackage for the automatic generation of packages from a
template package directory.

22

Value

None. The function is called for its side effect.

Author(s)
Wolfgang Huber http://www.dkfz.de/mga/whuber

Examples

create an example file
infile = tempfile()
outfile = tempfile()

writeLines(text=c("We will perform in @WHAT@:",
"So, thanks to @WHOM@ at once and to each one,”,
"Whom we invite to see us crown'd at @WHERE@."),
con = infile)

create the symbol table
z = list(WHAT="measure, time and place”, WHOM="all"”, WHERE="Scone")

run copySubstitute
copySubstitute(infile, outfile, z)

display the results
readLines(outfile)

This is a slightly more complicated example that demonstrates
how copySubstitute works on nested directories

d = tempdir()
my.dir.create = function(x) {dir.create(x); return(x)}

unlink(file.path(d, "src"), recursive=TRUE)
unlink(file.path(d, "dest"), recursive=TRUE)

create some directories and files:
src = my.dir.create(file.path(d, "src"))
dest = file.path(d, "dest")

di = my.dir.create(file.path(src, "dir1.in"))

d2 = my.dir.create(file.path(src, "dir2@F00@.in"))

d3 = my.dir.create(file.path(d2, "dir3"))

d4 = my.dir.create(file.path(d3, "dir4"))

d5 = my.dir.create(file.path(d4, "dir5@BAR@"))

writeLines(c("Filel:", "FO00: @FQ0@"), file.path(d1, "filel.txt.in"))
writeLines(c("File2:", "BAR: @BARQ"), file.path(d2, "file2.txt.in"))
writeLines(c("File3:", "SUN: @SUN@"), file.path(d3, "file3.txt.in"))

writeLines(c("File4:”, "MOON: @MOON@"), file.path(d4, "@SUN@.txt"))

copySubstitute

http://www.dkfz.de/mga/whuber

createPackage 23

call copySubstitute
copySubstitute(src, dest, recursive=TRUE,
symbolValues = list(FO0="thefoo"”, BAR="thebar",
SUN="thesun”, MOON="themoon"))

view the result

listsrc = dir(src, full.names=TRUE, recursive=TRUE)
listdest = dir(dest, full.names=TRUE, recursive=TRUE)
listsrc
listdest

cat(unlist(lapply(listsrc, readLines)), sep="\n")
cat(unlist(lapply(listdest, readLines)), sep="\n")

createPackage Create a Package Directory from a Template

Description

Create a package directory from a template, with symbol-value substitution

Usage

createPackage (pkgname, destinationDir, originDir, symbolValues, unlink=FALSE, quiet=FALSE)

Arguments

pkgname Character. The name of the package to be written.
destinationDir Character. The path to a directory where the package is to be written.

originDir Character. The path to a directory that contains the template package. Usually,
this will contain a file named DESCRIPTION, and subdirectories R, man, data. In
all files and filenames, symbols will be replaced by their respective values, see
the parameter symbolValues.

symbolValues Named list of character strings. The symbol-to-value mapping. See copySubstitute
for details.

unlink Logical. If TRUE, and destinationDir already contains a file or directory with
the name pkgname, try to unlink (remove) it.
quiet Logical. If TRUE, do not print information messages.
Details

The intended use of this function is for the automated mass production of data packages, such as
the microarray annotation, CDF, and probe sequence packages.

No syntactic or other checking of the package is performed. For this, use R CMD check.

The symbols @PKGNAME@ and @DATE@ are automatically defined with the values of pkgname and
date(), respectively.

24 data:aaMap

Value

The function returns a 1ist with one element pkgdir: the path to the package.

Author(s)

Wolfgang Huber http://www.dkfz.de/mga/whuber

See Also

copySubstitute, the reference manual Writing R extensions.

Examples

sym = list(AUTHOR = "Hesiod”, VERSION = "1.0",

TITLE = "the nine muses”,
FORMAT = "Character vector containg the names of the 9 muses.")
res = createPackage("muses”,
destinationDir = tempdir(),
originDir = system.file("Code”, package="Biobase"),
symbolValues = sym,

unlink = TRUE, quiet = FALSE)

muses = c("Calliope”, "Clio", "Erato"”, "Euterpe", "Melpomene”,
"Polyhymnia”, "Terpsichore”, "Thalia”, "Urania”)

dir.create(file.path(res$pkgdir, "data"))

save(muses, file = file.path(res$pkgdir, "data", "muses.rda"))
res$pkgdir
data:aaMap Dataset: Names and Characteristics of Amino Acids
Description

The aaMap data frame has 20 rows and 6 columns. Includes elementary information about amino
acids.

Usage

data(aaMap)

http://www.dkfz.de/mga/whuber

data:geneData 25

Format
This data frame contains the following columns:
name amino acid name
let.1 one-letter code
let.3 three-letter code
scProp side chain property at pH 7 (polar/nonpolar)
hyPhilic logical: side chain is hydrophilic at pH 7

acidic logical: side chain is acidic at pH 7

Source

Nei M and Kumar S: Molecular evolution and phylogenetics (Oxford 2000), Table 1.2

Examples

data(aaMap)

data:geneData Sample expression matrix and phenotype data.frames.

Description

The geneData data.frame has 500 rows and 26 columns. It consists of a subset of real expression
data from an Affymetrix U95v2 chip. The data are anonymous. The covariate data geneCov and
geneCovariate are made up. The standard error data seD is also made up.

Usage

data(geneData)

Format

A 500 by 26 data frame.

Source

The J. Ritz Laboratory (S. Chiaretti).

Examples

data(geneData)
data(geneCovariate)
data(seD)

26 data:sample.MultiSet

data:sample.ExpressionSet
Dataset of class 'ExpressionSet’

Description

The expression data are real but anonymized. The data are from an experiment that used Affymetrix
U95v2 chips. The data were processed by dChip and then exported to R for analysis.

The data illustrate ExpressionSet-class, with assayData containing the required matrix element
exprs and an additional matrix se.exprs. se.exprs has the same dimensions as exprs.

The phenoData and standard error estimates (se.exprs) are made up. The information in the "de-
scription” slot is fake.
Usage

data(sample.ExpressionSet)

Format

The data for 26 cases, labeled A to Z and 500 genes. Each case has three covariates: sex (male/female);
type (case/control); and score (testing score).

Examples

data(sample.ExpressionSet)

data:sample.MultiSet Data set of class ’MultiSet’

Description

The expression data are real but anonymized. The data are from an experiment that used Affymetrix
U95v2 chips. The data were processed by dChip and then exported to R for analysis.

The phenoData, standard error estimates, and description data are fake.

Usage

data(sample.MultiSet)

Format
The data for 4 cases, labeled a to d and 500 genes. Each case has five covariates: SlideNumber:

number; FileName: name; Cy3: genotype labeled Cy3; Cy5: genotype labeled Cy5; Date: date.

Examples

data(sample.MultiSet)

Deprecated and Defunct

27

Deprecated and Defunct
Biobase Deprecated and Defunct

Description

The function, class, or data object you have asked for has been deprecated or made defunct.

description Retrieve and set overall experimental information eSet-like classes.

Description

These generic functions access experimental information associated with eSet-class.

Usage

description(object, ...)
description(object) <- value

Arguments
object Object, possibly derived from class eSet-class.
value Structured information describing the experiment, e.g., of MIAME-class.
Further arguments to be used by other methods.
Value

description returns an object of MIAME-class.

Author(s)

Biocore

See Also

eSet-class, MIAME-class

28

esApply

dumpPackTxt Dump Textual Description of a Package

Description

Dump textual description of a package

Usage
dumpPackTxt (package)

Arguments

package Character string naming an R package

Details
dumps DESCRIPTION and INDEX files from package sources

Value

stdout output

Note

Other approaches using formatDL are feasible

Author(s)

<stvjc@channing.harvard.edu>

Examples

dumpPackTxt("stats")

esApply An apply-like function for ExpressionSet and related structures.

Description

esApply is a wrapper to apply for use with ExpressionSets. The application of a function to
rows of an expression array usually involves variables in pData. esApply uses a special evaluation

paradigm to make this easy. The function FUN may reference any data in pData by name.

Usage
esApply(X, MARGIN, FUN, ...)

esApply

Arguments

X
MARGIN
FUN

Details

29

An instance of class ExpressionSet.
The margin to apply to, either 1 for rows (samples) or 2 for columns (features).
Any function

Additional parameters for FUN.

The pData from X is installed in an environment. This environment is installed as the environment
of FUN. This will then provide bindings for any symbols in FUN that are the same as the names of
the pData of X. If FUN has an environment already it is retained but placed after the newly created
environment. Some variable shadowing could occur under these circumstances.

Value

The result of with(pData(x), apply(exprs(X), MARGIN, FUN, ...)).

Author(s)

V.J. Carey <stvjc@channing.harvard.edu>, R. Gentleman

See Also

apply, ExpressionSet

Examples

data(sample.ExpressionSet)
sum columns of exprs
res <- esApply(sample.ExpressionSet, 1, sum)

t-test, spliting samples by 'sex'
f <- function(x) {
xx <- split(x, sex)
t.test(xx[[1]1], xx[[2]11)%$p.value

3

res <- esApply(sample.ExpressionSet, 1, f)

same, but using a variable passed in the function call

f <- function(x, s) {
xx <= split(x, s)
mean(xx[[11]) - mean(xx[[2]1])

}

sex <- sample.ExpressionSet[["sex"]]
res <- esApply(sample.ExpressionSet, 1, f, s = sex)

obtain the p-value of the t-test for sex difference
mytt.demo <- function(y) {
ys <- split(y, sex)

30 eSet

t.test(ys[[1]], ys[[2]11)$p.value

3
sexPValue <- esApply(sample.ExpressionSet, 1, mytt.demo)

obtain the p-value of the slope associated with score, adjusting for sex
(if we were concerned with sign we could save the z statistic instead at coef[3,3]
myreg.demo <- function(y) {

summary (Im(y ~ sex + score))$coef[3,4]

}

scorePValue <- esApply(sample.ExpressionSet, 1, myreg.demo)

a resampling method

resamp <- function(ESET) {

ntiss <- ncol(exprs(ESET))

newind <- sample(l1:ntiss, size = ntiss, replace = TRUE)
ESET[newind,]

3

a filter

g3g100filt <- function(eset) {

apply(exprs(eset), 1, function(x) quantile(x,.75) > 100)
}

filter after resampling and then apply

set.seed(123)

rest <- esApply({bool <- g3gl100filt(resamp(sample.ExpressionSet)); sample.ExpressionSet[bool,]},
1, mytt.demo)

eSet Class to Contain High-Throughput Assays and Experimental Meta-
data

Description

Container for high-throughput assays and experimental metadata. Classes derived from eSet con-
tain one or more identical-sized matrices as assayData elements. Derived classes (e.g., ExpressionSet-class,
SnpSet-class) specify which elements must be present in the assayData slot.

eSet object cannot be instantiated directly; see the examples for usage.

Creating Objects

eSet is a virtual class, so instances cannot be created.

Objects created under previous definitions of eSet-class can be coerced to the current classes
derived from eSet using updateOldESet.

Slots

Introduced in eSet:

eSet 31

assayData: Contains matrices with equal dimensions, and with column number equal to nrow(phenoData).
Class:AssayData-class

phenoData: Contains experimenter-supplied variables describing sample (i.e., columns in assayData)
phenotypes. Class: AnnotatedDataFrame-class

featureData: Contains variables describing features (i.e., rows in assayData) unique to this ex-
periment. Use the annotation slot to efficiently reference feature data common to the anno-
tation package used in the experiment. Class: AnnotatedDataFrame-class

experimentData: Contains details of experimental methods. Class: MIAME-class
annotation: Label associated with the annotation package used in the experiment. Class: character

protocolData: Contains microarray equipment-generated variables describing sample (i.e., columns
in assayData) phenotypes. Class: AnnotatedDataFrame-class

.__classVersion__: A Versions object describing the R and Biobase version numbers used to
created the instance. Intended for developer use.

Methods

Methods defined in derived classes (e.g., ExpressionSet-class, SnpSet-class) may override the
methods described here.

Class-specific methods:

sampleNames(object) and sampleNames(object)<-value: Coordinate accessing and setting sam-
ple names in assayData and phenoData

featureNames(object), featureNames(object) <- value: Coordinate accessing and setting of
feature names (e.g, genes, probes) in assayData.

dimnames(object), dimnames(object) <- value: Also rownames and colnames; access and set
feature and sample names.

dims(object): Access the common dimensions (dim) or column numbers (ncol), or dimensions
of all members (dims) of assayData.

phenoData(object), phenoData(object) <- value: Access and set phenoData. Adding new
columns to phenoData is often more easily done with eSetObject[["columnName"”]1] <-
value.

pData(object), pData(object) <- value: Access and set sample data information. Adding new
columns to pData is often more easily done with eSetObject[["columnName"]] <- value.

varMetadata(object), varMetadata(eSet,value) Access and set metadata describing variables
reported in pData

varLabels(object), varLabels(eSet, value)<-: Access and set variable labels in phenoData.
featureData(object), featureData(object) <- value: Access and set featureData.
fData(object), fData(object) <- value: Access and set feature data information.

fvarMetadata(object), fvarMetadata(eSet,value) Access and set metadata describing fea-
tures reported in fData

fvarLabels(object), fvarLabels(eSet, value)<-: Access and set variable labels in featureData.
assayData(object), assayData(object) <- value: signature(object = "eSet"”, value = "AssayData"):
Access and replace the AssayData slot of an eSet instance. assayData returns a list or envi-

ronment; elements in assayData not accessible in other ways (e.g., via exprs applied directly
to the eSet) can most reliably be accessed with, e.g., assayData(obj)[["se.exprs”]].

32

eSet

experimentData(object),experimentData(object) <- value: Access and set details of exper-
imental methods

description(object),description(object) <- value: Synonymous with experimentData.

notes(object),notes(object) <- value: signature(object="eSet", value="1list") Retrieve

and set unstructured notes associated with eSet. signature(object="eSet", value="character")

As with value="list", but append value to current list of notes.
pubMedIds(object), pubMedIds(eSet,value) Access and set PMIDs in experimentData.
abstract(object): Access abstract in experimentData.

annotation(object), annotation(object) <- value Access and set annotation label indicating
package used in the experiment.

protocolData(object), protocolData(object) <- value Access and set the protocol data.
preproc(object), preproc(object) <- value: signature(object="eSet", value="1list") Ac-
cess and set preprocessing information in the MIAME-class object associated with this eSet.

combine(eSet,eSet): Combine two eSet objects. To be combined, eSets must have identical
numbers of featureNames, distinct sampleNames, and identical annotation.

storageMode (object), storageMode(eSet, character)<-: Change storage mode of assayData.
Can be used to "unlock’ environments, or to change between list and environment modes
of storing assayData.

Standard generic methods:
initialize(object): Object instantiation, can be called by derived classes but not usually by the
user.

validObject(object): Validity-checking method, ensuring (1) all assayData components have
the same number of features and samples; (2) the number and names of phenoData rows
match the number and names of assayData columns

as(eSet, "ExpressionSet”) Convertinstance of class "eSet"” to instance of ExpressionSet-class,

if possible.

as(eSet, "MultiSet"”) Convert instance of class "eSet"” to instance of MultiSet-class, if pos-
sible.

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.

Usually called through class inheritance rather than directly by the user. See updateObject

updateObjectTo(object, template, ..., verbose=FALSE) Update instance to current version
by updating slots in template, if necessary. Usually call by class inheritance, rather than
directly by the user. See updateObjectTo

isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

show(object) Informatively display object contents.

dim(object), ncol Access the common dimensions (dim) or column numbers (ncol), of all meme-
bers (dims) of assayData.

object[(index): Conducts subsetting of matrices and phenoData components

object$name, object$name<-value Access and set name column in phenoData

eSet 33

object[[i, ...]J],object[[i, ...]]<-value Access and set column i (character or numeric
index) in phenoData. The ... argument can include named variables (especially labelDescription)
to be added to varMetadata.

Additional functions:

assayDataElement(object, element) Return matrix element from assayData slot of object.

assayDataElement(object, element, validate=TRUE) <- value) Setelement element in assayData
slot of object to matrix value. If validate=TRUE, check that value row and column names
of conform to object.

assayDataElementReplace(object, element, value, validate=TRUE) Setelement element in assayData
slot of object to matrix value. If validate=TRUE, check that row and column names of value
conform to object.

assayDataElementNames(object) Return element names in assayData slot of object

updateOldESet Update versions of eSet constructued using 1istOrEnv as assayData slot (before
May, 2006).

Author(s)

Biocore team

See Also

Method use in ExpressionSet-class. Related classes AssayData-class, AnnotatedDataFrame-class,
MIAME-class. Derived classes ExpressionSet-class, SnpSet-class. To update objects from
previous class versions, see updateOldESet.

Examples

update previous eSet-like class oldESet to existing derived class
Not run: updateOldESet(oldESet, "ExpressionSet")

create a new, ad hoc, class, for personal use

all methods outlined above are available automatically
.MySet <- setClass("MySet”, contains="eSet")

.MySet()

Create a more robust class, with constructor and validation methods
to ensure assayData contains specific matricies
.TwoColorSet <- setClass("”"TwoColorSet"”, contains="eSet")

TwoColorSet <-
function(phenoData=AnnotatedDataFrame(), experimentData=MIAME(),
annotation=character(), R=new("matrix"), G=new("matrix"),
Rb=new("matrix"), Gb=new("matrix"), ...)

.TwoColorSet (phenoData=phenoData, experimentData=experimentData,
annotation=annotation, R=R, G=G, Rb=Rb, Gb=Gb, ...)

34 ExpressionSet

setValidity("TwoColorSet”, function(object) {
assayDataValidMembers(assayData(object), c("R", "G", "Rb", "Gb"))
»

TwoColorSet()

eSet objects cannot be instantiated directly, only derived objects
try(new("eSet"))

removeClass("MySet")
removeClass("TwoColorSet")

ExpressionSet Class to Contain and Describe High-Throughput Expression Level As-
says.

Description

Container for high-throughput assays and experimental metadata. ExpressionSet class is derived
from eSet, and requires a matrix named exprs as assayData member.

Usage

Instance creation

ExpressionSet(assayData,
phenoData=annotatedDataFrameFrom(assayData, byrow=FALSE),
featureData=annotatedDataFrameFrom(assayData, byrow=TRUE),
experimentData=MIAME(), annotation=character(),
protocolData=annotatedDataFrameFrom(assayData, byrow=FALSE),

)

Additional methods documented below

Arguments

assayData A matrix of expression values, or an environment.
When assayDatais amatrix, the rows represent probe sets (‘features’ in ExpressionSet
parlance). Columns represent samples. When present, row names identify fea-
tures and column names identify samples. Row and column names must be
unique, and consistent with row names of featureData and phenoData, re-
spectively. The assay data can be retrieved with exprs().
When assayData is an environment, it contains identically dimensioned matri-
ces like that described in the previous paragraph. One of the elements of the
environment must be named ‘exprs’; this element is returned with exprs().

phenoData An optional AnnotatedDataFrame containing information about each sample.
The number of rows in phenoData must match the number of columns in assayData.
Row names of phenoData must match column names of the matrix / matricies
in assayData.

ExpressionSet 35

featureData An optional AnnotatedDataFrame containing information about each feature.
The number of rows in featureData must match the number of rows in assayData.
Row names of featureData must match row names of the matrix / matricies in
assayData.

experimentData An optional MIAME instance with meta-data (e.g., the lab and resulting publica-
tions from the analysis) about the experiment.

annotation A character describing the platform on which the samples were assayed. This
is often the name of a Bioconductor chip annotation package, which facilitated
down-stream analysis.

protocolData An optional AnnotatedDataFrame containing equipment-generated informa-
tion about protocols. The number of rows and row names of protocolData
must agree with the dimension and column names of assayData.

Additional arguments, passed to new("ExpressionSet”, ...) and available
for classes that extend ExpressionSet.

Extends

Directly extends class eSet.

Creating Objects

ExpressionSet instances are usually created through ExpressionSet().

Slots

Inherited from eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow(phenoData).
assayData must contain a matrix exprs with rows representing features (e.g., probe sets) and
columns representing samples. Additional matrices of identical size (e.g., representing mea-
surement errors) may also be included in assayData. Class:AssayData-class

phenoData: See eSet
featureData: See eSet
experimentData: See eSet
annotation: See eSet

protocolData: See eSet

Methods

Class-specific methods.

as(exprSet, "ExpressionSet") Coerce objects of exprSet-class to ExpressionSet

as(object, "data.frame”) Coerce objects of ExpressionSet-class to data.frame by trans-
posing the expression matrix and concatenating phenoData

exprs(ExpressionSet), exprs(ExpressionSet,matrix)<- Access and set elements named exprs
in the AssayData-class slot.

36

ExpressionSet

esApply(ExpressionSet, MARGIN, FUN, ...) ’apply’-like function to conveniently operate on
ExpressionSet objects. See esApply.

write.exprs(ExpressionSet) Write expression values to a text file. It takes the same arguments
aswrite.table

Derived from eSet:

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.
See updateObject and eSet

isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

assayData(ExpressionSet): See eSet

sampleNames (ExpressionSet) and sampleNames(ExpressionSet)<-: See eSet

featureNames (ExpressionSet), featureNames(ExpressionSet, value)<-: See eSet

dims(ExpressionSet): See eSet

phenoData(ExpressionSet), phenoData(ExpressionSet,value)<-: See eSet

varLabels(ExpressionSet), varLabels(ExpressionSet, value)<-: See eSet

varMetadata(ExpressionSet), varMetadata(ExpressionSet,value)<-: See eSet

pData(ExpressionSet), pData(ExpressionSet,value)<-: See eSet

varMetadata(ExpressionSet), varMetadata(ExpressionSet,value) See eSet

experimentData(ExpressionSet),experimentData(ExpressionSet,value)<-: See eSet

pubMedIds(ExpressionSet), pubMedIds(ExpressionSet,value) See eSet

abstract(ExpressionSet): See eSet

annotation(ExpressionSet), annotation(ExpressionSet,value)<- See eSet

protocolData(ExpressionSet), protocolData(ExpressionSet,value)<- See eSet

combine(ExpressionSet,ExpressionSet): See eSet

storageMode (ExpressionSet), storageMode (ExpressionSet,character)<-: See eSet

Standard generic methods:

initialize(ExpressionSet): Object instantiation, used by new; not to be called directly by the
user.

updateObject(ExpressionSet): Update outdated versions of ExpressionSet to their current
definition. See updateObject, Versions-class.

validObject(ExpressionSet): Validity-checking method, ensuring that exprs is a member of
assayData. checkValidity(ExpressionSet) imposes this validity check, and the validity
checks of eSet.

makeDataPackage(object, author, email, packageName, packageVersion, license, biocViews, filePath, descr
Create a data package based on an ExpressionSet object. See makeDataPackage.

as(exprSet,ExpressionSet): Coerce exprSet to ExpressionSet.

as(eSet,ExpressionSet): Coerce the eSet portion of an object to ExpressionSet.

ExpressionSet

show(ExpressionSet) See eSet
dim(ExpressionSet), ncol See eSet
ExpressionSet[(index): See eSet
ExpressionSet$, ExpressionSet$<- See eSet

ExpressionSet[[i]], ExpressionSet[[i]]<- See eSet

Author(s)

Biocore team

See Also

eSet-class, ExpressionSet-class.

Examples

create an instance of ExpressionSet
ExpressionSet()

ExpressionSet(assayData=matrix(runif(1000), nrow=100, ncol=10))

update an existing ExpressionSet
data(sample.ExpressionSet)
updateObject (sample.ExpressionSet)

information about assay and sample data
featureNames(sample.ExpressionSet)[1:10]
sampleNames (sample.ExpressionSet)[1:5]
experimentData(sample.ExpressionSet)

subset: first 10 genes, samples 2, 4, and 10
expressionSet <- sample.ExpressionSet[1:10,c(2,4,10)]

named features and their expression levels
subset <- expressionSet[c("AFFX-BioC-3_at","AFFX-BioDn-5_at"),]
exprs(subset)

samples with above-average 'score' in phenoData
highScores <- expressionSet$score > mean(expressionSet$score)
expressionSet[,highScores]

(automatically) coerce to data.frame
Im(score~AFFX.BioDn.5_at + AFFX.BioC.3_at, data=subset)

37

38 featureData

exprs Retrieve expression data from eSets.

Description

These generic functions access the expression and error measurements of assay data stored in an
object derived from the eSet-class.

Usage

exprs(object)
exprs(object) <- value
se.exprs(object)
se.exprs(object) <- value

Arguments

object Object derived from class eSet.

value Matrix with rows representing features and columns samples.
Value

exprs returns a (usually large!) matrix of expression values; se.exprs returns the corresponding
matrix of standard errors, when available.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

featureData Retrieve information on features recorded in eSet-derived classes.

Description

These generic functions access feature data (experiment specific information about features) and
feature meta-data (e.g., descriptions of feature covariates).

featureNames 39

Usage

featureData(object)
featureData(object) <- value
fData(object)

fData(object) <- value
fvarLabels(object)
fvarLabels(object) <- value
fvarMetadata(object)
fvarMetadata(object) <- value

Arguments
object Object, possibly derived from eSet-class or AnnotatedDataFrame-class.
value Value to be assigned to corresponding object.

Value

featureData returns an object containing information on both variable values and variable meta-
data. fvarlLabels returns a character vector of measured variable names. fData returns a data
frame with features as rows, variables as columns. fvarMetadata returns a data frame with variable
names as rows, description tags (e.g., unit of measurement) as columns.

Author(s)

Biocore

See Also

eSet, ExpressionSet

featureNames Retrieve feature and sample names from eSets.

Description

These generic functions access the feature names (typically, gene or SNP identifiers) and sample
names stored in an object derived from the eSet-class.

Usage

featureNames(object)
featureNames(object) <- value
sampleNames(object)
sampleNames(object) <- value

40 getPkgVigs

Arguments

object Object, possibly derived from class eSet.

value Character vector containing feature or sample names.
Value

featureNames returns a (usually long!) character vector uniquely identifying each feature.sampleNames
returns a (usually shorter) character vector identifying samples.

Author(s)

Biocore

See Also

ExpressionSet-class, SnpSet-class

getPkgVigs List Vignette Files for a Package

Description

This function will return a listing of all vignettes stored in a package’s doc directory.

Usage
getPkgVigs(package = NULL)

Arguments
package A character vector of packages to search or NULL. The latter is for all attached
packages (in search()).
Value

A data.frame with columns package, filename, title.

Author(s)

Jeff Gentry, modifications by Wolfgang Huber.

See Also

openVignette

Examples

z <- getPkgVigs()
z # and look at them

Internals 41

Internals Internals

Description

Use help.search("your keyword", package="Biobase").

isCurrent Use version information to test whether class is current

Description
This generic function uses Versioned-class information to ask whether an instance of a class
(e.g., read from disk) has current version information.
By default, isCurrent has the following behaviors:
isCurrent(Versioned-instance) Returns a vector of logicals, indicating whether each version

matches the current version from the class prototype.

isCurrent (ANY) Return NA, indicating that the version cannot be determined
isCurrent(Versioned-instance, "class”) Returns alogical vector indicating whether version

identifiers shared between Versioned-instance and "class” are current.

Starting with R-2.6 / Bioconductor 2.1 / Biobase 1.15.1, isCurrent(Versioned-instance, ...)
returns an element S4 indicating whether the class has the ‘S4’ bit set; a value of FALSE indicates
that the object needs to be recreated.

Usage

isCurrent(object, value)

Arguments

object Object whose version is to be determined, as described above.

value (Optional) character string identifying a class with which to compare versions.
Value

isCurrent returns a logical vector.

Author(s)

Biocore team

See Also

Versions-class

42 isUnique

Examples

obj <- new("VersionedBiobase")
isCurrent(obj)

isCurrent(1:10) # NA

A <- setClass("A", contains="VersionedBiobase",
prototype=prototype(new("VersionedBiobase"”, versions=c(A="1.0.0"))))

a <= AQ
classVersion(a)

isCurrent(a, "VersionedBiobase"”) # is the 'VersionedBiobase' portion current?
classVersion(a)["A"] <- "1.0.1"

classVersion(a)

isCurrent(a, "VersionedBiobase")

isCurrent(a) # more recent, so does not match 'current' defined by prototype

removeClass("A")

isUnique Determine Unique Elements

Description

Determines which elements of a vector occur exactly once.

Usage

isUnique(x)

Arguments

X a vector

Value

A logical vector of the same length as x, in which TRUE indicates uniqueness.

Author(s)

Wolfgang Huber

See Also

unique,duplicated.

isVersioned 43

Examples

X <- ¢(9:20, 1:5, 3:7, 0:8)
isUnique(x)

isVersioned Determine whether object or class contains versioning information

Description

This generic function checks to see whether Versioned-class information is present. When the
argument to isVersioned is a character string, the prototype of the class corresponding to the string
is consulted.

By default, isVersioned has the following behaviors:

isVersioned(Versioned-instance) Returns TRUE when the instance have version information.
isCurrent(”class-name") Returns TRUE when the named class extends Versioned-class.
isVersioned(ANY) Returns FALSE

Usage

isVersioned(object)
Arguments

object Object or class name to check for version information, as described above.
Value

isVersioned returns a logical indicating whether version information is present.

Author(s)

Biocore team

See Also

Versions-class

Examples

obj <- new("VersionedBiobase")
isVersioned(obj)

isVersioned(1:10) # FALSE
A <- setClass("A", contains="VersionedBiobase",

prototype=prototype(new("VersionedBiobase"”, versions=c(A="1.0.0"))))
a <- AQ

44 IcSuffix

isVersioned(a)

removeClass("A")

lcSuffix Compute the longest common prefix or suffix of a string

Description

These functions find the longest common prefix or suffix among the strings in a character vector.

Usage

lcPrefix(x, ignore.case=FALSE)
lcPrefixC(x, ignore.case=FALSE)
lcSuffix(x, ignore.case=FALSE)

Arguments
X a character vector.
ignore.case A logical value indicating whether or not to ignore the case in making compar-
isons.
Details

Computing the longest common suffix is helpful for truncating names of objects, like microarrays,
that often have a common suffix, such as .CEL.

There are some potential problems with the approach used if multibyte character encodings are
being used.

lcPrefixC is a faster implementation in C. It only handles ascii characters.

Value

The common prefix or suffix.

Author(s)

R. Gentleman

See Also

nchar, nchar

listLen 45

Examples

s1 <- c("ABC.CEL", "DEF.CEL")
lcSuffix(s1)

s2 <- c("ABC.123", "ABC.456")
lcPrefix(s2)

CHK <- stopifnot

CHK(".CEL" == lcSuffix(s1))

CHK("bc" == lcSuffix(c("abc”, "333abc”, "bc")))

CHK("c" == lcSuffix(c("c"”, "abc”, "xxxc")))

CHK("" == lcSuffix(c("c", "abc", "xxx")))

CHK("ABC." == 1lcPrefix(s2))

CHK("ab" == lcPrefix(c("abcd”, "abcd123”, "ab", "abc", "abc333333")))
CHK("a" == 1lcPrefix(c("”abcd”, "abcd123”, "ax")))

CHK("a" == lcPrefix(c("a", "abcd123", "ax")))

CHK("" == lcPrefix(c("a", "abc”, "xxx")))

CHK("ab" == 1lcPrefixC(c("abcd"”, "abcd123”, "ab"”, "abc", "abc333333")))

CHK("a" == lcPrefixC(c("abcd"”, "abcd123", "ax")))
CHK("a" == lcPrefixC(c("a", "abcd123"”, "ax")))
CHK("" == lcPrefixC(c("a", "abc", "xxx")))
listLen Lengths of list elements
Description

This function returns an integer vector with the length of the elements of its argument, which is
expected to be a list.

Usage
listlLen(x)

Arguments

X A list

Details

This function returns a vector of the same length as the list x containing the lengths of each element.

The current implementation is intended for lists containing vectors and the C-level length function
is used to determine length. This means no dispatch is done for the elements of the list. If your list
contains S4 objects, you should use sapply(x, length) instead.

46 makeDataPackage

Author(s)

Jeff Gentry and R. Gentleman

See Also
sapply

Examples

foo = lapply(1:8, rnorm)
listlLen(foo)

makeDataPackage Make an R package from a data object

Description

This generic creates a valid R package from an R data object.

Usage

makeDataPackage(object, author, email,
packageName=deparse(substitute(object)),
packageVersion=package_version("1.0.0"),
license="Artistic-2.0",
biocViews="ExperimentData”,
filePath=tempdir(),

L)
Arguments
object An instance of an R data object.
author The author, as a character string.
email A valid email address for the maintainer, as a character string.
packageName The name of the package, defaults to the name of the object instance.

packageVersion The version number, as a character string.

license The license, as a character string.
biocViews A character vector of valid biocViews views.
filePath The location to create the package.

Additional arguments to specific methods.

Details

The function makes use of various tools in R and Bioconductor to automatically generate the source
files for a valid R package.

matchpt 47

Value

The return value is that from a call to 1ink{createPackage} which is invoked once the default
arguments are set up. The data instance is stored in the data directory with a name the same as that
of the resulting package.

Note
Developers implementing derived methods might force correct package name evaluation by includ-
ing ’packageName’ in any callNextMethod().

Author(s)

R. Gentleman

See Also

createPackage

Examples

data(sample.ExpressionSet)

package created in tempdir()

s1 <- makeDataPackage(sample.ExpressionSet,
author = "Foo Author”,
email = "foo@bar”,
packageName = "FooBarPkg",
packageVersion = "1.0.0")

matchpt Nearest neighbor search.

Description

Find the nearest neighbors of a set of query points in the same or another set of points in an n-
dimensional real vector space, using the Euclidean distance.

Usage
matchpt(x, y)
Arguments
X A matrix (or vector) of coordinates. Each row represents a point in an ncol (x)-

dimensional real vector space.

y Optional, matrix (or vector) with the same number of columns as x.

48 MIAME

Details

If y is provided, the function searches for each point in x its nearest neighbor in y. If y is missing, it
searches for each point in x its nearest neighbor in x, excluding that point itself. In the case of ties,
only the neighbor with the smaller index is given.

The implementation is simple and of complexity nrow(x) times nrow(y). For larger problems,
please consider one of the many more efficient nearest neighbor search algorithms.

Value

A data.frame with two columns and nrow(x) rows. The first column is the index of the nearest
neighbor, the second column the distance to the nearest neighbor. If y was given, the index is a row
number in y, otherwise, in x. The row names of the result are those of x.

Author(s)
Oleg Sklyar <osklyar@ebi.ac.uk>

Examples

a <- matrix(c(2,2,3,5,1,8,-1,4,5,6), ncol=2L, nrow=5L)
rownames(a) = LETTERS[seq_len(nrow(a))]

matchpt(a)

b <- ¢(1,2,4,5,6)

d <-c(5.3, 3.2, 8.9, 1.3, 5.6, -6, 4.45, 3.32)
matchpt(b, d)

matchpt(d, b)

MIAME Class for Storing Microarray Experiment Information

Description

Class MIAME covers MIAME entries that are not covered by other classes in Bioconductor. Namely,
experimental design, samples, hybridizations, normalization controls, and pre-processing informa-
tion. The MIAME class is derived from MIAXE.

Slots

name: Object of class character containing the experimenter name

lab: Object of class character containing the laboratory where the experiment was conducted
contact: Object of class character containing contact information for lab and/or experimenter
title: Object of class character containing a single-sentence experiment title

abstract: Object of class character containing an abstract describing the experiment

url: Object of class character containing a URL for the experiment

samples: Object of class 1ist containing information about the samples

MIAME 49

hybridizations: Object of class 1ist containing information about the hybridizations

normControls: Objectof class 1ist containing information about the controls such as house keep-
ing genes

preprocessing: Object of class 1ist containing information about the pre-processing steps used
on the raw data from this experiment

pubMedIds: Object of class character listing strings of PubMed identifiers of papers relevant to
the dataset

other: Object of class 1list containing other information for which none of the above slots does
not applies

Methods

Constructor methods:

MIAME(): MIAME(name ="", lab="", contact="", title="", abstract="", url="", pubMedIds
="" samples ="", hybridizations =1list(), normControls = 1list(), preprocessing
=1list(), other = 1list()): Creates a new MIAME object with slots as defined above.

nn

Class-specific methods:

abstract(MIAME): An accessor function for abstract.

combine (MIAME,MIAME): Combine two objects of MIAME-class, issuing warnings when ambigu-
ities encountered.

expinfo(MIAME): An accessor function for name, lab, contact, title, and url.
hybridizations(MIAME): An accessor function for hybridizations.
normControls(MIAME): An accessor function for normControls.

notes(MIAME), notes(MIAME) <- value: Accessor functions for other. notes(MIAME) <- character
appends character to notes; use notes(MIAME) <- list to replace the notes entirely.

otherInfo(MIAME): An accessor function for other.
preproc(MIAME): An accessor function for preprocessing.
pubMedIds(MIAME), pubMedIds(MIAME) <- value: Accessor function for pubMedIds.

samples(MIAME): An accessor function for samples.
Standard generic methods:

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.
See updateObject
isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

show(MIAME): Renders information about the MIAME information

Author(s)

Rafael A. Irizarry

50 MIAXE

References

http://www.mged.org/Workgroups/MIAME/miame_1.1.html

See Also

class:characterORMIAME, read.MIAME

MIAXE MIAXE objects

Description

The MIAXE virtual class is a general container for storing experiment metadata. Information such as
experimental design, samples, normalization methods and pre-processing information can be stored
in these objets.

The MIAXE class is virtual and MIAXE objects cannot be instantiated directly. The following classes
derive directly from the MIAXE class: MIAME.

Slots
Introduced in MIAXE:

.__classVersion__: A Versions object describing the MIAXE version number. Intended for de-
veloper use.

Methods
Standard generic methods:

show(object) Informatively display object contents.

Author(s)

Biocore team

See Also

Related classes MIAME-class, ExpressionSet-class. Derived classes MIAME-class.

Examples

Create a new class
MyData <- setClass("MyData”, contains="MIAxE")
MyData()

MIAXE objects cannot be instantiated directly
try(new("MIAXE"))

http://www.mged.org/Workgroups/MIAME/miame_1.1.html

multiassign 51

multiassign Assign Values to a Names

Description

Assign values to names in an environment.

Usage

multiassign(x, value, envir = parent.frame(), inherits=FALSE)

Arguments

X A vector or list of names, represented by strings.

value a vector or list of values to be assigned.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?
Details

The pos argument can specify the environment in which to assign the object in any of several ways:
as an integer (the position in the search list); as the character string name of an element in the search
list; or as an environment (including using sys. frame to access the currently active function calls).
The envir argument is an alternative way to specify an environment, but is primarily there for back
compatibility.

If value is missing and x has names then the values in each element of x are assigned to the names
of x.

Value

This function is invoked for its side effect, which is assigning the values to the variables in x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable is
encountered. If the symbol is not encountered then assignment takes place in the user’s workspace
(the global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir.

Examples
#-- Create objects 'r1', 'r2', ... 'r6' --
nam <- paste("r",1:6, sep=".")

multiassign(nam, 11:16)
1s(pat="*r..$")

52 MultiSet

#assign the values in y to variables with the names from y

y<-list(a=4,d=mean,c="aaa")

multiassign(y)
MultiSet Class to Contain and Describe High-Throughput Expression Level As-
says.
Description

Container for high-throughput assays and experimental metadata. MutliSet is derived from eSet-class.
MultiSet differs from ExpressionSet-class because MultiSet can contain any element(s) in
assayData (ExpressionSet must have an element named exprs).

Extends

Directly extends class eSet.

Creating Objects

new('MultiSet', phenoData = [AnnotatedDataFrame], experimentData = [MIAME], annotation
= [character], protocolData = [AnnotatedDataFrame], ...)

updateOldESet (oldESet, "MultiSet")

MultiSet instances are usually created through new("MultiSet”, ...). The ... arguments to
new are matrices of expression data (with features corresponding to rows and samples to columns),
phenoData, experimentData, annotation, and protocolData. phenoData, experimentData,
annotation, and protocolData can be missing, in which case they are assigned default values.

updateOldESet will take a serialized instance (e.g., saved to a disk file with save object created
with earlier definitions of the eSet-class, and update the object to MultiSet. Warnings are issued
when direct translation is not possible; incorrectly created o1dESet instances may not be updated.

Slots

Inherited from eSet:

assayData: Contains zero or more matrices with equal dimensions, and with column number equal
to nrow(phenoData). Each matrix in assayData has rows representing features (e.g., re-
porters) and columns representing samples. Class:AssayData-class

phenoData: See eSet-class
experimentData: See eSet-class
annotation: See eSet-class

protocolData: See eSet-class

MultiSet 53

Methods

Class-specific methods: none

Derived from eSet-class:

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.
See updateObject and eSet

isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

sampleNames(MultiSet) and sampleNames(MultiSet)<-: See eSet-class
featureNames(MultiSet), featureNames(MultiSet, value)<-: See eSet-class
dims(MultiSet): See eSet-class

phenoData(MultiSet), phenoData(MultiSet,value)<-: See eSet-class
varLabels(MultiSet), varLabels(MultiSet, value)<-: See eSet-class
varMetadata(MultiSet), varMetadata(MultiSet,value)<-: See eSet-class
pData(MultiSet), pData(MultiSet,value)<-: See eSet-class
varMetadata(MultiSet), varMetadata(MultiSet,value) See eSet-class
experimentData(MultiSet),experimentData(MultiSet,value)<-: See eSet-class
pubMedIds(MultiSet), pubMedIds(MultiSet,value) See eSet-class
abstract(MultiSet): See eSet-class

annotation(MultiSet), annotation(MultiSet,value)<- See eSet-class
protocolData(MultiSet), protocolData(MultiSet,value)<- See eSet-class
combine(MultiSet,MultiSet): See eSet-class

storageMode(eSet), storageMode(eSet,character)<-: See eSet-class
Standard generic methods:

initialize(MultiSet): Object instantiation, used by new; not to be called directly by the user.

validObject(MultiSet): Validity-checking method, ensuring that all elements of assayData are
matricies with equal dimensions.

as(eSet,MultiSet): Coerce the eSet portion of an object to MultiSet.
show(MultiSet) See eSet-class

dim(MultiSet), ncol See eSet-class

MultiSet[(index): See eSet-class

MultiSet$,MultiSet$<- See eSet-class

Author(s)

Biocore team

See Also

eSet-class, ExpressionSet-class

54

NChannelSet-class

Examples

create an instance of ExpressionSet
new("MultiSet")

NChannelSet-class Class to contain data from multiple channel array technologies

Description

Container for high-throughput assays and experimental meta-data. Data are from experiments
where a single ‘chip’ contains several (more than 1) different ‘channels’. All channels on a chip
have the same set of ‘features’. An experiment consists of a collection of several N-channel chips;
each chip is a ‘sample’.

An NChannelSet provides a way to coordinate assay data (expression values) with phenotype in-
formation and references to chip annotation data; it extends the eSet class.

An NChannelSet allows channels to be extracted (using the channels method, mentioned below),
and subsets of features or samples to be selected (using [<features>, <samples>]). Selection and
subsetting occur so that relevant phenotypic data is maintained by the selection or subset.

Objects from the Class

Slots

Objects can be created by calls of the form NChannelSet (assayData, phenoData, ...). See the
examples below.

assayData: Object of class AssayData, usually an environment containing matrices of identical

size. Each matrix represents a single channel. Columns in each matrix correspond to samples,
rows to features. Once created, NChannelSet manages coordination of samples and channels.

phenoData: Object of class AnnotatedDataFrame.

The data component of the AnnotatedDataFrame is data. frame with number of rows equal
to the number of samples. Columns of the data component correspond to measured covari-
ates.

The varMetadata component consists of mandatory columns labelDescription (providing
a textual description of each column label in the data component) and channel. The channel
of varMetadata is a factor, with levels equal to the names of the assayData channels,
plus the special symbol _ALL_. The channel column is used to indicate which channel(s)
the corresponding column in the data component of AnnotatedDataFrame correspond; the
ALL symbol indicates that the data column is applicable to all channels. varMetadata may
contain additional columns with arbitrary information.

Once created, NChannelSet coordinates selection and subsetting of channels in phenoData.

featureData: Object of class AnnotatedDataFrame, used to contain feature data that is unique to

this experiment; feature-level descriptions common to a particular chip are usually referenced
through the annotation slot.

experimentData: Object of class MIAME containing descriptions of the experiment.

NChannelSet-class 55

annotation: Object of class "character”. Usually a length-1 character string identifying the chip
technology used during the experiment. The annotation string is used to retrieve information
about features, e.g., using the annotation package.

protocolData: Object of class "character”. A character vector identifying the dates the samples
were scanned during the experiment.

.__classVersion__: Object of class Versions, containing automatically created information about

the class definition Biobase package version, and other information about the user system at
the time the instance was created. See classVersion and updateObject for examples of use.

Extends

Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned”,
by class "eSet", distance 3.

Methods

Methods with class-specific functionality:

channel(object, name, ...) signature(object="NChannelSet"”, name="character”). Re-
turn an ExperessionSet created from the channel and corresponding phenotype of argu-
ment name. name must have length 1. Arguments ... are rarely used, but are passed to the
ExpressionSet constructor, for instance to influence storage.mode.

channelNames(object), channelNames (object) <- value signature(object = "NChannelSet").
Obtain, reorder, or rename channels contained in object. See channelNames.

selectChannels(object, names, ... signature(object = "NChannelSet"”, names = "character”).
Create a new NChannelSet from object, containing only channels in names. The . .. is not
used by this method.

object[features, samples] signature(object = "NChannelSet"”, features = "ANY", samples
="ANY"). Create a new NChannelSet from object, containing only elements matching
features and samples; either index may be missing, or a character, numeric, or logical
vector.

sampleNames(object) <- value signature(object = "NChannelSet”, value = "1list") assign
each (named) element of value to the sampleNames of the correspondingly named elements
of assayData in object.

Methods with functionality derived from eSet: annotation, annotation<-, assayData, assayData<-,
classVersion, classVersion<-,dim, dims, experimentData, experimentData<-, featureData,
featureData<-, phenoData, phenoData<-, protocolData, protocolData<-, pubMedIds, pubMedIds<-,
sampleNames, sampleNames<-, storageMode, storageMode<-, varMetadata, varMetadata<-,
isCurrent, isVersioned, updateObject.

Additional methods: coerce (‘as’, to convert between objects, if possible), initialize (used
internally for creating objects), show (invoked automatically when the object is displayed to the
screen)

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

56 note

See Also

eSet, ExpressionSet.

Examples

An empty NChannelSet
obj <- NChannelSet()

An NChannelSet with two channels (R, G) and no phenotypic data
obj <- NChannelSet(R=matrix(@,10,5), G=matrix(0,10,5))

An NChannelSet with two channels and channel-specific phenoData
R <- matrix(@, 10, 3, dimnames=list(NULL, LETTERS[1:31))
G <- matrix(1, 10, 3, dimnames=list(NULL, LETTERS[1:3]))
assayData <- assayDataNew(R=R, G=G)
data <- data.frame(ChannelRData=numeric(ncol(R)),
ChannelGData=numeric(ncol(R)),
ChannelRAndG=numeric(ncol(R)))
varMetadata <- data.frame(labelDescription=c(
"R-specific phenoData”,
"G-specific phenoData”,
"Both channel phenoData"),
channel=factor(c("R", "G", "_ALL_")))
phenoData <- AnnotatedDataFrame(data=data, varMetadata=varMetadata)
obj <- NChannelSet(assayData=assayData, phenoData=phenoData)
obj

G channel as NChannelSet
selectChannels(obj, "G")

G channel as ExpressionSet
channel(obj, "G")

Samples "A" and "C"
obj[,c("A", "C")]

note Informational Messages

Description

Generates an informational message that corresponds to its argument(s). Similar to warning() ex-
cept prefaced by "Note:" instead of "Warning message:".

Usage

note(...)

notes 57

Arguments

character vectors (which are pasted together) or NULL

Details

This function essentially cat()’s the created string to the screen. It is intended for messages to the
user that are deemed to be ’informational’, as opposed to warnings, etc.

Author(s)
Jeff Gentry

See Also

warning,stop

Examples

note("This is an example of a note")

notes Retrieve and set eSet notes.

Description

These generic functions access notes (unstructured descriptive data) associated eSet-class.

notes(<ExpressionSet>) <- <character> is unusual, in that the character vector is appended to
the list of notes; use notes(<ExpressionSet>) <- <list> to entirely replace the list.
Usage

notes(object)
notes(object) <- value

Arguments
object Object, possibly derived from class eSet-class.
value Character vector containing unstructured information describing the experine-
ment.
Value

notes returns a list.

Author(s)

Biocore

58 openPDF

See Also

ExpressionSet-class, SnpSet-class

openPDF Open PDF Files in a Standard Viewer

Description

Displays the specified PDF file.

Usage

openPDF (file, bg=TRUE)

Arguments

file A character string, indicating the file to view

bg Should the pdf viewer be opened in the background.
Details

Currently this function works on Windows and Unix platforms. Under Windows, whatever program
is associated with the file extension will be used. Under Unix, the function will use the program
named in the option "pdfviewer" (see help(options) for information on how this is set.)

The bg argument is only interpreted on Unix.

Value

This function is executed for its side effects. The specified PDF file is opened in the PDF viewer
and TRUE is returned.

Author(s)

Jeff Gentry

Examples

Not run: openPDF("annotate.pdf"”)

open Vignette 59

openVignette Open a Vignette or Show Vignette Selection Menu

Description

Using the data returned by vignette this function provides a simple easy to use interface for open-
ing vignettes.

Usage

openVignette(package=NULL)

Arguments

package character string indicating the package to be used.

Details

If package is NULL then all packages are scanned for vignettes. The list of vignettes is presented
to the user via the menu command. The user may select one of the vignettes to be opened in a PDF
viewer.

Value
No value is returned; this function is run entirely for the side effect of opening the pdf document in
the PDF viewer.

Author(s)

R. Gentleman

See Also

vignette, openPDF, menu, getPkgVigs

Examples

if(interactive())
openVignette("Biobase")

60 package.version

package.version Report Version of a Package

Description

Will report the version number of a requested installed package

Usage

package.version(pkg, lib.loc = NULL)

Arguments
pkg The name of the package
lib.1loc a character vector describing the location of R library trees to search through,
or ‘NULL'. The default value of ‘NULL’ corresponds to all libraries currently
known.
Details

This function is a convenience wrapper around package.description, and will report simply the
version number of the requested package. If the package does not exist or if the DESCRIPTION
file can not be read, then an error will be thrown.

Value

A character string reporting the version number.

Author(s)

Jeff Gentry

See Also

package.description

Examples

package.version("Biobase")

phenoData 61

phenoData Retrieve information on experimental phenotypes recorded in eSet and
ExpressionSet-derived classes.

Description

These generic functions access the phenotypic data (e.g., covariates) and meta-data (e.g., descrip-
tions of covariates) associated with an experiment.

Usage

phenoData(object)
phenoData(object) <- value
varLabels(object)
varLabels(object) <- value
varMetadata(object)
varMetadata(object) <- value
pData(object)

pData(object) <- value

Arguments
object Object, possibly derived from eSet-class or AnnotatedDataFrame.
value Value to be assigned to corresponding object.

Value

phenoData returns an object containing information on both variable values and variable meta-
data. varLabels returns a character vector of measured variables. pData returns a data frame with
samples as rows, variables as columns. varMetadata returns a data frame with variable names as
rows, description tags (e.g., unit of measurement) as columns.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

62 read.AnnotatedDataFrame

protocolData Protocol Metadata

Description

This generic function handles methods for adding and retrieving protocol metadata for the samples
in eSets.

Usage

protocolData(object)
protocolData(object) <- value

Arguments
object Object derived from class eSet
value Object of class AnnotatedDataFrame
Value

protocolData(object) returns an AnnotatedDataFrame containing the protocol metadata for the
samples.

Author(s)

Biocore

See Also

phenoData, AnnotatedDataFrame-class, eSet-class, ExpressionSet-class, SnpSet-class

read.AnnotatedDataFrame
Read and write ’AnnotatedDataFrame’

Description

Create an instance of class AnnotatedDataFrame by reading a file, or save an AnnotatedDataFrame
to a file.

read.AnnotatedDataFrame 63

Usage

read.AnnotatedDataFrame(filename, path,
sep = "\t"”, header = TRUE, quote = "", stringsAsFactors = FALSE,
row.names = 1L,
varMetadata.char="#",
widget = getOption(”"BioC")$Base$use.widgets,
sampleNames = character(@), ...)

write.AnnotatedDataFrame(x, file="", varMetadata.char="#", ...,
append=FALSE, fileEncoding="")

Arguments

filename, file file or connection from which to read / write.

X An instance of class AnnotatedDataFrame.

path (optional) directory in which to find filename.

row.names this argument gets passed on to read. table and will be used for the row names
of the phenoData slot.

varMetadata.char
lines beginning with this character are used for the varMetadata slot. See ex-
amples.

sep, header, quote, stringsAsFactors, ...
further arguments that get passed on to read. table orwrite. table.

widget logical. Currently this is not implemented, and setting this option to TRUE will
result in an error. In a precursor of this function, read. phenoData, this option
could be used to open an interactive GUI widget for entering the data.

sampleNames optional argument that could be used in conjunction with widget; do not use.

append, fileEncoding
Arguments as described in write. table

Details

The function read.table is used to read pData. The argument varMetadata.char is passed
on to that function as its argument comment.char. Lines beginning with varMetadata.char
are expected to contain further information on the column headers of pData. The format is of
the form: # variable: textual explanation of the variable, units, measurement method,
etc. (assuming that # is the value of varMetadata.char). See also examples.

write.AnnotatedDataFrame outputs varLabels and varMetadata(x)$labelDescription as com-
mented header lines, and pData(x) as a with write. table.

Value

read.AnnotatedDataFrame: An instance of class AnnotatedDataFrame

write.AnnotatedDataFrame: NULL, invisibly.

64 read MIAME

Author(s)
Martin Morgan <mtmorgan @fhcrc.org> and Wolfgang Huber, based on read. phenoData by Rafael
A. Trizarry.

See Also

AnnotatedDataFrame for additional methods, read. table for details of reading in phenotypic data

Examples

exampleFile = system.file("extdata”, "pData.txt”, package="Biobase")

adf <- read.AnnotatedDataFrame(exampleFile)
adf

head(pData(adf))
head(noquote(readLines(exampleFile)), 11)

write.AnnotatedDataFrame (adf) # write to console by default
read.MIAME Read MIAME Information into an Instance of Class "MIAME’
Description

Reads MIAME information from a file or using a widget.

Usage
read.MIAME (filename = NULL, widget = getOption("BioC")$Base$use.widgets, ...)
Arguments
filename Filename from which to read MIAME information.
widget Logical. If TRUE and a filename is not given, a widget is used to enter informa-
tion.
Further arguments to scan.
Details

Notice that the MIAME class tries to cover the MIAME entries that are not covered by other classes in
Bioconductor. Namely, experimental design, samples, hybridizations, normalization controls, and
pre-processing information.

The function scan is used to read. The file must be a flat file with the different entries for the
instance of MIAME class separated by carriage returns. The order should be: name, lab, contact,
title, abstract, and url.

Alternatively a widget can be used.

readExpressionSet 65

Value

An object of class MIAME.

Author(s)

Rafael Irizarry <rafa@jhu.edu>

See Also

MIAME,tkMIAME

Examples

miame <- read.MIAME(widget=FALSE) ##creates an empty instance
show(miame)

readExpressionSet Read ’ExpressionSet’

Description

Create an instance of class ExpressionSet by reading data from files. ‘widget’ functionality is not
implemented for readExpressionSet.

Usage

readExpressionSet(exprsFile,
phenoDataFile,
experimentDataFile,
notesFile,
path,
annotation,
arguments to read.* methods
exprsArgs=list(sep=sep, header=header, row.names=row.names,

quote=quote, ...),
phenoDataArgs=list(sep=sep, header=header, row.names=row.names,
quote=quote, stringsAsFactors=stringsAsFactors, ...),

experimentDataArgs=1ist(sep=sep, header=header,
row.names=row.names, quote=quote,

stringsAsFactors=stringsAsFactors, ...),
sep = "\t", header = TRUE, quote = "", stringsAsFactors = FALSE,
row.names = 1L,
widget

widget = getOption(”"BioC")$Base$use.widgets,
)

66 readExpressionSet

Arguments

exprsFile (character) File or connection from which to read expression values. The file
should contain a matrix with rows as features and columns as samples. read. table
is called with this as its file argument and further arguments given by exprsArgs.

phenoDataFile (character) File or connection from which to read phenotypic data. read.AnnotatedDataFrame
is called with this as its file argument and further arguments given by phenoDataArgs.

experimentDataFile
(character) File or connection from which to read experiment data. read.MIAME
is called with this as its file argument and further arguments given by experimentDataArgs.

notesFile (character) File or connection from which to read notes; readLines is used to
input the file.

path (optional) directory in which to find all the above files.

annotation (character) A single character string indicating the annotation associated with
this ExpressionSet.

exprsArgs A list of arguments to be used with read. table when reading in the expression
matrix.

phenoDataArgs A list of arguments to be used (with read.AnnotatedDataFrame) when reading
the phenotypic data.

experimentDataArgs
A list of arguments to be used (with read.MIAME) when reading the experiment
data.

sep, header, quote, stringsAsFactors, row.names
arguments used by the read. table-like functions.

widget A boolean value indicating whether widgets can be used. Widgets are NOT yet
implemented for read.AnnotatedDataFrame.

Further arguments that can be passed on to the read. table-like functions.

Details

Expression values are read using the read.table function. Phenotypic data are read using the
read.AnnotatedDataFrame function. Experiment data are read using the read.MIAME function.
Notes are read using the readLines function. The return value must be a valid ExpressionSet.
Only the exprsFile argument is required.

Value

An instance of the ExpressionSet class.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

See Also

ExpressionSet for additional methods.

reporter 67

Examples

exprsFile = system.file("extdata”, "exprsData.txt”, package="Biobase")
phenoFile = system.file("extdata"”, "pData.txt"”, package="Biobase")

Read ExpressionSet with appropriate parameters
obj = readExpressionSet(exprsFile, phenoFile, sep = "\t", header=TRUE)
obj

reporter Example data.frame representing reporter information

Description

The reporter object is a 500 by 1 data frame. The rows represent the 500 probe IDs in the
geneData data. The values in reporter are the predefined probe types for the probes. reporter is
used in conjunction with the geneData object and its associates.

Usage

data(reporter)

Format

A 500 by 1 data frame

Details

There are 10 predefined probe types:

* AFFX- Quality Control (QC)
» _f_ SequenceFamily

* _g_ CommonGroups

* _s_ SimilarityConstraint

* _r_ RulesDropped

e _i_ Incomplete

* _b_ AmbiguousProbeSet

* _1_LongProbeSet

e _at AntiSenseTarget

* _st SenseTarget

Source

Affymetrix GeneChip Expression Analysis Data Analysis Fundamentals (http://www.affymetrix.
com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf)

http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf

68 reverseSplit

Examples

data(reporter)
maybe str(reporter) ; plot(reporter) ...

reverseSplit A function to reverse the role of names and values in a list.

Description
Given a list with names x and values in a set y this function returns a list with names in y and values
in X.

Usage

reverseSplit(inList)

Arguments

inList A named list with values that are vectors.

Details

First the list is unrolled to provide a two long vectors, names are repeated, once for each of their
values. Then the names are split by the values.

This turns out to be useful for inverting mappings between one set of identifiers and an other.

Value
A list with length equal to the number of distinct values in the input list and values from the names
of the input list.

Author(s)

R. Gentleman

See Also

split

Examples

11 = list(a=1:4, b=c(2,3), d=c(4,5))
reverseSplit(11)

rowMedians 69

rowMedians Calculates the median for each row in a matrix

Description

Calculates the median for each row in a matrix.

Usage
rowMedians(x, na.rm=FALSE, ...)
Arguments
X A numeric NxK matrix.
na.rm If TRUE, NAs are excluded first, otherwise not.
Not use.
Details

The implementation of rowMedians() is optimized for both speed and memory. To avoid coercing
to doubles (and hence memory allocation), there is a special implementation for integer matrices.
That is, if x is an integer matrix, then rowMedians(as.double(x)) would require three times
the memory of rowMedians(x), but all this is avoided.

Value

Returns a numeric vector of length N.

Missing values

Missing values are excluded before calculating the medians.

Author(s)

Henrik Bengtsson

See Also

See rowMeans () in colSums().

Examples

set.seed(1)

X <= rnorm(n=234x543)

x[sample(1:1length(x), size=0.1xlength(x))] <- NA
dim(x) <- c(234,543)

y1 <- rowMedians(x, na.rm=TRUE)

y2 <- apply(x, MARGIN=1, FUN=median, na.rm=TRUE)

70 rowQ

stopifnot(all.equal(yl, y2))

x <= cbind(x1=3, x2=c(4:1, 2:5))
stopifnot(all.equal(rowMeans(x), rowMedians(x)))

rowQ A function to compute empirical row quantiles.

Description

This function computes the requested quantile for each row of a matrix, or of an ExpressionSet.

Usage
rowQ(imat, which)
rowMax (imat)
rowMin(imat)
Arguments

imat Either a matrix or an ExpressionSet.

which An integer indicating which order statistic should be returned.

Details

rowMax and rowMin simply call rowQ with the appropriate argument set.

The argument which takes values between 1, for the minimum per row, and ncol (imat), for the
maximum per row.

Value
A vector of length equal to the number of rows of the input matrix containing the requested quan-
tiles.

Author(s)

R. Gentleman

See Also

rowMedians. rowMeans () in colSums().

Examples

data(sample.ExpressionSet)
rowMin(sample.ExpressionSet)
rowQ(sample.ExpressionSet, 4)

ScalarObject-class 71

ScalarObject-class Utility classes for length one (scalar) objects

Description

These classes represent scalar quantities, such as a string or a number and are useful because they
provide their own validity checking. The classes ScalarCharacter, ScalarLogical, ScalarInteger,
and ScalarNumeric all extend their respective base vector types and can be used interchangeably
(except they should always have length one).

The mkScalar factory function provides a convenient way of creating Scalar<type> objects (see
the examples section below).
Usage

mkScalar(obj)

Arguments

obj An object of type character, logical, integer, or double

Author(s)

Seth Falcon

Examples

v <- list(mkScalar("a single string"),
mkScalar(1),
mkScalar(1L),
mkScalar (TRUE))

sapply(v, class)

sapply(v, length)

selectChannels Create a new NChannelSet instance by selecting specific channels

Description

This generic function extracts specific elements from an object, returning a instance of that object.

Usage

selectChannels(object, names, ...)

72 selectSome

Arguments
object An S4 object, typically derived from class eSet
names Character vector of named channels.
Additional arguments.
Value

Instance of class object.

Author(s)

Biocore

Examples
obj <- NChannelSet(R=matrix(runif(100), 20, 5), G=matrix(runif(100), 20, 5))

G channel as NChannelSet
selectChannels(obj, "G")

selectSome Extract elements of a vector for concise rendering

Description
Extract the first and last several elements of a vector for concise rendering; insert ellipses to indicate
elided elements. This function is primarily meant for developer rather than end-user use.

Usage

selectSome(obj, maxToShow=5)

Arguments

obj A vector.

maxToShow The number of elements (including "...") to render.
Details

This function can be used in ’show’ methods to give users exemplars of the tokens used in a vector.
For example, an ExpressionSet built from a yeast experiment might have features enumerated
using systematic gene names (e.g., YPR181C) or standard gene names (e.g., SEC23). The show
method for ExpressionSet uses selectSome to alert the user to the tokens used, and thereby to
indicate what vocabulary must be understood to work with the feature names.

snpCall

Value

A string vector with at most maxToShow plus 1 elements, where an ellipsis ("
indicate incompleteness of the excerpt.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

Examples

selectSome(1:20)

73

...") 1is included to

snpCall Get and retrieve SNP call and call probability data.

Description

These generic functions access the calls and call probabilities stored in objects.

Usage
snpCall(object, ...)
snpCall(object, ...) <- value
snpCallProbability(object, ...)
snpCallProbability(object, ...) <- value
Arguments
object Object, possibly derived from class SnpSet.
value Matrix with rows representing SNP calls or call probabilities
ples.
Additional arguments available to methods.
Value

and columns sam-

snpCall returns a matrix of SNP calls; snpCallProbability returns the corresponding matrix of

standard errors, when available.

Author(s)

Biocore

See Also

SnpSet-class

SnpSet

SnpSet Class to Contain Objects Describing High-Throughput SNP Assays.

Description

Container for high-throughput assays and experimental metadata. SnpSet class is derived from
eSet, and requires matrices call, callProbability as assay data members.

Extends

Directly extends class eSet.

Creating Objects

new('SnpSet', phenoData = [AnnotatedDataFrame], experimentData = [MIAME], annotation
= [character], protocolData = [AnnotatedDataFrame], call = [matrix], callProbability
= [matrix], ...)

SnpSet instances are usually created through new("”SnpSet”, ...). Usually the arguments to new
include call (a matrix of genotypic calls, with features (SNPs) corresponding to rows and sam-
ples to columns), phenoData, experimentData, annotation, and protocolData. phenoData,
experimentData, annotation and protocolData can be missing, in which case they are assigned
default values.

Slots

Inherited from eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow(phenoData).
assayData must contain a matrix call with rows representing features (e.g., SNPs) and
columns representing samples, and a matrix callProbability describing the certainty of
the call. The content of call and callProbability are not enforced by the class. Additional
matrices of identical size may also be included in assayData. Class:AssayData-class

phenoData: See eSet
experimentData: See eSet
annotation: See eSet

protocolData: See eSet

Methods

Class-specific methods:

snpCall(SnpSet), snpCall(SnpSet,matrix)<- Access and set elements named call in the AssayData
slot.

exprs(SnpSet), exprs(SnpSet,matrix)<- Synonym for snpCall.

snpCallProbability(SnpSet), snpCallProbability<-(SnpSet,matrix)<- Access and setel-
ements named callProbability in the AssayData slot.

SnpSet 75

Derived from eSet:

updateObject(object, ..., verbose=FALSE) Update instance to current version, if necessary.
See updateObject and eSet

isCurrent(object) Determine whether version of object is current. See isCurrent

isVersioned(object) Determine whether object contains a ’version’ string describing its struc-
ture . See isVersioned

sampleNames(SnpSet) and sampleNames(SnpSet)<-: See eSet
featureNames(SnpSet), featureNames(SnpSet, value)<-: See eSet
dims(SnpSet): See eSet

phenoData(SnpSet), phenoData(SnpSet,value)<-: See eSet
varLabels(SnpSet), varLabels(SnpSet, value)<-: See eSet
varMetadata(SnpSet), varMetadata(SnpSet,value)<-: See eSet
pData(SnpSet), pData(SnpSet,value)<-: See eSet
varMetadata(SnpSet), varMetadata(SnpSet,value) See eSet
experimentData(SnpSet),experimentData(SnpSet,value)<-: See eSet
pubMedIds(SnpSet), pubMedIds(SnpSet,value) See eSet
abstract(SnpSet): See eSet

annotation(SnpSet), annotation(SnpSet,value)<- See eSet
protocolData(SnpSet), protocolData(SnpSet,value)<- See eSet
combine(SnpSet,SnpSet): See eSet

storageMode(eSet), storageMode (eSet,character)<-: See eSet
Standard generic methods:

initialize(SnpSet): Object instantiation, used by new; not to be called directly by the user.

validObject(SnpSet): Validity-checking method, ensuring that call and callProbabilityisa
member of assayData. checkValidity(SnpSet) imposes this validity check, and the valid-
ity checks of eSet.

show(SnpSet) See eSet
dim(SnpSet), ncol See eSet
SnpSet[(index): See eSet
SnpSet$, SnpSet$<- See eSet

Author(s)

Martin Morgan, V.J. Carey, after initial design by R. Gentleman

See Also

eSet, ExpressionSet

76 strbreak

storageMode Retrieve or set storage mode for eSets.

Description

These generic functions report or change the storage mode used for assayData.

Usage

storageMode (object)
storageMode(object) <- value

Arguments
object Object, derived from class eSet
value Character vector containing "lockedEnvironment"”,”environment”, or "1ist".
See AssayData-class for details.
Value

storageMode returns a length-1 character vector

Author(s)

Biocore

See Also

AssayData-class, eSet-class ExpressionSet-class, SnpSet-class

strbreak Break Character Strings to Fit Width

Description
Inserts line breaks (collapse) into input character strings. The main intention of this function is to
prepare long strings for printing, so the output is not wider than width.

Usage

strbreak(x, width=getOption("width"), exdent=2, collapse="\n")

subListExtract 77

Arguments
X a character vector
width a positive integer giving the width of the output.
exdent a positive integer specifying the indentation of subsequent lines after the first
line.
collapse a character. This is inserted to break lines.
Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber

See Also

strwrap, substring

Examples

longString = paste(rep(LETTERS, 10), collapse="", sep="")
cat(strbreak(longString))

subListExtract Extract the same element from the sublists of a list

Description

Given a list of lists, this function can be used to extract a named element from each sublist.

Usage

subListExtract(L, name, simplify = FALSE, keep.names = TRUE)

Arguments
L A list of named lists
name The name of the element in the sublists that should be extracted. This should be
a length one character vector.
simplify When TRUE, the return value will be an atomic vector. If any extracted sublist
value has length not equal to one and simplify=TRUE, an error will be raised.
When FALSE, a list is returned containing the extracted elements.
keep.names If TRUE (default), the names of L will be attached to the returned vector.
Details

This function is implemented in C and is intended to be faster than calling lapply or sapply.

http://www.ebi.ac.uk/huber

78 testBioCConnection

Value

If simplify=FALSE, a list will be returned having the same length as L, but with each element
containing the element named name from the corresponding inner list of L.

When simplify=TRUE, an atomic vector will be returned containing the extracted elements. If any
of the inner list elements do not have length one or cannot be put inside an atomic vector, an error
will be raised.

Author(s)
Seth Falcon

Examples

list_size = 500000
innerL = list(foo="foo0", bar="bar")
L = rep(list(innerL), list_size)

system.time({jO = sapply(L, function(x) x$foo)3})
system.time({j1 = subListExtract(L, "foo"”, simplify=TRUE)})
stopifnot(all.equal(jo, j1))

LS = L[1:3]

names(LS) = LETTERS[1:3]

subListExtract(LS, "bar”, simplify=TRUE)
subListExtract(LS, "bar", simplify=FALSE)
subListExtract(LS, "bar"”, simplify=TRUE, keep.names=FALSE)

testBioCConnection A function to check internet connectivity to Bioconductor

Description
This function will attempt to determine if the user has internet connectivity to the Bioconductor
website. This is useful in many situations dealing with code that uses automated downloads and
other such things.

Usage

testBioCConnection()

Value

TRUE if a connection is possible, FALSE if not.

Author(s)
Jeff Gentry

updateObjectTo 79

Examples

z <- testBioCConnection()

updateObjectTo Update an object to the class definition of a template

Description

The updateObjectTo generic function returns an instance of object updated to the class definition
of template.

It requires that the class of the returned object be the same as the class of the template argument,
and that the object is valid. Usually, updating proceeds by modifying slots in template with infor-
mation from object, and returning template. Use as to coerce an object from one type to another;
updateObjectTo might be useful to update a virtual superclass. By default, updateObjectTo has
the following behavior:

updateObjectTo(ANY-object,ANY-template) Attemptas(ANY-object,class(ANY-template)).

Usage
updateObjectTo(object, template, ..., verbose=FALSE)
Arguments
object Object to be updated.
template Instance representing a template for updating object.
Additional arguments, for use in specific update methods.
verbose A logical, indicating whether information about the update should be reported.
Use message to report this.
Value

updateObjectTo returns a valid instance of template.

Author(s)

Biocore team

See Also

updateObject, Versions-class

80 updateOIdESet

updateOldESet Update previously created eSet object to current eSet structure

Description

This function updates eSet objects created in previous versions of Biobase to the current class
structure. Warnings indicate when coercions change how data in the from object are altered. If the
from object was not a valid object of the original eSet class, then updateOldESet may fail.

Usage
updateOldESet (from, toClass, ...)
Arguments
from Object created using a previous version of the eSet class.
toClass Character string identifying new class, e.g., "ExpressionSet”
Additional arguments passed to the initialization method for class toClass
Value

Valid object of class toClass.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

Examples

Not run:
updateOldESet (oldESet, "ExpressionSet")

End(Not run)

userQuery 81

userQuery A function to query the user for input

Description

This function will output a given message and seek a response from the user, repeating the message
until the input is from a valid set provided by the code.

Usage

userQuery(msg, allowed = c("y", "n"), default = "n", case.sensitive = FALSE)
Arguments

msg The output message

allowed Allowed input from the user

default Default response if called in batch mode

case.sensitive Is the response case sensitive? Defaults to FALSE

Value

The input from the user

Author(s)
Jeff Gentry

validMsg Conditionally append result to validity message

Description
This function facilitates constructing messages during S4 class validation, and is meant for devel-
oper rather than end-user use.

Usage

validMsg(msg, result)

Arguments

msg A character vector or NULL.

result Any vector.

82 Versioned

Details

This function appends result to msg, but only if result is a character vector.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

Examples

msg <- NULL

validMsg(msg, FALSE) # still NULL
msg <- validMsg(msg, "one")
validMsg(msg, "two")

Versioned Class "Versioned"

Description

Use this class as a ‘superclass’ for classes requiring information about versions.

Methods
The following are defined; package developers may write additional methods.

new("Versioned”, ..., versions=1list()) Create a new Versioned-class instance, perhaps
with additional named version elements (the contents of versions) added. Named elements of
versions are character strings that can be coerced using package_version, or package_version
instances.

classVersion(object) Obtain version information about instance object. See classVersion.

classVersion(object) <- value Set version information on instance object to value; useful
when object is an instance of a class that contains VersionClass. See classVersion.

classVersion(object)["id"] <- value Create or update version information "id" on instance
object to value; useful when object is an instance of a class that contains VersionClass.
See classVersion.

show(object) Default method returns invisible, to avoid printing confusing information when
your own class does not have a show method defined. Use classVersion(object) to get or
set version information.

Author(s)

Biocore

See Also

Versions-class

VersionedBiobase 83

Examples

obj <- new("Versioned”, versions=1list(A="1.0.0"))
obj
classVersion(obj)

A <- setClass("A", contains="Versioned")

classVersion("A")

a <- AQ
a # 'show' nothing by default
classVersion(a)

B <- setClass("B"”, contains="Versioned”,
prototype=prototype(new("Versioned”,versions=1ist(B="1.0.0"))))

classVersion("B")
b <- B()
classVersion(b)

classVersion(b)["B"] <- "1.0.1"
classVersion(b)
classVersion("B")

classVersion(”"B") < classVersion(b)
classVersion(b) == "1.0.1"

C <- setClass("C",
representation(x="numeric"),
contains=("VersionedBiobase"),
prototype=prototype(new("VersionedBiobase"”, versions=c(C="1.0.1"))))

setMethod("”show", signature(object="C"),
function(object) print(object@x))

c <- C(x=1:10)
C

classVersion(c)

VersionedBiobase Class "VersionedBiobase"

Description

Use this class as a ‘superclass’ for classes requiring information about versions. By default, the
class contains versions for R and Biobase. See Versioned-class for additional details.

Methods

set Versioned-class for methods.

84 Versions

Author(s)

Biocore

See Also

Versioned-class

Examples

obj <- new("VersionedBiobase")
classVersion(obj)

obj <- new("VersionedBiobase"”, versions=list(A="1.0.0"))
classVersion(obj)

A <- setClass("A", contains="VersionedBiobase")

classVersion("A")
a <= AQ
classVersion(a)

obj <- new("VersionedBiobase"”, versions=c(MyVersion="1.0.0"))
classVersion(obj)

B <- setClass("B", contains="VersionedBiobase",
prototype=prototype(new("VersionedBiobase",versions=1ist(B="1.0.0"))))

classVersion("B")
b <- B()
classVersion(b)

removeClass("A")
removeClass("B")

Versions Class "Versions"

Description
A class to record version number information. This class is used to report versions; to add version
information to your own class, use Versioned-class.

Methods

The following are defined; package developers may write additional methods.

Versions 85

new("Versions”, ...) Create a new Versions-class instance, perhaps with named version el-
ements (the contents of . ..) added. Named elements of versions are character strings that
can be coerced using package_version, or package_version instances, Versions-class
objects.

object["id"] Obtain version information "id"” from object.
object["id"] <- value Create or update version information "id" on instance object.

object[["id"]] Obtain version information "id" from object. The result is a list of integers,
corresponding to entries in the version string.

object[["id"]] <- value Create or update version information "id" on instance object.

object$id Obtain version information "id"” from object.The result is a list of integers, corre-
sponding to entries in the version string.

object$id <- value Create or update version information "id" on instance object.
show(object) Display version information.

updateObject(object) Update object to the current Versions-class representation. Note that
this does not update another class that uses Versions-class to track the class version.

as(object, "character”) Convert object to character representation, e.g., 1.0.0

object1 <object2 Compare objectl and object?2 using version class information. Symbols in
addition to < are admissible; see ?0ps

Author(s)

Biocore

See Also

classVersion isCurrent isVersioned

Examples

obj <- new("Versions”, A="1.0.0")
obj

obj["A"] <- "1.0.1"

obj

obj["B"] <- "2.0"
obj

obj1 <- obj

obj1["B"1 <- "2.0.1"

obj1 == obj
obj1["B"] > "2.0.0"
obj["B"] == "2.0" # TRUE!

86 VersionsNull

VersionsNull Class "VersionsNull"

Description

A class used to represent the ‘version’ of unversioned objects. Useful primarily for method dispatch.

Methods

The following are defined; package developers may write additional methods.

new("VersionsNull”, ...) Create anew VersionsNull-class instance, ignoring any additional
arguments.

show(object) Display “No version”.

Author(s)

Biocore

See Also

classVersion

Examples
obj <- new("VersionsNull")

obj

obj <- new("VersionsNull”, A="1.0.0") # warning
obj

Index

+* AnnotatedDataFrame
read.AnnotatedDataFrame, 62

* ExpressionSet
readExpressionSet, 65

* abstract
MIAME, 48

* addNonExisting
addVigs2WinMenu, 5

* addPDF2Vig
addVigs2WinMenu, 5

* addVig2Menu
addVigs2WinMenu, 5

* addVigdUnix
addVigs2WinMenu, 5

* addVigdWin
addVigs2WinMenu, 5

* aggenv
aggregator, 7

* aggfun
aggregator, 7

* annotation
eSet, 30

* array
cache, 14
matchpt, 47

* characterORMIAME
class:characterORMIAME, 17

x character
strbreak, 76

* classes
aggregator, 7
AnnotatedDataFrame, 8
AssayData-class, 12
class:characterORMIAME, 17
container, 18
eSet, 30
ExpressionSet, 34
MIAME, 48
MIAXE, 50

87

MultiSet, 52
NChannelSet-class, 54
ScalarObject-class, 71
SnpSet, 74
Versioned, 82
VersionedBiobase, 83
Versions, 84
VersionsNull, 86

* combine

eSet, 30

* connection

copySubstitute, 21

* content

container, 18

x datasets

data:aaMap, 24

data:geneData, 25
data:sample.ExpressionSet, 26
data:sample.MultiSet, 26
reporter, 67

* data

multiassign, 51

* description

eSet, 30

* expinfo

MIAME, 48

* exXprs

* fea

* file

eSet, 30
tureNames
eSet, 30

read.AnnotatedDataFrame, 62
read.MIAME, 64
readExpressionSet, 65

* hybridizations

MIAME, 48

* initfun

aggregator, 7

* interface

88

addVigs2WinMenu, 5

* internal
Deprecated and Defunct, 27
Internals, 41

* iteration
anyMissing, 11

* locked
container, 18

* logic
anyMissing, 11
isUnique, 42

* manip
abstract, 4
assayData, 12
cache, 14
channel, 15
channelNames, 16
classVersion, 17
contents, 19
description, 27
exprs, 38
featureData, 38
featureNames, 39
isCurrent, 41
isUnique, 42
isVersioned, 43
lcSuffix, 44
makeDataPackage, 46
matchpt, 47
notes, 57
phenoData, 61
protocolData, 62
read.AnnotatedDataFrame, 62
readExpressionSet, 65
reverseSplit, 68
rowMedians, 69
selectChannels, 71
snpCall, 73
storageMode, 76
subListExtract, 77
updateObjectTo, 79
updateOldESet, 80

+ methods
Aggregate, 6
aggregator, 7
annotatedDataFrameFrom-methods, 10
container, 18
esApply, 28

INDEX

+ models
dumpPackTxt, 28
esApply, 28
* ncol
eSet, 30
+ normControls
MIAME, 48
* notes
eSet, 30
+ package
Biobase-package, 4
* preproc
MIAME, 48
* programming
Aggregate, 6
copySubstitute, 21
createPackage, 23
+ sampleNames
eSet, 30
+ utilities
copyEnv, 20
getPkgVigs, 40
listLen, 45
note, 56
openPDF, 58
openVignette, 59
package.version, 60
selectSome, 72
testBioCConnection, 78
userQuery, 81
validMsg, 81
[,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
[,Versions-method (Versions), 84
[,container-method (container), 18
[,eSet-method (eSet), 30
[<-,Versions-method (Versions), 84
[[,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
[[,container-method (container), 18
[[,eSet-method (eSet), 30
[[<-,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
[[<-,Versions-method (Versions), 84
[[<-,container-method (container), 18
[[<-,eSet-method (eSet), 30
$,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8

INDEX 89

$,eSet-method (eSet), 30 anyMissing, 11

$<-,AnnotatedDataFrame-method apply, 29
(AnnotatedDataFrame), 8 as, 79

$<-,Versions-method (Versions), 84 as.data.frame.ExpressionSet

$<-,eSet-method (eSet), 30 (ExpressionSet), 34

as.list, 20

aaMap, 4 as.list.environment, 20

aaMap (data:aaMap), 24 AssayData, 11, 54

abstract, 4

AssayData (AssayData-class), 12
abstract,eSet-method (eSet), 30 assayData, 12, 32

abstract,MIAME-method (MIAME), 48 assayData,AssayData-method

addvigs2WinMenu, 5 (AssayData-class), 12
aggenv (Internals), 41 assayData,eSet-method (eSet), 30
aggenv, aggregator-method (aggregator), 7 AssayData-class, 12

aggfun (Internals), 41 assayData<- (assayData), 12
aggfun,aggregator-method (aggregator), 7 assayData<-,eSet,AssayData-method
Aggregate, 6, 8 (eSet), 30

aggregator, 4,7 assayData<-,NChannelSet,environment-method
aggregator-class (aggregator), 7 (NChannelSet-class), 54
AnnotatedDataFrame, 4, 8, 10, 54, 61, 64 assayData<-,NChannelSet,list-method
AnnotatedDataFrame,data.frame,data.frame-method (NChannelSet-class), 54

Annotat SEFQ?E?tedDifirri?e)’S i ssing-method assayDataElement (eSet), 30
nnotatedDataFrame,data. frame,missing-metho assayDataElement<- (eSet), 30

AnnotateggztziiEE:PiﬁiigiTeﬁflsin -method assayDataklementNames (eSet), 30
! g J assayDataElementReplace (eSet), 30

(AnnotatedDataFrame), 8
AnnotatedDataFrame—class assayDataNew (AssayData-class), 12
assayDataValidMembers

(AnnotatedDataFrame), 8 -
annotatedDataFrameFrom, 8 (AssayData-class), 12
annotatedDataFrameFrom

(annotatedDataFrameFrom-methods), Biobase (Biobase-package), 4

10 Biobase-package, 4
annotatedDataFrameFrom,AssayData-method biocReposList (Deprecated and Defunct),

(annotatedDataFrameFrom-methods), 27

10
annotatedDataFrameFrom,matrix-method cache, 14

(annotatedDataFrameFrom-methods), channel, 15

10 channel,NChannelSet, character-method
annotatedDataFrameFrom, NULL-method (NChannelSet-class), 54

(annotatedDataFrameFrom-methods), channelNames, 16, 55

10 channelNames,NChannelSet-method
annotatedDataFrameFrom-methods, 10 (NChannelSet-class), 54
annotatedDataset (Deprecated and channelNames<- (channelNames), 16

Defunct), 27 channelNames<-,NChannelSet, character-method
annotatedDataset-class (Deprecated and (NChannelSet-class), 54

Defunct), 27 channelNames<-,NChannelSet,list-method
annotation,eSet-method (eSet), 30 (NChannelSet-class), 54
annotation<-,eSet,character-method characterORMIAME-class

(eSet), 30 (class:characterORMIAME), 17

90 INDEX

class.NChannelSet (NChannelSet-class), coerce,Versions,character-method
54 (Versions), 84
class:aggregator, 6 colSums, 69, 70
class:aggregator (aggregator), 7 combine,AnnotatedDataFrame, AnnotatedDataFrame-method
class:AnnotatedDataFrame (AnnotatedDataFrame), 8
(AnnotatedDataFrame), 8 combine,AssayData,AssayData-method
class:annotatedDataset (Deprecated and (AssayData-class), 12
Defunct), 27 combine,eSet,ANY-method (eSet), 30
class:characterORMIAME, 17, 50 combine,eSet,eSet-method (eSet), 30
class:container (contaj_ner)’ 18 combine,MIAME, MIAME-method (MIAME), 48
class:eSet (eSet), 30 Compare, character,Versions-method
class:ExpressionSet (ExpressionSet), 34 (Versions), 84
class:exprlist (Deprecated and Compare,Versions, character-method
Defunct), 27 (Versions), 84

class:exprMatrix (Deprecated and Compare,Versions,Versions-method

Defunct), 27 (Versions), 84

class:exprSet (Deprecated and Defunct), container, 4, 18

27 container-class (container), 18
class:MIAME (MIAME), 48 content (Internals), 41
class:MIAXE (MIAXE), 50 content,container-method (container), 18

contents, 19

contents, environment-method
(Internals), 41

copyEnv, 20

copySubstitute, 21, 21, 23, 24

createPackage, 4, 21, 23,47

class:MultiSet (MultiSet), 52

class:phenoData (Deprecated and
Defunct), 27

class:SnpSet (SnpSet), 74

classVersion, 17, 55, 82, 85, 86

classVersion,ANY-method (classVersion),

17 data.frameOrNULL-class (Internals), 41
classVersion, character-method data:aaMap, 24

(classVersion). 17 data:geneCov (data:geneData), 25
classVer51on,Yer51oned—method data:geneCovariate (data:geneData), 25

(Versioned), 82 data:geneData, 25
classVersion<- (classVersion), 17 data:reporter (reporter), 67
classVersion<-,Versioned, Versions-method data:sample.eSet (Deprecated and

(Versioned), 82 Defunct), 27
coerce,AnnotatedDataFrame,data. frame-method data:sample.ExpressionSet, 26

(AnnotatedDataFrame), 8 data:sample.exprSet (Deprecated and
coerce,data.frame,AnnotatedDataFrame-method Defunct), 27

(AnnotatedDataFrame), 8 data:sample.MultiSet, 26
coerce,eSet,ExpressionSet-method data:seD (data:geneData), 25

(ExpressionSet), 34 Deprecated and Defunct, 27
coerce,eSet,MultiSet-method (MultiSet), description, 27

52 description,eSet-method (eSet), 30
coerce,ExpressionSet,data.frame-method description<- (description), 27

(ExpressionSet), 34 description<-,eSet,MIAME-method (eSet),
coerce, exprSet,ExpressionSet-method 30

(ExpressionSet), 34 df2pD (Deprecated and Defunct), 27

coerce,phenoData,AnnotatedDataFrame-method dim,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8 (AnnotatedDataFrame), 8

INDEX

dim,eSet-method (eSet), 30

dimLabels (AnnotatedDataFrame), 8

dimLabels,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8

dimLabels<- (AnnotatedDataFrame), 8

91

ExpressionSet-class (ExpressionSet), 34

exprList (Deprecated and Defunct), 27

exprList-class (Deprecated and
Defunct), 27

exprMatrix (Deprecated and Defunct), 27

dimLabels<-,AnnotatedDataFrame,character-methexprMatrix-class (Deprecated and

(AnnotatedDataFrame), 8
dimnames (eSet), 30
dimnames,AnnotatedDataFrame-method

(AnnotatedDataFrame), 8
dimnames,eSet-method (eSet), 30
dimnames<- (eSet), 30
dimnames<-,AnnotatedDataFrame-method

(AnnotatedDataFrame), 8
dimnames<-,eSet-method (eSet), 30
dims (eSet), 30
dims,eSet-method (eSet), 30
double, 69
dumpPackTxt, 28
duplicated, 42

eList (Deprecated and Defunct), 27

eList,eSet-method (Deprecated and
Defunct), 27

eList<- (Deprecated and Defunct), 27

eList<-,eSet,AssayData-method
(Deprecated and Defunct), 27

environment, 20, 51

esApply, 28, 36

esApply,ExpressionSet-method
(ExpressionSet), 34

eSet, 4, 10, 12, 15, 16, 30, 34-37, 39, 52-56,
72,74, 75

eSet-class (eSet), 30

experimentData (abstract), 4

experimentData,eSet-method (eSet), 30

experimentData<- (abstract), 4

experimentData<-,eSet,MIAME-method
(eSet), 30

expinfo (Internals), 41

expinfo,MIAME-method (MIAME), 48

ExpressionSet, 4, 10, 12, 15, 29, 34, 39, 56,
66,72,75

ExpressionSet,environment-method
(ExpressionSet), 34

ExpressionSet,matrix-method
(ExpressionSet), 34

ExpressionSet,missing-method
(ExpressionSet), 34

Defunct), 27
exprs, 38
exprs,eSet-method (eSet), 30
exprs,ExpressionSet-method
(ExpressionSet), 34
exprs, SnpSet-method (SnpSet), 74
exprs<- (exprs), 38
exprs<-,eSet,AssayData-method (eSet), 30
exprs<-,ExpressionSet,matrix-method
(ExpressionSet), 34
exprs<-,SnpSet,matrix-method (SnpSet),
74
exprSet (Deprecated and Defunct), 27
exprSet-class (Deprecated and Defunct),
27

FALSE, /1

fData (featureData), 38

fData,eSet-method (eSet), 30

fData<- (featureData), 38

fData<-,eSet,data.frame-method (eSet),
30

featureData, 38

featureData,eSet-method (eSet), 30

featureData<- (featureData), 38

featureData<-,eSet,AnnotatedDataFrame-method

(eSet), 30
featureNames, 39
featureNames,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
featureNames,AssayData-method
(AssayData-class), 12
featureNames, eSet-method (eSet), 30
featureNames<- (featureNames), 39
featureNames<-,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
featureNames<-,AssayData-method
(AssayData-class), 12
featureNames<-,eSet-method (eSet), 30
file.remove, 14
fvarLabels (featureData), 38
fvarLabels,eSet-method (eSet), 30
fvarLabels<- (featureData), 38

92

fvarLabels<-,eSet-method (eSet), 30

fvarMetadata (featureData), 38

fvarMetadata,eSet-method (eSet), 30

fvarMetadata<- (featureData), 38

fvarMetadata<-,eSet,data.frame-method
(eSet), 30

geneCov (data:geneData), 25

geneCovariate (data:geneData), 25

geneData, 4

geneData (data:geneData), 25

geneNames (Deprecated and Defunct), 27

geneNames,ExpressionSet-method
(Deprecated and Defunct), 27

geneNames<- (Deprecated and Defunct), 27

geneNames<-,ExpressionSet, character-method

(Deprecated and Defunct), 27
getExpData (Deprecated and Defunct), 27
getExpData,eSet,character-method

(Deprecated and Defunct), 27
getPkgVigs, 4, 40, 59

head.AnnotatedDataFrame
(AnnotatedDataFrame), 8

hybridizations (Internals), 41

hybridizations,MIAME-method (MIAME), 48

initfun (Internals), 41
initfun,aggregator-method (aggregator),
7
initialize,aggregator-method
(aggregator), 7
initialize,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
initialize,annotatedDataset-method
(Deprecated and Defunct), 27
initialize,eSet-method (eSet), 30
initialize,ExpressionSet-method
(ExpressionSet), 34
initialize,exprSet-method (Deprecated
and Defunct), 27
initialize,MultiSet-method (MultiSet),
52
initialize,NChannelSet-method
(NChannelSet-class), 54
initialize,phenoData-method
(Deprecated and Defunct), 27
initialize,SnpSet-method (SnpSet), 74

INDEX

initialize,Versioned-method
(Versioned), 82

initialize,Versions-method (Versions),
84

initialize,VersionsNull-method
(VersionsNull), 86

integer, 69

Internals, 41

isCurrent, 9, 32, 36, 41, 49, 53, 75, 85

isCurrent, ANY,ANY-method (isCurrent), 41

isCurrent,MIAME, missing-method (MIAME),
48

isCurrent,Versioned, character-method
(Versioned), 82

isCurrent,Versioned,missing-method
(Versioned), 82

isUnique, 42

isVersioned, 9, 32, 36, 43, 49, 53, 75, 85

isVersioned, ANY-method (isVersioned), 43

isVersioned, character-method
(isVersioned), 43

isVersioned, Versioned-method
(Versioned), 82

12e (Deprecated and Defunct), 27
lcPrefix (1cSuffix), 44

1cPrefixC (1cSuffix), 44

lcSuffix, 44

length, container-method (container), 18
listLen, 45

1istOrEnv (eSet), 30

listOrEnv-class (Internals), 41

locked (Internals), 41

locked, container-method (container), 18

makeDataPackage, 36, 46

makeDataPackage, ANY-method
(makeDataPackage), 46

makeDataPackage,ExpressionSet-method
(ExpressionSet), 34

matchpt, 47

matrix, 11, 69

menu, 59

MIAME, 4, 17,48, 54, 64, 65

MIAME-class (MIAME), 48

MIAXE, 4, 48, 50

MIAXE-class (MIAXE), 50

mkScalar (ScalarObject-class), 71

multiassign, 51

INDEX

MultiSet, 4, 52
MultiSet-class (MultiSet), 52

NA, 69

NChannelSet (NChannelSet-class), 54

NChannelSet-class, 54

nchar, 44

ncol,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8

ncol,eSet-method (eSet), 30

new.env, 6

normControls (Internals), 41

normControls,MIAME-method (MIAME), 48

note, 56

notes, 57

notes,eSet-method (eSet), 30

notes,MIAME-method (MIAME), 48

notes<- (notes), 57

notes<-,eSet,ANY-method (eSet), 30

notes<-,MIAME, character-method (MIAME),
48

notes<-,MIAME, list-method (MIAME), 48

numeric, 69

openPDF, 4, 58, 59
openVignette, 4, 40, 59

otherInfo (Internals), 41
otherInfo,MIAME-method (MIAME), 48

package.description, 60

package.version, 4, 60

package_version, 82, 85

pData, 8

pData (phenoData), 61

pData,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8

pData,eSet-method (eSet), 30

pData<- (phenoData), 61

pData<-,AnnotatedDataFrame,data.frame-method

(AnnotatedDataFrame), 8
pData<-,eSet,data.frame-method (eSet),
30
phenoData, 61
phenoData, eSet-method (eSet), 30
phenoData-class (Deprecated and
Defunct), 27
phenoData<- (phenoData), 61

phenoData<-,eSet,AnnotatedDataFrame-method

(eSet), 30

93

preproc (MIAME), 48
preproc,eSet-method (eSet), 30
preproc,MIAME-method (MIAME), 48
preproc<- (MIAME), 48
preproc<-,eSet-method (eSet), 30
preproc<-,MIAME-method (MIAME), 48
protocolData, 62
protocolData,eSet-method (eSet), 30
protocolData<- (protocolData), 62

protocolData<-,eSet,AnnotatedDataFrame-method

(protocolData), 62
protocolData<-,eSet,character-method

(eSet), 30
pubMedIds (abstract), 4
pubMedIds,eSet-method (eSet), 30
pubMedIds,MIAME-method (MIAME), 48
pubMedIds<- (abstract), 4
pubMedIds<-,eSet,character-method

(eSet), 30
pubMedIds<-,MIAME, ANY-method (MIAME), 48

read.AnnotatedDataFrame, 10, 62, 66

read.exprSet (Deprecated and Defunct),
27

read.MIAME, 50, 64, 66

read.pD (Deprecated and Defunct), 27

read.phenoData (Deprecated and
Defunct), 27

read.table, 63, 64, 66

readExpressionSet, 65

readlLines, 21, 66

reporter, 67

reporterNames (Deprecated and Defunct),
27

reporterNames,eSet-method (Deprecated
and Defunct), 27

reporterNames<- (Deprecated and
Defunct), 27

reporterNames<-,eSet,character-method
(Deprecated and Defunct), 27

reverseSplit, 68

rowMax (rowQ), 70

rowMedians, 69, 70

rowMedians,ExpressionSet-method
(rowMedians), 69

rowMedians,matrix-method (rowMedians),
69

rowMin (rowQ), 70

rowQ, 70

94 INDEX

rowQ,ExpressionSet,numeric-method selectChannels,NChannelSet, character-method
(rowQ), 70 (NChannelSet-class), 54
rowQ,matrix,numeric-method (rowQ), 70 selectSome, 72
show, 72
sample.eSet (Deprecated and Defunct), 27 show, AnnotatedDataFrame-method
sample.ExpressionSet, 4 (AnnotatedDataFrame), 8
sample.ExpressionSet show, container-method (container), 18
(data:sample.ExpressionSet), 26 show, eSet-method (eSet), 30
sample.exprSet (Deprecated and show,MIAME-method (MIAME), 48
Defunct), 27 show,MIAXE-method (MIAXE), 50
sample.MultiSet (data:sample.MultiSet), show, ScalarCharacter-method
26 (ScalarObject-class), 71
sampleNames (featureNames), 39 show, ScalarObject-method
sampleNames, AnnotatedDataFrame-method (ScalarObject-class), 71
(AnnotatedDataFrame), 8 show, Versioned-method (Versioned), 82
sampleNames,AssayData-method show, Versions-method (Versions), 84
(AssayData-class), 12 show, VersionsNull-method
sampleNames, eSet-method (eSet), 30 (VersionsNull), 86
sampleNames,NChannelSet-method snpCall, 73
(NChannelSet-class), 54 snpCall, SnpSet-method (SnpSet), 74
sampleNames<- (featureNames), 39 snpCall<- (snpCall), 73
sampleNames<-,AnnotatedDataFrame,ANY-method snpCall<-,SnpSet,matrix-method
(AnnotatedDataFrame), 8 (SnpSet), 74
sampleNames<-,AssayData, ANY-method snpCallProbability (snpCall), 73
(AssayData-class), 12 snpCallProbability, SnpSet-method
sampleNames<-,AssayData,list-method (SnpSet), 74
(AssayData-class), 12 snpCallProbability<- (snpCall), 73
sampleNames<-,eSet,ANY-method (eSet), 30 snpCallProbability<-,SnpSet,matrix-method
sampleNames<-,NChannelSet,list-method (SnpSet), 74
(NChannelSet-class), 54 SnpSet, 74
samples (MIAME), 48 SnpSet-class (SnpSet), 74
samples,MIAME-method (MIAME), 48 split, 68
sapply, 46 stop, 21, 57
ScalarCharacter-class storageMode, 76
(ScalarObject-class), 71 storageMode, AssayData-method
ScalarlInteger-class (AssayData-class), 12
(ScalarObject-class), 71 storageMode, eSet-method (eSet), 30
ScalarLogical-class storageMode<- (storageMode), 76
(ScalarObject-class), 71 storageMode<-,AssayData, character-method
ScalarNumeric-class (AssayData-class), 12
(ScalarObject-class), 71 storageMode<-,eSet,character-method
ScalarObject-class, 71 (eSet), 30
scan, 64 strbreak, 76
se.exprs (exprs), 38 strwrap, 77
se.exprs<- (exprs), 38 subListExtract, 77
search, 40, 51 substring, 77
seD (data:geneData), 25 SW (eSet), 30

selectChannels, 71 sys.frame, 51

INDEX

tail.AnnotatedDataFrame
(AnnotatedDataFrame), 8

testBioCConnection, 78

tkMIAME, 65

TRUE, 11, 69

unique, 42
updateObject, 9, 32, 36, 49, 53, 55,75, 79
updateObject,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
updateObject,eSet-method (eSet), 30
updateObject,ExpressionSet-method
(ExpressionSet), 34
updateObject,MIAME-method (MIAME), 48
updateObject,Versions-method
(Versions), 84
updateObjectTo, 32, 79
updateObjectTo,ANY,ANY-method
(updateObjectTo), 79
updateObjectTo,eSet,eSet-method (eSet),
30
updateOldESet, 33, 52, 80
updateOldMiame (Deprecated and
Defunct), 27
userQuery, 81

validMsg, 81
varlLabels (phenoData), 61
varlLabels,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
varLabels,eSet-method (eSet), 30
varLabels<- (phenoData), 61
varLabels<-,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
varLabels<-,eSet-method (eSet), 30
varMetadata, 8
varMetadata (phenoData), 61
varMetadata,AnnotatedDataFrame-method
(AnnotatedDataFrame), 8
varMetadata,eSet-method (eSet), 30
varMetadata<- (phenoData), 61

VersionedBiobase-class
(VersionedBiobase), 83

Versions, 55, 84

Versions-class (Versions), 84

VersionsNull, 86

VersionsNull-class (VersionsNull), 86

vignette, 59

warning, 57

write.AnnotatedDataFrame
(read.AnnotatedDataFrame), 62

write.exprs (ExpressionSet), 34

write.exprs,ExpressionSet-method
(ExpressionSet), 34

write.table, 63

writelLines, 2/

varMetadata<-,AnnotatedDataFrame,data.frame-method

(AnnotatedDataFrame), 8
varMetadata<-,eSet,data.frame-method
(eSet), 30
vector, 11, 69
Versioned, 4, 55, 82
Versioned-class (Versioned), 82
VersionedBiobase, 4, 55, 83

95

	Biobase-package
	abstract
	addVigs2WinMenu
	Aggregate
	aggregator
	AnnotatedDataFrame
	annotatedDataFrameFrom-methods
	anyMissing
	assayData
	AssayData-class
	cache
	channel
	channelNames
	class:characterORMIAME
	classVersion
	container
	contents
	copyEnv
	copySubstitute
	createPackage
	data:aaMap
	data:geneData
	data:sample.ExpressionSet
	data:sample.MultiSet
	Deprecated and Defunct
	description
	dumpPackTxt
	esApply
	eSet
	ExpressionSet
	exprs
	featureData
	featureNames
	getPkgVigs
	Internals
	isCurrent
	isUnique
	isVersioned
	lcSuffix
	listLen
	makeDataPackage
	matchpt
	MIAME
	MIAxE
	multiassign
	MultiSet
	NChannelSet-class
	note
	notes
	openPDF
	openVignette
	package.version
	phenoData
	protocolData
	read.AnnotatedDataFrame
	read.MIAME
	readExpressionSet
	reporter
	reverseSplit
	rowMedians
	rowQ
	ScalarObject-class
	selectChannels
	selectSome
	snpCall
	SnpSet
	storageMode
	strbreak
	subListExtract
	testBioCConnection
	updateObjectTo
	updateOldESet
	userQuery
	validMsg
	Versioned
	VersionedBiobase
	Versions
	VersionsNull
	Index

