Package ‘flowStats’

October 15, 2025
Type Package

Title Statistical methods for the analysis of flow cytometry data
Version 4.20.0

Author Florian Hahne, Nishant Gopalakrishnan, Alireza Hadj Khodabakhshi,
Chao-Jen Wong, Kyongryun Lee

Maintainer Greg Finak <greg@ozette.com>, Mike Jiang <mike@ozette.com>

Description Methods and functionality to analyse flow data that is beyond the
basic infrastructure provided by the flowCore package.

Suggests xtable, testthat, openCyto, ggcyto, ggridges
Encoding UTF-8
Depends R (>=3.0.2)

Imports BiocGenerics, MASS, flowCore (>= 1.99.6), flowWorkspace,
ncdfFlow(>= 2.19.5), flowViz, fda (>= 2.2.6), Biobase, methods,
grDevices, graphics, stats, cluster, utils, KernSmooth,
lattice, ks, RColorBrewer, rrcov, corpcor, mnormt, clue

Enhances RBGL,graph
License Artistic-2.0

Lazyload yes
URL http://www.github.com/RGLab/flowStats

BugReports http://www.github.com/RGLab/flowStats/issues
biocViews ImmunoOncology, FlowCytometry, CellBasedAssays
RoxygenNote 7.3.0

git_url https://git.bioconductor.org/packages/flowStats

git_branch RELEASE_3_21

git_last_commit d287cda

git_last commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

http://www.github.com/RGLab/flowStats
http://www.github.com/RGLab/flowStats/issues

2

Contents

Index

Contents

flowStats-package e 3
addName,curv1Filter,character-method 3
autoGate L e e e e e 4
BackGating e 5
binByRef 5
calcPBChiSquare 6
calcPearsonChi 7
curvlFilter-class e e 8
curv2Filter-class e e 10
curvPeaks L e e e 12
densityld 13
ellipse e e 16
fdPar e 16
flowClust2Prior e 17
gate_Singlet e e e 17
gausSNOIIM e e 19
SPASEt e 20
idFeaturesByBackgating 23
iProcrustes e e e e 25
ITN o e e e e 27
landmarkMatrix e e e e 28
lymphFilter-class 29
mKPrior e e 31
norm2Filter-class L 32
normalize-methods 35
normQA e e e e e e e e e 36
overton_like L e e e e 37
plotBinso 38
plotPrior 39
ProBino 40
quadrantGate e e e e e e 42
rangeGate e e e 43
SimulateMIxXtureo e e e e e e e e e e e e e e e 46
spillover-flowSet L 47
spillover_match-flowSet 49
spillover_ng-flowSet 50
WarPSet e e 52
55

flowStats-package 3

flowStats-package Statistical methods for flow cytometry data analysis

Description

Functions, methods and classes implementing algorithmns for statistical analysis of flow cytometry
data. This involves mostly data normalization and automated gating.

Details
Package: flowStats

Type: Package
Version: 1.0
License: Artistic-2.0
Lazyload: yes

Author(s)

Florian Hahne

Maintainers: Mike Jiang <mike @ozette.ai>, Jake Wagner <jpwagner @thcrc.org>

addName, curviFilter,character-method
These methods are copied from flowViz to eliminate its dependency on
curvlFilter and curv2Filter

Description

These methods are copied from flowViz to eliminate its dependency on curv1Filter and curv2Filter

Usage

S4 method for signature 'curviFilter,character’
addName(x, name, data, ...)

S4 method for signature 'curviFilter,logical'
addName(x, name, data, ...)

S4 method for signature 'curv2Filter,character’
addName(x, name, data, ...)

S4 method for signature 'curv2Filter,logical'’
addName(x, name, data, ...)

4 autoGate

Arguments
X curv1Filter, curv2Filter
name character or logical. Names can be generated by the filter or by the user.
data flowFrame
other arguments
Value

The methods are called for their side effects. No value is returned.

autoGate Automated gating of single populations in 2D

Description

This function tries to fit a single norm2Filter based on a rough preselection of the data. This function
is considered internal. Please use the API provided by lymphGate.

Usage
autoGate(x, ..., scale = 2.5)
Arguments
X An object of class flowSet
Named arguments or a list of the ranges used for the initial rough preselection.
This gets passed on to rectangleGate, see it’s documentation for details.
scale The scale parameter that gets passed on to norm2Filter.
Details

The flowSet is first filtered using a rectangleGate and the norm2Filter is subsequently fitted to
the remaining subset.
Value
A list with items:
X The filtered flowSet.

n2gate The norm2Filter object.
n2gateResults The filterResult after applying the norm2Filter on the flowSet.

Author(s)

Florian Hahne

BackGating 5

See Also

lymphGate, norm2Filter

Examples

library(flowCore)
data(GvHD)
flowStats: ::autoGate(GvHD[10:15], "FSC-H"=c(100,500), "SSC-H"=c(0@, 400))

BackGating Sample backgating results

Description

A data frame containing the sub-populations of ITN dataset corresponding to the high-density areas
on "FSC" and "SSC" channels. This dataset is yielded by backGating on channel CD3, CD8, and
CD4 of the ITN sample data.

Usage

data(BackGating)

Source

Results from executing the following code:
library(flowCore) data(ITN)
flowStats:::backGating(ITN, xy=c("FSC", "SSC"), channels=c("CD3", "CDS8", "CD4"))

binByRef Bin a test data set using bins previously created by probability binning
a control dataset

Description

The bins generated by probability binning a control data set can be applied to a test data set to
perfom statistical comparisions by methods such as the Chi-squared test or the probability binning
statistic.

Usage

binByRef (binRes, data)

6 calcPBChiSquare

Arguments
binRes The result generated by calling teh probBin function on a control dataset.
data An object of class flowFrame

Value

An enviroment containing the matrices for each bin of the test data set

Author(s)
Nishant Gopalakrishnan

See Also

plotBins, proBin

Examples

library(flowCore)

data(GvHD)
resCtrl<-proBin(GvHD[[1]],200)
resSample<-binByRef (resCtrl,GvHD[[2]1])

1s(resSample)
calcPBChiSquare Probability binning metirc for comparing the probability binned
datasets
Description

This function calculates the Probability binning metric proposed by Baggerly et al. The function
utilizes the data binned using the proBin and binByRef functions.

Usage

calcPBChiSquare(ctrlRes, sampRes, ctrlCount, sampCount)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a test sample dataset
ctrlCount The number of events in the control sample
sampCount The number of events in the test sample being compared

Value

A list containing the statistic, p.value, observed, expected counts and the residuals

calcPearsonChi 7

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

Examples

library(flowCore)

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHDL[111L[,c("FSC-H","SSC-H","Time")],200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHDL[16]1]1[,c("FSC-H","SSC-H","Time")])
ctrlCount<-nrow(GvHD[[1]])

sampCount<-nrow(GvHD[[16]1])

stat<-calcPBChiSquare(resCtrl,resSample,ctrlCount, sampCount)

calcPearsonChi Pearsons chi-square statistic for comparing the probability binned
datasets

Description
This function calculates the Pearsons chi-squared statistic for comparing data binned using the
proBin and binByRef functions.Internally, the function utilizes the chisq.test function.

Usage

calcPearsonChi(ctrlRes, sampRes)

Arguments
ctrlRes The result generated by calling the probBin function on a control dataset.
sampRes The result generated by calling the byByRef function on a sample dataset
Value

A list containing the statistic, p.value, observed, expected counts and the residuals

Author(s)

Nishant Gopalakrishnan

See Also

proBin, calcPBChiSquare

8 curvlFilter-class

Examples

library(flowCore)

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHDL[111[,c("FSC-H","SSC-H","Time")1,200)

plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H","Time"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]]1[,c("FSC-H","SSC-H","Time")1)
stat<-calcPearsonChi(resCtrl,resSample)

curviFilter-class Class "curvlFilter"

Description
Class and constructor for data-driven filter objects that selects high-density regions in one di-
mension.

Usage

curviFilter(x, bwFac=1.2, gridsize=rep(401, 2),
filterId="defaultCurviFilter")

Arguments
X Character giving the name of the measurement parameter on which the filter is
supposed to work on. This can also be a list containing a single character scalar
for programmatic access.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

Details

Areas of high local density in one dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, I. and Wand, M.P.,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curviFilter is a convenience function for
object instantiation. Evaluating a curviFilter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curviFilters can be used to
split flow cytometry data sets.

Value

Returns a curviFilter object for use in filtering flowFrames or other flow cytometry objects.

curvFilter-class 9

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.
parameters: Object of class "character”, describing the parameter used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

Objects from the Class

Objects can be created by calls of the form new("curvFilter"”, ...) or using the constructor
curviFilter. Using the constructor is the recommended way of object instantiation:

Methods

%in% signature(x ="flowFrame"”, table = "curviFilter"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "curviFilter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curviFilters.

Author(s)

Florian Hahne

See Also

curv2Filter, flowFrame, flowSet, filter for evaluation of curviFilters and split for split-
ting of flow cytometry data sets based on that.

Examples

library(flowStats)

library(flowCore)

Loading example data

dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curviFilter("FSC-H", filterId="myCurviFilter"”, bwFac=2)

10 curv2Filter-class

To facilitate programmatic construction we also have the following
c1f <- curviFilter(filterId="myCurviFilter"”, x=list(”"FSC-H"), bwFac=2)

Filtering using curviFilter
fres <- filter(dat, ci1f)

fres

summary(fres)

names(fres)

The result of curvl filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("peak 2", "peak 3")))

curv2Filter-class Class "curv2Filter"

Description
Class and constructor for data-driven filter objects that selects high-density regions in two di-
mensions.

Usage

curv2Filter(x, y, filterId="defaultCurv2Filter"”, bwFac=1.2,
gridsize=rep(151, 2))

Arguments
X, Yy Characters giving the names of the measurement parameter on which the filter
is supposed to work on. y can be missing in which case x is expected to be a
character vector of length 2 or a list of characters.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.

bwFac, gridsize Numerics of length 1 and 2, respectively, used to set the bwFac and gridsize
slots of the object.

Details

Areas of high local density in two dimensions are identified by detecting significant curvature re-
gions. See Duong, T. and Cowling, A. and Koch, 1. and Wand, M.P.,, Computational Statistics and
Data Analysis 52/9, 2008 for details. The constructor curv2Filter is a convenience function for

curv2Filter-class 11

object instantiation. Evaluating a curv2Filter results in potentially multiple sub-populations, an
hence in an object of class multipleFilterResult. Accordingly, curv2Filters can be used to
split flow cytometry data sets.

Value

Returns a curv2Filter object for use in filtering flowFrames or other flow cytometry objects.

Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Slots

bwFac: Object of class "numeric”. The bandwidth factor used for smoothing of the density esti-
mate.

gridsize: Object of class "numeric”. The size of the bins used for density estimation.
parameters: Object of class "character”, describing the parameters used to filter the flowFrame.

filterId: Object of class "character”, referencing the filter.

Objects from the Class

Objects can be created by calls of the form new("”curv2Filter”, ...) or using the constructor
curv2Filter. The constructor is the recommended way of object instantiation:

Methods

%in% signature(x ="flowFrame", table = "curv2Filter"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "curv2Filter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of curv2Filters.

Author(s)

Florian Hahne

See Also

curviFilter, flowFrame, flowSet, filter for evaluation of curv2Filters and split for split-
ting of flow cytometry data sets based on that.

12 curvPeaks

Examples

library(flowCore)

Loading example data

dat <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
curv2Filter("FSC-H", "SSC-H", filterId="myCurv2Filter")

To facilitate programmatic construction we also have the following
c2f <- curv2Filter(filterId="myCurv2Filter"”, x=list("FSC-H", "SSC-H"),
bwFac=2)

c2f <- curv2Filter(filterId="myCurv2Filter"”, x=c("FSC-H", "SSC-H"),
bwFac=2)

Filtering using curv2Filter
fres <- filter(dat, c2f)

fres

summary (fres)

names(fres)

The result of curv2 filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations

split(dat, fres, population="rest")
split(dat, fres, population=list(keep=c("area 2", "area 3")))

curv2Filter("FSC-H", "SSC-H", filterId="test filter")

curvPeaks Parse curviFilter output

Description

Parse the output of curviFilter and find modes and midpoints of the high-density regions. This
function is considered to be internal.

Usage

curvPeaks(x, dat, borderQuant = 0.01, n = 201, from, to, densities=NULL)

densityld

Arguments

X
dat

borderQuant

n, from, to

densities

Value
A list with items
peaks
regions
midpoints
regPoints

densFuns

Author(s)
Florian Hahne

See Also

landmarkMatrix

Examples

library(flowCore)

data(GvHD)

13

A multipleFilterResult produced by a curviFilter operation.
The corresponding flowFrame.

A numeric in [0, 1] giving the extreme quantiles for which high-density regions
are ignored.

Arguments are passed on to density.

The optional y values of the density estimate computed for the respective data.

x and y locations of the modes of the regions in the density estimates.
the left and right margins of the regions.

the mean of regions.

x and y locations of the outline of the significant density regions.

an approximation function of the density estimate

tmp <- filter(GvHD[[10]], curviFilter("FSC-H"))

res <- flowStats:::curvPeaks(tmp, exprs(GvHD[[10]1)[, "FSC-H"I)
densityld Find most likely separation between positive and negative populations
in 1D
Description

The function tries to find a reasonable split point between the two hypothetical cell populations
"positive”" and "negative". This function is considered internal, please use the API provided by

rangeGate.

14

Usage

densityld

densityld(x, stain, alpha = "min”, sd = 2, plot = FALSE, borderQuant =
0.1, absolute = TRUE, inBetween = FALSE, reflLine=NULL,rare=FALSE,bwFac=1.2
,Sig=NULL,peakNr=NULL, ...)

Arguments

X

stain

alpha

sd

plot

borderQuant

absolute

inBetween

refLine

rare

bwFac

sig

peakNr

A flowSet or flowFrame.

A character scalar giving the flow parameter for which to compute the separa-
tion.

A tuning parameter that controls the location of the split point between the two
populations. This has to be a numeric in the range [0, 1], where values closer
to 0 will shift the split point closer to the negative population and values closer
to 1 will shift towards the positive population. Additionally, the value of alpha
can be "min”, in which case the split point will be selected as the area of lowest
local density between the two populations.

For the case where there is only a single population, the algorithm falls back to
esitmating the mode of this population and a robust measure of the variance of
it distribution. The sd tuning parameter controls how far away from the mode
the split point is set.

Create a plot of the results of the computation.

Usualy the instrument is set up in a way that the positive population is some-
where on the high end of the measurement range and the negative population is
on the low end. This parameter allows to disregard populations with mean val-
ues in the extreme quantiles of the data range. It’s value should be in the range

[0,1].

Logical controling whether to classify a population (positive or negative) relative
to the theoretical measurment range of the instrument or the actual range of the
data. This can be set to TRUE if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical range.

Force the algorithm to put the separator in between two peaks. If there are more
than two peaks, this argument is ignored.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and negative.

Either TRUE or FALSE, assumes that there is one major peak, and that the rare
positive population is to the right of it. Uses a robust estimate of mean and
variance to gate the positive cells.

The bandwidth for smoothing the density estimate. User-tunable

a value of c(NULL,"L","R"),when sig is not NULL,use the half (left or right) of
signal to estimate the std and mean.

when peakNr is not NULL,drop the less significant peaks by their heights

Further arguments.

densityld 15

Details

The algorithm first tries to identify high density regions in the data. If the input is a flowSet, den-
sity regions will be computed on the collapsed data, hence it should have been normalized before
(see warpSet for one possible normalization technique). The high density regions are then clasified
as positive and negative populations, based on their mean value in the theoretical (or absolute if
argument absolute=TRUE) measurement range. In case there are only two high-density regions the
lower one is usually clasified as the negative populations, however the heuristics in the algorithm
will force the classification towards a positive population if the mean value is already very high.
The absolute and borderQuant arguments can be used to control this behaviour. The split point
between populations will be drawn at the value of mimimum local density between the two popu-
lations, or, if the alpha argument is used, somewhere between the two populations where the value
of alpha forces the point to be closer to the negative (@ - @.5) or closer to the positive population
(@.5-1).

If there is only a single high-density region, the algorithm will fall back to estimating the mode
of the distribution (hubers) and a robust measure of it’s variance and, in combination with the sd
argument, set the split point somewhere in the right or left tail, depending on the classification of
the region.

For more than two populations, the algorithm will still classify each population into positive and
negative and compute the split point between those clusteres, similar to the two population case.

Value

A numeric indicating the split point between positive and negative populations.

Author(s)

Florian Hahne

See Also

warpSet, rangeGate

Examples

library(flowCore)

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh("FL4-H>), "FL3-H"=asinh(FL3-H))
d <- flowStats:::densityld(dat, "FL4-H", plot=TRUE)
if(require(flowViz))

densityplot(~~FL4-H>, dat, refline=d)

tweaking the location
flowStats:::densityld(dat, "FL4-H", plot=TRUE, alpha=0.8)

only a single population
flowStats:::densityld(dat, "FL3-H", plot=TRUE)
flowStats:::densityld(dat, "FL3-H", plot=TRUE, sd=2)

16 fdPar
ellipse convert ellipse from cov/mu to points used to plot priors
Description
convert ellipse from cov/mu to points used to plot priors
Usage
ellipse(cov, centre, level = 0.95)
fdPar The version of fdPar from fda 2.4.0 because the new API changes the
output. (specifically resfdcoefs) and thus breaks the landmarkreg
call.
Description
The version of fdPar from fda 2.4.0 because the new API changes the output. (specifically resfdcoefs)
and thus breaks the landmarkreg call.
Usage
fdPar(fdobj = NULL, Lfdobj = NULL, lambda = @, estimate = TRUE, penmat = NULL)
Arguments
fdobj functional data object, functional basis object, a functional parameter object or
a matrix. If it a matrix, it is replaced by fd(fdobj). If class(fdobj) == ’basisfd’,
it is converted to an object of class fd with a coefficient matrix consisting of a
single column of zeros.
Lfdobj either a nonnegative integer or a linear differential operator object. If NULL,
Lfdobj depends on fdobj[['basis'J][['type']]
* bspline Lfdobj <- int2Lfd(max (@, norder-2)), where norder = norder (fdobj)
* fourier Lfdobj = a harmonic acceleration operator: Lfdobj <- vec2Lfd(c(@, (2*pi/diff(rng))*2,
rng) where rng = fdobj[['basis']1][['rangeval']].
* anything else Lfdobj <- int2Lfd(0)
lambda a nonnegative real number specifying the amount of smoothing to be applied to
the estimated functional parameter.
estimate not currently used.
penmat a roughness penalty matrix. Including this can eliminate the need to compute

this matrix over and over again in some types of calculations.

flowClust2Prior 17

flowClust2Prior Generate a prior specification based on a flowClust model This func-
tion generates a prior specification based on a flowClust fit object It
can be passed to a second round of flowClust() with usePrior="yes"
The prior could be estimated from a single sample, for example, and
then used to speed up the convergence for other samples.

Description

Generate a prior specification based on a flowClust model This function generates a prior spec-
ification based on a flowClust fit object It can be passed to a second round of flowClust() with
usePrior="yes" The prior could be estimated from a single sample, for example, and then used to
speed up the convergence for other samples.

Usage
flowClust2Prior(x, kappa, Nt = NULL, addCluster = NULL)

Arguments
X a flowClust fit object
kappa is the fraction of equivalent observations by which to weight this prior relative
to the flowClust model.
Nt the number of total equivalent observation
addCluster not currently supported
gate_singlet Creates a singlet polygon gate using the prediction bands from a ro-
bust linear model
Description

We construct a singlet gate by applying a robust linear model with r1lm. By default, we model the
forward-scatter height (FSC-H)as a function of forward-scatter area (FSC-A). If sidescatter is
given, forward-scatter height is as a function of area + sidescatter + sidescatter / area.

Usage

gate_singlet(
X,
area = "FSC-A",
height = "FSC-H",
sidescatter = NULL,
prediction_level = 0.99,
subsample_pct = NULL,

18 gate_singlet

wider_gate = FALSE,
filterId = "singlet”,

maxit = 5,
)
singletGate(
X’

area = "FSC-A",

height = "FSC-H",
sidescatter = NULL,
prediction_level = 0.99,
subsample_pct = NULL,
wider_gate = FALSE,
filterId = "singlet",

maxit = 5,
)
Arguments
X a flowFrame object
area character giving the channel name that records the signal intensity as peak area
height character giving the channel name that records the signal intensity as peak heightchan-
nel name of height
sidescatter character giving an optional channel name for the sidescatter signal. By default,

ignored.

prediction_level
a numeric value between 0 and 1 specifying the level to use for the prediction
bands

subsample_pct anumeric value between 0 and 1 indicating the percentage of observations that
should be randomly selected from x to construct the gate. By default, no sub-
sampling is performed.

wider_gate logical value. If TRUE, the prediction bands used to construct the singlet gate use
the robust fitted weights, which increase prediction uncertainty, especially for
large FSC-A. This leads to wider gates, which are sometimes desired.

filterId the name for the filter that is returned
maxit the limit on the number of IWLS iterations passed to rlm

additional arguments passed to rlm

Details

Because rlmrelies on iteratively reweighted least squares (IRLS), the runtime to construct a singlet
gate is dependent in part on the number of observations in x. To improve the runtime, we provide
an option to subsample randomly a subset of x. A percentage of observations to subsample can be
given in subsample_pct. By default, no subsampling is applied.

gaussNorm 19

Value

a polygonGate object with the singlet gate

Examples

Not run:
fr is a flowFrame
sg <- gate_singlet(fr, area = "FSC-A", height = "FSC-H")

sg
plot the gate
xyplot("FSC-H™ ~ “FSC-A", fr, filter = sg)

End(Not run)

gaussNorm Per-channel normalization based on landmark registration

Description

This funciton normalizes a set of flow cytometry data samples by identifying and aligning the high
density regions (landmarks or peaks) for each channel. The data of each channel is shifted in such
a way that the identified high density regions are moved to fixed locations called base landmarks.

Usage

gaussNorm (flowset, channel.names, max.lms=2, base.lms=NULL,
peak.density.thr=0.05, peak.distance.thr=0.05, debug=FALSE, fname='")

Arguments

flowset A flowSet.
channel.names A character vector of flow parameters in flowset to be normalized.

max.1lms A numeric vector of the maximum number of base landmarks to be used for
normalizing each channel. If it has only one value that will be used as the
maximum number of base landmarks for all the channels.

base.lms A list of vector for each channel that contains the base landmarks for normaliz-
ing that channel. If not specified the base landmarks are computed from the set
of extracted landmarks.

peak.density. thr
The peaks with density value less than "peak.density.thr times maximum peak
density" are discarded.

peak.distance.thr
The sequences of peaks that are located closer than "peak.distance.thr times
range of data" are identified. Then for each sequence only one peak (the one
with the highest intensity value) is used as a landmark. In other words no two
landmarks are located closer than "peak.distance.thr times range of data" to each
other.

20 gpaSet

debug Logical. Forces the function to draw before and after normalization plots for
each sample. The plot of the i-th sample is stored in paste(fname, 1) file.

fname The pre- and post- normalization plots of the i-th sample is stored in paste (fname,
i) file if debug is set to TRUE. If default value is used the plots are drawn on sep-
arate X11 windows for each sample. In this case, the function waits for a user
input to draw the plots for the next sample.

Details

Normalization is archived in three phases: (i) identifying high-density regions (landmarks) for each
flowFrame in the flowSet for a single channel; (ii) computing the best matching between the
landmarks and a set of fixed reference landmarks for each channel called base landmarks; (iii)
manipulating the data of each channel in such a way that each landmark is moved to its matching
base landmark. Please note that this normalization is on a channel-by-channel basis. Multiple
channels are normalized in a loop.

Value

A list with items flowset: normalized flowSet. confidence: a confidence measure of the nor-
malization procedure.

Author(s)
Alireza Hadj Khodabakhshi

Examples

library(flowCore)
data(ITN)
dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
lg <- lymphGate(dat, channels=c("CD3", "SSC"), preselection="CD4",6scale=1.5)
dat <- Subset(dat, 1lg)
datr <- gaussNorm(dat, "CD8")$flowset
if(require(flowViz)){
dl <- densityplot(~CD8, dat, main="original”, filter=curviFilter("CD8"))
d2 <- densityplot(~CD8, datr, main="normalized”, filter=curviFilter("CD8"))
plot(dl, split=c(1,1,2,1))
plot(d2, split=c(2,1,2,1), newpage=FALSE)
3

gpaSet Multi-dimensional normalization of flow cytometry data

Description

This function performs a multi-dimensional normalization of flow cytometry data (flowSets) using
a generalized Procrustes analysis (GPA) method.

gpaSet

Usage

21

gpaSet(x, params, register="backgating”, bgChannels=NULL,

bg=NULL,

rotation.only=TRUE,

downweight.missingFeatures=FALSE, thres.sigma=2.5,
show.workflow=FALSE,
ask=names(dev.cur())!="pdf")

Arguments

X
params

register

bgChannels

bg

rotation.only

A flowSet.
A character vector of length 2 describing the channels of interest.

A character indicating the method to be used for identifying features. Available
method only includes “backgating” at the point.

A character vector indicating the channels used for backgating. If NULL, backGating

will find the appropriate backgating channels.

A data frame as the returning value of the backGating function. If not NULL,
gpaSet will skip the backGating process and use the given data frame to extract
potential features.

Logical for coarsing a reflection matrix to a rotation matrix.

downweight.missingFeatures

thres.sigma

show.workflow

ask

Details

Logical. If TRUE, the missing features, labeled as bogus features, are down-
weighted to zero. See details.

A numerical value indicating the threshold of where to cut the tree, e.g., as
resulting from diana, into several clusters. It is default to 2.5 sigma of the
distribution of the heights of the cluster points.

Logical. If TRUE, the workflow of gpaSet will be displayed.
Logical. If TRUE, the display operates in interactive mode.

Normalization is achieved by first identifying features for each flowFrame in the flowSet for des-
ignated channels using backgating, subsequently labeling features, and finally aligning the features
to a reference feature in the sense of minimizing the Frobenus norm of

HSFQ_F||7

where s is a scalar, () a rotational matrix, F' the matrix of features, and I the reference feature.
Both s and @) are solved by using singular value decomposition (SVD).

Note that if feature F;; is missing, it is given a bogus value as F‘,J

If downweight.missingFeatures is TRUE, the cost function becomes

[sWoFQ — WoF|],

where the weighting function W) is zero if the corresponding feature is bogus.

22
Value
The normalized flowSet with "GPA" attribute.
Author(s)
C. J. Wong <cwon2@fhcrc.org>
References
in progress
Examples
library(flowCore)
Example 1: calling up gpaSet directly
data(ITN)
data(BackGating)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- transform(ITN, tl)

xy = c("FSC", "SSC")

bgChannels = c("CD8", "CD4", "CD3")

bg <- flowStats:::backGating(dat, xy=xy, channels=bgChannels)
using pre-generated backgating results: BackGating

s <- gpaSet(dat, params=xy, bgChannels=bgChannels, bg=BackGating)

if(require(flowviz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),
layout=c(2,1), main="After GPA using bg")
d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),
channels=c("FSC", "SSC"), main="All flowFrames")
plot(dl)
plot(d2)

view "GPA" attribute
attr(s, "GPA")

Not run:

library(flowCore)

Example 2: using work flow and normalization objects

data(ITN)

ITN <- ITN[1:8,]

wf <- workFlow(ITN)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")

add(wf, tl)

x <- Data(wf[["asinh"]1])

normalize 'FSC' and 'SSC' channels

norm <- normalization(normFun=function(x, parameters, ...)
gpaSet(x, parameters, ...),
parameters = c("FSC", "SSC"),

gpaSet

idFeaturesByBackgating 23

arguments=1list(bgChannels=c("CD8", "CD3"),

register="backgating”),

normalizationId="Procrustes")

add(wf, norm2, parent="asinh")
s <- Data(wf[["Procrustes”]])
if(require(flowViz)) {
dl <- densityplot(~., s, channels=c("FSC", "SSC"),

layout=c(2,1), main="After GPA using bg")

d2 <- xyplot(FSC ~ SSC, as(s, "flowFrame"),

plot(dl)
plot(d2)
3

channels=c("FSC", "SSC"), main="All flowFrames")

End(Not run) ## end of dontrun

idFeaturesByBackgating

(Internal use only) Identify features of flow cytometry data using back-
gating

Description

Identify and labeling significant features using divisive clustering method such as diana.

Usage

idFeaturesByBackgating(bg, nDim, thres.sigma=2.5, lambda=0.1,

Arguments

bg

nDim

thres.sigma

lambda

reference.method="median",
plot.workflow=FALSE, ask=names(dev.cur())!="pdf")

A data frame containing subpopulations on channels of interests. Must be a
returning result from flowStats: : :backGating

An integer indicating the length of channels of interest.

An numerical value indicating the threshold at which to cut tree, e.g., as resulting
from ’diana’, into several clusters.

A numerical value indicating the percentage of the potential features that is used
as a threshold for deciding outlier clusters. The default value is 0.1.

reference.method

plot.workflow
ask

A character vector indicating the method for computing the reference features. If
median, the reference feature is defined by the medain of eac cluster of features.
Valid methods include median and mean only.

Logical. If TURE, display the workflow of feature identification.
Logical. If TRUE, the display operates in interactive mode.

24 idFeaturesByBackgating

Details

Using the resulting data frame from backGating as potential features, the algorithm follows four
major steps: (i) centering the potential features, which yields the returning value TransMatrix,
(ii) using diana to compute a clustering of the potential features, (iii) cutting the tree into several
clusters, and (iv) accessing outliers and rendering the final registered features with labels.

In step three, the threshold for cutting the tree is computed by
sd * thres.sigma,

where sd is the standard deviation of the distribution of the height between entities computed by
diana.

A cluster is determined as an outlier if the number of its members is less than the median of the
numbers of all clusters’” members times "lambda’.

Value

register A list containing registered features for each sample.

Author(s)

Chao-Jen Wong

See Also

diana, BackGating, gpaSet.

Examples

Not run:

library(flowCore)

data(ITN)

wf <- workFlow(ITN)

tl <- transformList(colnames(ITN)[3:7], asinh, transformationId="asinh")
dat <- trnasformList(ITN, tl)

bg <- backGating(dat, xy=c("FSC", "SSC"), channels="CD3")

End(Not run)
data(BackGating)

results <- flowStats:::idFeaturesByBackgating(bg=BackGating, nDim=2,
plot.workflow=TRUE, ask=TRUE)

iProcrustes 25

iProcrustes Procrustes analysis. Using singular value decomposition (SVD) to
determine a linear transformation to align the points in X to the points
in a reference matrix Y.

Description

Based on generalized Procrustes analysis, this function determines a linear transformation (rota-
tion/reflection and scalling) of the points in matrix x to align them to their reference points in
matrix xbar. The alignemnt is carried out by minimizing the distance between the points in x and
xbar.

Usage

iProcrustes(x, xbar, rotation.only=TRUE, scalling=TRUE, translate=FALSE)

Arguments
X A numerical matrix to be align to points in xbar, the second arguement. The
columns represents the coordinates of the points. The matrices x and xbar must
have the same dimensions.
xbar A numerical, reference matrix to which points in matrix x are to be aligned.

rotation.only Logical. When rotaion.only is TRUE, it allows the function to lose reflection
component of the linear transformation. Although it might not give the best-
fitting aligenment, when dealing with flow cytometry data alignment, a non-
reflection transformation is prefered. When rotaion.only is FALSE, it allows
the function to retain the reflection component.

scalling Logical. When scalling is FALSE, it allows the function to calculate the linear
transformation without a scalling factor. That is, the returning scalling factor is
setto 1.

translate Logical. Set translate to FALSE when the points in matrices x and xbar are

already centralized prior to applying this function. When translate is TRUE,
it allows the function to translate the centroid the points in matrix x to that of
points in xbar.

Details

Suppose the points in matrix X and X are centralized (meaning their centroids are at the origin).
The linear transformation of X for aligning X to its reference matrix X, i.e., min |[sXQ — X||F,
is given by:

Q=VvUT,

and
s = trace(XTXQ)/trace(XT X),

where V and U are the sigular value vectors of X7 X (thatis, X7 X = UXVT), and s is the scalling
factor.

26 iProcrustes

Value

A list of the linear tranformation with items

Q An orthogonal, rotation/reflection matrix.
scal A scalling factor
T (optional) A translation vector used to shift the centroid of the points in matrix

x to the origin. Returned when translate is TRUE.

T.xbar (optional) Centered xbar (that is, the centroid of the points in xbar is translated
to the origin). Returned when translate is TRUE.

Note that the return values of this function do not include the transformed matrix scal * x * Q or
scal * (x — IT) * Q, where T is the translation vector and [is an n — by — 1 vector with elements
1.

Author(s)

C. J. Wong <cwon2@fhcrc.org>

See Also

gpaSet

Examples

Example 1

x <= matrix(runif(20), nrow=10, ncol=2)+ 1.4

s <- matrix(c(cos(60), -sin(60@), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)

xbar <= 2.2 *x(x %*% s) - 0.1

1t <- iProcrustes(x, xbar, translate=TRUE) ## return linear transformation
1t

showing result

I <- matrix(1, nrow=nrow(x), ncol=1)
tx <= x - I %*% 1t$T

get the transformed matrix xnew
xnew <- lt$scal x (tx %*% 1t$Q)

if (require(lattice)) {
xyplot(Vl ~ V2,
do.call(make.groups, lapply(list(x=x, xbar=xbar, T.xbar=1t$T.xbar,
Xxnew=xnew) , as.data.frame)),
group=which, aspect=c(0.7), pch=c(1,3,2,4), col.symbol="black",
main=("Align the points in x to xbar"),
key=list(points=list(pch=c(1,3,2,4), col="black"), space="right",
text=list(c("x", "xbar", "T.xbar", "xnew"))))

ITN 27

Example 2. centralized x and xbar prior to using iProcrustes
X <= matrix(runif(1@), nrow=5, ncol=2)
s <- matrix(c(cos(60), -sin(60@), sin(60), cos(60)),
nrow=2, ncol=2, byrow=TRUE)
xbar <= 1.2 *(x %*% s) - 2
I <- matrix(1, nrow=nrow(x), ncol=1)
X <= x-(I %*% colMeans(x)) ## shift the centroid of points in x to the origin
xbar <- xbar - (I %*% colMeans(xbar)) ## shift centroid to the origin
1t <- iProcrustes(x, xbar, translate=FALSE) ## return linear transformation
only return the rotation/reflection matrix and scalling factor
1t

xnew=1t$scal *(x %*% 1t$Q) ## transformed matrix aligned to centralized xbar
if (require(lattice)) {
xyplot(V1l ~ V2,
do.call(make.groups, lapply(list(x=x,xbar=xbar,
xnew=xnew), as.data.frame)),
group=which, auto.key=list(space="right"))

ITN Sample flow cytometry data

Description

A flowSet cotaining data from 15 patients.

Usage

data(ITN)

Format

A flowSet containing 15 flowFrames. There are 3 patient groups with 5 samples each.

Source

Immune Tolerance Network

28 landmarkMatrix

landmarkMatrix Compute and cluster high density regions in 1D

Description

This functions first identifies high-density regions for each flowFrame in a flowSet and subse-
quently tries to cluster these regions, yielding the landmarks matrix that needs to be supplied to
landmarkreg. The function is considered to be internal.

Usage

landmarkMatrix(data, fres, parm, border=0.05, peakNr=NULL, densities =
NULL, n = 201, indices=FALSE)

Arguments
data A flowSet.
fres A list of filterResultList objects generated by a filtering opration using a
curviFilter. Each list item represents the results for one of the flow parame-
ters in parm.
parm Character scalar of flow paramater to compute landmarks for.
border A numeric in [@,1]. Ignore all high-density regions with mean values in the
extreme percentiles of the data range.
peakNr Force a fixed number of peaks.
densities An optional matrix of y values of the density estimates for the flowSet. If this
is not present, density estimates will be calculated by the function.
n Number of bins used for the density estimation.
indices Return matrix of population indices instead of landmark locations. These in-
dices can be used to point into the populations identified by the curv1Filter.
Details

In order to normalize the data using the landmarkreg function in the fda, a set of landmarks has
to be computed for each flowFrame in a flowSet. The number of lansmarks has to be the same
for each frame. This function identifies high-density regions in each frame, computes a simple
clustering and returns a matrix of landmark locations. Missing landmarks of individual frames are
substituted by the mean landmark location of the respective cluster.

Value

A matrix of landmark locations. Columns are landmarks and rows are flowFrames.

Author(s)

Florian Hahne

lymphFilter-class 29

See Also

landmarkreg,warpSet

Examples

library(flowCore)

data(GvHD)

tmp <- list("FSC-H"=filter(GvHD[1:3], curviFilter("FSC-H")))
res <- flowStats:::landmarkMatrix(GvHD[1:3], tmp, "FSC-H")

lymphFilter-class Automated gating of elliptical cell populations in 2D.

Description

Cell populations of roughly elliptical shape in two-dimensional projections are of huge interest in
many flow cytometry applications. This function identifies a single such population, potentially
from a mixture of multiple populations.

Usage
lymphGate(x, channels, preselection=NULL, scale=2.5, bwFac=1.3,
filterId="defaultLymphGate”, plot=FALSE, ...)
Arguments
X An object of class flowSet.
channels A character vector of length 2 of valid flow parameters in x.

preselection Either NULL, in which case this boils down to fitting a regular norm2Filter,
a character scalar giving one of the flow parameters in x, or a named list of
numerics specifying the initial rough preselection. The latter gets passed on to
rectangleGate, see it’s documentation for details.

scale The scaleFactor parameter that gets passed on to norm2Filter.
bwFac The bandwidth factor that gets passed on to curviFilter.
filterId A character used as filterId.

plot Logical. Produce plots of filter results

Additional arguments.

30 lymphFilter-class

Details

This algorithm does not apply real mixture modelling, however it is able to identify a single elliptical
cell population from a mixture of multiple such populations. The idea is to first define a rough
rectangular preselection and, in a second step, fit a bivariate normal distribution to this subset only.

Depending on the value of preselection, the initial rough selection is either

NULL: No preselection at all

character scalar Preselection based on cells that are positive for a single marker only. This allows
for back-gating, for instances by selecting CD4+ T-cells and using this information to back-gate
lymphocytes in FSC and SSC. Positive cells are identified using a curviFilter.

a named list of numerics: Preselection by a rectangular gate. The items of the list have to be
numerics of length one giving the gate boundaries in the respective dimensions.
Value

An ellipsoidGate or list of ellipsoidGate objects

Extends

Class parameterFilter, directly.
Class concreteFilter, by class "parameterFilter", distance 2.

Class filter, by class "parameterFilter", distance 3.

Slots
See Arguments section for details.
preselection: Object of class character, the name of the flow parameter used for preselection.
rectDef: Object of class 1ist, the initial rectangular selection.
scale: Object of class numeric.
bwFac: Object of class numeric.

parameters: Object of class parameters, the flow parameters to operate on.

filterId: Object of class "character”, the filter identifier.

Objects from the Class

Objects can be created by calls of the form new(”lymphFilter"”, parameters, ...) or using the
constructor lymphFilter. The constructor is the recommended way of object instantiation.

Author(s)

Florian Hahne

See Also

norm2Filter, curviFilter

mkPrior 31

Examples

library(flowCore)

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh("FL4-H))

lg <- lymphGate(dat, channels=c("FSC-H", "SSC-H"), preselection="FL4-H" K scale=1.5)

if(require(flowVviz))
xyplot(*SSC-H ~"FSC-H™, dat, filter=1g)

mkPrior Generate a flowClust prior specification

Description

Generate a flowClust prior specification from gates and data
Usage
mkPrior(gate, data, nu@, Omega@, ...)

S4 method for signature 'polygonGate,flowFrame,numeric,matrix’
mkPrior(gate, data, nu@, Omega®)

S4 method for signature 'rectangleGate,flowFrame,numeric,matrix’
mkPrior(gate, data, nu@, Omega@)

S4 method for signature 'rectangleGate,flowFrame,missing,missing'’
mkPrior(gate, data, nu@ = NA, Omegad = NA)

S4 method for signature 'polygonGate,flowFrame,missing,missing’
mkPrior(gate, data, nu@ = NA, Omega@ = NA)

S4 method for signature 'list,flowSet,missing,missing'’
mkPrior(gate, data, nu@ = NA, Omega@, model.cov = "full”, model.means = "full")

S4 method for signature 'missing,flowSet,ANY,missing'
mkPrior(gate, data, nu@ = NA, Omega®d, model.cov = "full”, model.means

"full”)

S4 method for signature 'missing,flowFrame,missing,missing’
mkPrior(gate, data, nu@, Omega®)

S4 method for signature 'list,flowSet,ANY,missing'’
mkPrior(gate, data, nu@ = NA, Omega@, model.cov = "full"”, model.means = "full")

32 norm2Filter-class

Arguments

gate A list of flowCore gates. The gates should represent the SAME population gated
across multiple samples.

data A flowSet of the same size as the number of gates above. Each flowFrame in the
flowSet should contain the events representing the population in its correspond-
ing gate. i.e. it should be the gated data.

nuo The nu0 hyperparameter. For estimation from data, it should be nuO=NA.

Omega® The Omega0 hyperparameter. For estimation from data it can be missing.

e Not currently used.
model . cov, model.means

model names used for cov and means. one of c¢("full","DE","DU"). "full" is the
default.
Details

Construct a prior specification. Generally not called by the user.

Value

Return values depend on the specific method called. Not meant for user consumption.

Author(s)

Greg Finak <gfinak@fhcrc.org>

References

http://www.rglab.org

Examples

The function is currently defined as

norm2Filter-class Class "norm2Filter"

Description

Class and constructors for a filter that fits a bivariate normal distribution to a data set of paired
values and selects data points according to their standard deviation from the fitted distribution.

Usage

norm2Filter(x, y, method="covMcd", scale.factor=1, n=50000,
filterId="defaultNorm2Filter")

http://www.rglab.org

norm2Filter-class 33

Arguments
X, Yy Characters giving the names of the measurement parameter on which the filter
is supposed to work on. y can be missing in which case x is expected to be a
character vector of length 2 or a list of characters.
filterId An optional parameter that sets the filterId slot of this filter. The object can

later be identified by this name.
scale.factor,n Numerics of length 1, used to set the scale. factor and n slots of the object.

method Character in covMcd or cov. rob, used to set the method slot of the object.

Details

The filter fits a bivariate normal distribution to the data and selects all events within the Maha-
lanobis distance multiplied by the scale.factor argument. The constructor norm2Filter is a
convenience function for object instantiation. Evaluating a curv2Filter results in an object of
class logicalFilterResult. Accordingly, norm2Filters can be used to subset and to split flow
cytometry data sets.

Value

Returns a norm2Filter object for use in filtering flowFrames or other flow cytometry objects.

Slots

method One of covMcd or cov. rob defining method used for computation of covariance matrix.

scale.factor Numeric vector giving factor of standard deviations used for data selection (all
points within scalefac standard deviations are selected).

n Object of class "numeric”, the number of events used to compute the covariance matrix of the
bivariate distribution.

filterId Object of class "character"” referencing the filter.

parameters Object of class "ANY"” describing the parameters used to filter the flowFrame or
flowSet.
Extends

Class "parameterFilter”, directly.
Class "concreteFilter”, by class parameterFilter, distance 2.

Class "filter"”, by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("norm2Filter”,...) or using the constructor
norm2Filter. The constructor is the recommended way.

34 normZ2Filter-class

Methods

%in% signature(x ="flowFrame", table = "norm2Filter"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "norm2Filter"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of norm2Filters.

Author(s)

F. Hahne

See Also

cov.rob, CovMcd, filter for evaluation of norm2Filters and split and Subsetfor splitting and
subsetting of flow cytometry data sets based on that.

Examples

library(flowCore)

Loading example data

dat <- read.FCS(system.file("extdata”,"0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
norm2Filter ("FSC-H", "SSC-H", filterId="myCurv2Filter")

To facilitate programmatic construction we also have the following
n2f <- norm2Filter(filterId="myNorm2Filter"”, x=list("FSC-H", "SSC-H"),
scale.factor=2)

n2f <- norm2Filter(filterId="myNorm2Filter"”, x=c("FSC-H", "SSC-H"),
scale.factor=2)

Filtering using norm2Filter
fres <- filter(dat, n2f)

fres

summary (fres)

The result of norm2 filtering is a logical subset
Subset(dat, fres)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

normalize-methods 35

normalize-methods normalize a GatingSet imported with flowWorkspace, using sequential
normalization on the manual gates in the GatingHierarchy.

Description

The method will step through the gating hierarchy in a breadth first search manner and normalize
each dimension and gate not explicitly excluded in skipdims,or skipgates. The normalization ap-
proach is based on warpSet, but uses sequential normalization to alternately normalize then perform
gating of the cell populations. This often helps with feature registration of popualtions lower in the
gating hierarchy. FSC and SSC, as well as time are generally excluded by default. The rule of
thumb, is to only normalize a channel in a gate if it is absolutely warranted.

Usage
normalize(data,x,...)
Arguments
data The GatingSet to be normalized.
X missing. Not used in here.
Arguments passed to downstream functions.
target: The target sample to normalize the other samples in the gating set to. A
character vector. Must match a sample name in x, otherwise NULL will use the
mean (average) of the peaks identified in all samples
populations: A character vector of population names that are to be normalized.
dims: A character vector of parameter names to be normalized.
chunksize: For a memory-efficient implementation of normalization, set the
chunksize,(an integer), which will peform normalization on chunks of the
data of size chunksize.
nPeaks: A list of integer or an integer vector that specifies the expected
number of peaks for each sample. Can be omitted to keep all peaks.
bwFac: The bandwidth for density estimation, a numeric. Affects the sensitivity
for smoothing and detecting distinct peaks.
Details

This function implements sequential normalization using a GatingSet and a set of manual gates. For
each gate in the gating hierarchy, the algorithm checks if the gate should be normalized, and which
dimensions in the gate should be normalized. If normalization is warranted, this is performed prior
to gating. After gating, the counts for the gate in the GatingSet are updated, and the next gate is
processed. This is useful in the application of template gates to data that has staining variability in
one or more channels.

Value

Returns a GatingSet of normalized data.

36 normQA

Author(s)

Greg Finak <greg@ozette.ai>

See Also

See also GatingSet-class, GatingHierarchy-class, ncdfFlowSet

Examples

Not run:
#gs is a GatingSet
gs_norm <- normalize(gs
, target = "M+T panel_903997-25.fcs"
, populations = "cd27gate”
, dims = "<Violet A 610/20-A>"
, minCountThreshold = 100
, nNPeaks = list('cd27gate' = 2)
, chunksize = 10
, bwFac = 2

#show the population statistics for before and after normalization
getPopStats(gs)
getPopStats(gs_norm)

#plot the gate to see the effects of normalization

grid.arrange(
plotGate(gs, "cd27gate”, type = "densityplot”, stack = T)
,plotGate(gs_norm, "cd27gate”, type = "densityplot”, stack = T)
)

End(Not run)

normQA Normalization quality assessment

Description

Create QA plots for a flow cytometry normalization process.

Usage

normQA(data, morph = c("*fsc", "*ssc"),
channels, odat = NULL, ask = names(dev.cur()) != "pdf",
grouping = NULL, tag.outliers = FALSE, peaksOnly = TRUE)

overton_like 37

Arguments
data a normalized flowSet.
morph A character vector of channel names to use for the backgating into the morpho-

logical channels.

channels The channels for which to create plots. Defaults to all normalized channels.
odat The original data set, always needed if there are no warping functions available.
ask Ask before creating a new plot.
grouping A grouping variable in data’s phenoData slot.

tag.outliers Logical. Add sample name to outliers in the plots.

peaksOnly Logical. Only use data when a peak was detected in a particular sample. If set
to FALSE, a average peak location is estimated.

Details

This function assumes that the necessary information has been added as attributes to data during the
normalization procedure. Depending on the available information, a set of QA plots is generated.
Auvailable plots are:

Amount of peak adjustment
Warping functions
Landmark classification confidence

Backgating of peak events in morphological channels

Value

This function is called for its side effect of generating plots.

Author(s)

Florian Hahne

overton_like Overton-like subtraction of densities.

Description
This function computes an Overton-like subtraction of two densities. It calculates the proportion of
the reference density that is above a reference

Usage

overton_like(ref, test, twosided = FALSE)

38 plotBins

Arguments
ref The reference channel specified as a vector
test The test (potentially positive) channel specified as a vector
twosided boolean flag testing whether the area of the density of the test curve above the
reference curve will be calculated on both sides of the mode of the test curve
(TRUE) or only on the positive side of the mode (FALSE, default).
Details

The test can be one-sided or two-sided. If one sided, it tests the region of the test density that is
above the mode of the reference density. If two-sided it will look at the regions on either side of
the mode of the reference density. Densities are computed on a grid of 1024, and appropriately
normalized.

Value

numeric value representing the proportion of the area of the test density above the reference density.

Author(s)

Greg Finak

Examples

A = rnorm(10000,mean=1,sd=0.5)
B = rnorm(10000,mean=2,sd=0.5)
overton_like(A,B)

plotBins Plots the probability bins overlaid with flowFrame data

Description

This function is useful in visualizing the differences between the binned control and sample datasets.
The bins generated from the control dataset are overlaid with the sample dataset. An optional argu-
ment residuals can be used to shade each bin based on a calculated statistical measure of difference
between the number of events in each bin.

Usage

plotBins(binRes,data,channels,title,residuals, shadeFactor)

plotPrior 39

Arguments
binRes The result generated by calling the probBin function on a control dataset.
data An object of class flowFrame sample(dataset)
channels The flow parameters to be plotted.In cases where more than two parameters are
binned from the control set, the plotBins function plots the projections of the
hyperplanes in 2 dimensions)
title Optional title for the plot generated
residuals A vector of length equal to the number of bins generated that can be used
to shade each bin. The residuals from the calcPearsonChi function or the
calcPBChiSquare function can be used to highlight the bins that are different
between control and sample datasets
shadeFactor Optional argument between 0 and 1 that controls the intensity of the shading of
bins
Author(s)
Nishant Gopalakrishnan
See Also

proBin, calcPearsonChi, calcPBChiSquare

Examples

library(flowCore)

data(GvHD)

flow frame 1 is treated as control dataset and used to generate bins
resCtrl<-proBin(GvHD[[1]],200,channels=c("FSC-H","SSC-H"))
plotBins(resCtrl,GvHD[[1]], channels=c("FSC-H","SSC-H"),title="Binned control data")
Same bins are applied to flowFrame 16

resSample<-binByRef (resCtrl,GvHD[[16]])

stat<-calcPearsonChi(resCtrl,resSample)

dev.new()
plotBins(resCtrl,data=GvHD[[16]],channels=c("FSC-H","SSC-H","Time"),title="Comparision 1 & 16",
residuals=stat$residuals[2,],shadeFactor=0.7)

plotPrior Plots a flowClust prior over some data.

Description

Plots a flowClust prior overlaid on data.

Usage

plotPrior(data, prior, dims = NULL, ...)

40

Arguments

data

prior

dims

Details

proBin

On object of class "flowFrame". The data to be plotted.

An object of class "flowClustPrior", or "flowClustPriorList", returned by a call
to mkPrior.

A character vector of the dimensions to be included in the plot. The dimension
names should match column names in the prior and in the flowFrame.

Additional arguments to plotting functions, such as smooth=TRUE/FALSE

Generates a plot of a "flowClustPrior" or "flowClustPriorList" object overlaid on some data. Plots
the prior means (Mu0), prior covariance of the means (Omega(), and prior sample covariance

(Lambda0).

Value

Silently returns zero.

Author(s)

Greg Finak <gfinak @thcrc.org>

proBin

Probability binning - a metric for evaluating multivariate differences

Description

This function divides the flowframe events into bins such that each bin contains the same number
of events. The number of events falling into each bin can then be compared across the control and
test samples using statistical methods such as the Chi-squared test.

Usage

proBin(m, minEvents=500,channels=NULL)

Arguments

m

minEvents

channels

An object of class flowFrame

The minEvents The minimum number of events in each bin. (i.e. the termina-
tion criterion for the probability binning algorithm)

A character vector for the Flourescence channels on which probability binning is
to be performed. Defaults is NULL, in which case, all flourescence channels are
used for probability binning.(Time information, if provided in the flowFrame is
discarded)

proBin

Details

41

The flowSet is first filtered using a rectangleGate and the norm2Filter is subsequently fitted to
the remaining subset.

Value

A list with items:

table

data

limits

splitPars

Author(s)

A data. frame that stores information regarding each node of the tree generated
during each stage of the probability binning algorithm. Each row in the table
represents a node, the first row representing the original f1owFrame matrix.
The datalndx column provides indexes for retrieving the matrices during each
stage of the binning process from the enviroment data .

The parent field indicates the row number in the table that holds the parent in-
formation for the corresponding node.

The left and right columns indicates the row numbers in the table that stores
information regarding the children of that particular node. The leaf nodes that
hold the binned data can be identified by the nodes with the left of right values
of zero(ie. no children nodes)

The visited column is used internally by the algorithm to check if a particular
node has been visited during the computation process.

An enviroment in which the matrices generated during each stage of the prob-
ability binning process is stored. The matrices stored at the leaf nodes repre-
sent the binned events obtained after the stop criterion of minEvents has been
achieved. These can be identified by the corresponding datalndx fields provided
by the rows in the table with the left or right column values of zero.

A list containing the the boundaries of each hyperplane generated during prob-
ability binning

A data. frame containing two columns splitCol - indicates the column number
of the flowFrame , the split was performed.

splitMed - The median value which was used as the threshold for splitting the
flowFrame

The splitCol and splitMed parameters are utilized by the plotBins and shadeBins
functions in visualizing the differences between control and test sample cases.

Nishant Gopalakrishnan

See Also

plotBins, binByRef

Examples

library(flowCore)
data(GvHD)

res<-proBin(GvHD[[1]1],200, channels=c("FSC-H","SSC-H","FL1-H","FL4-H"))

42

quadrantGate

quadrantGate

Automated quad gating

Description

This function tries to find the most likely separation of two-dimensional flow cytometry in four

quadrants.

Usage

quadrantGate(x, stains, alpha=c("min”, "min"), sd=c(2, 2), plot=FALSE,
filterId="defaultQuadGate"”, refLine.1=NULL, reflLine.2=NULL
,rare=c(FALSE,FALSE)
,Sig=c(NULL,NULL)

Arguments

X

stains
alpha, sd

plot
filterId

refLine.1

refLine.?2

rare

sig

Details

.2

A flowSet or flowFrame.

A character vector of length two giving the two flow parameters for which the
quad gate is to be computed.

Tuning factors to control the computation of the gate boundaries. See rangeGate
for details.

Logical. Produce plots of intermediate results.
Character, the name assigned to the resulting filter.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
in the first stain channel will be igored while determining the separator between
positive and negative.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line in
the second stain channel will be igored while determining the separator between
positive and negative.

logical flags for two channels, Refer to density1d for more details.
parameters for two channels. Refer to density1d for more details.

Additional arguments

The most likely separation between postitive and negative stains for two-dimensional data is com-
puted based on density estimates. Essentially, the gate parameters are first fitted separately for the
two parameters and later combined. See the documentation for rangeGate for details. There is a
certain amount of heuristics involved in this process. The algorithm can be slightly tweaked using
the alpha and sd arguments. Their values will be recycled for the two dimensions unless explicitely
given as vectors of length 2.

rangeGate 43

Value

An object of class quadGate.

Author(s)

Florian Hahne

See Also

quadGate, rangeGate

Examples

Not run:

library(flowCore)

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh("FL4-H>), "FL2-H"=asinh("FL2-H"))
gg <- quadrantGate(dat, c("FL2-H", "FL4-H"))

qg

if(require(flowVviz))
xyplot("FL2-H ~"FL4-H", dat, filter=qg)

gg <- quadrantGate(dat, c("FL2-H", "FL4-H"), alpha=c(0.1, 0.9), plot=TRUE)
qag
split(dat, qg)

End(Not run)

rangeGate Find most likely separation between positive and negative populations
in 1D

Description
The function tries to find a reasonable split point between the two hypothetical cell populations
"positive" and "negative".

Usage

rangeGate(x, stain, alpha="min", sd=2, plot=FALSE, borderQuant=0.1,
absolute=TRUE, filterId="defaultRectangleGate"”, positive=TRUE,
refLine=NULL, simple = FALSE,...)

rangeFilter(stain, alpha="min", sd=2, borderQuant=0.1,
filterId="defaultRangeFilter")

44

Arguments

X

stain

alpha

sd

plot

borderQuant

absolute

filterId

positive

refLine

simple

Details

rangeGate

A flowSet or flowFrame.

A character scalar giving the flow parameter for which to compute the separa-
tion.

A tuning parameter that controls the location of the split point between the two
populations. This has to be a numeric in the range [0, 1], where values closer
to 0 will shift the split point closer to the negative population and values closer
to 1 will shift towards the positive population. Additionally, the value of alpha
can be "min”, in which case the split point will be selected as the area of lowest
local density between the two populations.

For the case where there is only a single population, the algorithm falls back to
esitmating the mode of this population and a robust measure of the variance of
it distribution. The sd tuning parameter controls how far away from the mode
the split point is set.

Create a plot of the results of the computation.

Usualy the instrument is set up in a way that the positive population is some-
where on the high end of the measurement range and the negative population is
on the low end. This parameter allows to disregard populations with mean val-
ues in the extreme quantiles of the data range. It’s value should be in the range

[0,1].

Logical controling whether to classify a population (positive or negative) relative
to the theoretical measurment range of the instrument or the actual range of the
data. This can be set to TRUE if the alignment of the measurment range is not
optimal and the bulk of the data is on one end of the theoretical range.

Character, the name assigned to the resulting filter.

Create a range gate that includes the positive (TRUE) or the negative (FALSE)
population.

Either NULL or a numeric of lenth 1. If NULL, this parameter is ignored. When it
is set to a numeric, the minor sub-population (if any) below this reference line
will be igored while determining the separator between positive and negative.

logical scalar indicating whether to use a simple peak finding version of den-
sityld algorithm.

Further arguments.

The algorithm first tries to identify high density regions in the data. If the input is a flowSet, den-
sity regions will be computed on the collapsed data, hence it should have been normalized before
(see warpSet for one possible normalization technique). The high density regions are then clasified
as positive and negative populations, based on their mean value in the theoretical (or absolute if
argument absolute=TRUE) measurement range. In case there are only two high-density regions the
lower one is usually clasified as the negative populations, however the heuristics in the algorithm
will force the classification towards a positive population if the mean value is already very high.
The absolute and borderQuant arguments can be used to control this behaviour. The split point

rangeGate 45

between populations will be drawn at the value of mimimum local density between the two popu-
lations, or, if the alpha argument is used, somewhere between the two populations where the value
of alpha forces the point to be closer to the negative (@ - @.5) or closer to the positive population
0.5-1).

If there is only a single high-density region, the algorithm will fall back to estimating the mode
of the distribution (hubers) and a robust measure of it’s variance and, in combination with the sd
argument, set the split point somewhere in the right or left tail, depending on the classification of
the region.

For more than two populations, the algorithm will still classify each population into positive and
negative and compute the split point between those clusteres, similar to the two population case.

The rangeFilter class and constructor provide the means to treat rangeGate as regular flowCore
filters.

Value

A range gate, more explicitely an object of class rectangleGate.

Methods

%in% signature(x = "flowFrame”, table = "rangeFilter"): the work horse for doing the
actual filtering. Internally, this simply calls the rangeGate function.

Author(s)

Florian Hahne, Kyongryun Lee

See Also

warpSet, rangeGate, rectangleGate

Examples

library(flowCore)

data(GvHD)

dat <- GvHD[pData(GvHD)$Patient==10]

dat <- transform(dat, "FL4-H"=asinh("FL4-H>), "FL3-H"=asinh("FL3-H"))
rg <- rangeGate(dat, "FL4-H", plot=TRUE)

rg

split(dat, rg)

Test rangeGate when settting reflLine=0; it does not do anything since
there is no sub-population below zero.
rangeGate(dat, "FL4-H", plot=FALSE, refLine=0)

rf <- rangeFilter("FL4-H")
filter(dat, rf)

46 SimulateMixture

SimulateMixture Random Generation from a t Mixture Model with Box-Cox Transfor-
mation

Description
This function can be used to generate a sample from a multivariate ¢ mixture model with Box-Cox
transformation.

Usage

SimulateMixture(N, w, mu, sigma, nu = 4, lambda)

Arguments
N The number of observations.
w A vector of length K, containing the K cluster proportions.
mu A matrix of size K x P, where K is the number of clusters and P is the dimen-
sion, containing the & mean vectors.
sigma An array of dimension K x P x P, containing the K covariance matrices.
nu The degrees of freedom used for the ¢ distribution.
lambda The Box-Cox transformation parameter. If missing, the conventional ¢ distribu-
tion without transformation will be used.
Value

A matrix of size N x P.

Author(s)

Raphael Gottardo <<raph@stat.ubc.ca>>, Kenneth Lo <<c.lo@stat.ubc.ca>>

See Also

flowClust

Examples

Number of components

K<-5

Dimension

p <-2

Number of observations

n <- 200

Mu <- matrix(runif(K*p, @, 20), K, p)
Sigma <- array(@, c(K, p, p))

spillover-flowSet 47

for (k in 1:K)

{
Sigmalk,,][outer(1:p, 1:p, ">")] <- runif(p*(p-1)/2,-.1,.1)
diag(Sigmalk,,]1) <- runif(p,0,1)
Make sigma positive definite
Sigmalk,,] <- Sigmalk,,] %*% t(Sigmalk,,]1)
}

Generate the weights
w <- rgamma(K,10,1)
w <- w/sum(w)

y <- SimulateMixture(n, w, Mu, Sigma, nu=4)

spillover-flowSet Compute a spillover matrix from a flowSet

Description

Spillover information for a particular experiment is often obtained by running several tubes of beads
or cells stained with a single color that can then be used to determine a spillover matrix for use with
compensate.

When matching stain channels in x with the compensation controls, we provide a few options.
If ordered, we assume the ordering of the channels in the flowSet object is the same as the ordering
of the compensation-control samples. If regexpr, we use a regular expression to match the channel
names with the names of each of the compensation control flowFrames (that is, sampleNames(x),
which will typically be the filenames passed to read.FCS). By default, we must "guess" based on
the largest statistic for the compensation control (i.e., the row).

Additionally, matching of channels to compensation control files can be accomplished using the
spillover_match method, which allows the matches to be specified using a csv file. The flowSet
returned by the spillover_match method should then be used as the x argument to spillover
with prematched = TRUE.

Usage

S4 method for signature 'flowSet'

spillover(
X!
unstained = NULL,
fsc = "FSC-A",
ssc = "SSC-A",
patt = NULL,
method = "median”,
stain_match = c("intensity”, "ordered”, "regexpr"),

useNormFilt = FALSE,
prematched = FALSE,

48

exact_match =

Arguments

X
unstained
fsc

ssc

patt
method

stain_match

useNormFilt

prematched

exact_match

Details

spillover-flowSet

FALSE

A flowSet of compensation beads or cells

The name or index of the unstained negative control

The name or index of the forward scatter parameter

The name or index of the side scatter parameter

An optional regular expression defining which parameters should be considered

The statistic to use for calculation. Traditionally, this has been the median so it
is the default. The mean is sometimes more stable.

Determines how the stain channels are matched with the compensation controls.
See details.

logical Indicating whether to apply a norm2Filter first before computing the
spillover

a convenience argument specifying if the channels have already been matched
by spillover_match. This will override the values of unstained and stain_match
with unstained = "unstained" and stain_match = "regexpr".

a logical specifying if we should use "regex" or "exact match" to match column
names. The spillover_ng will pass exact_match and "regexpr" method will be
over-ridden.

The algorithm used is fairly simple. First, using the scatter parameters, we restrict ourselves to
the most closely clustered population to reduce the amount of debris. The selected statistic is then
calculated on all appropriate parameters and the unstained values swept out of the matrix. Every
sample is then normalized to [0,1] with respect to the maximum value of the sample, giving the
spillover in terms of a proportion of the primary channel intensity.

Value

A matrix for each of the parameters

Author(s)
B. Ellis, J. Wagner

References

C.B. Bagwell & E

. G. Adams (1993). Fluorescence spectral overlap compensation for any number

of flow cytometry parameters. in: Annals of the New York Academy of Sciences, 677:167-184.

See Also

compensate, spillover_match

spillover_match-flowSet 49

spillover_match-flowSet
Construct a flowSet for use with spillover by matching channel
names to compensation control filenames

Description

Spillover information for a particular experiment is often obtained by running several tubes of beads
or cells stained with a single color that can then be used to determine a spillover matrix for use with
compensate.

This method facilitates construction of a flowSet of compensation control flowFrames using a
simple file linking filenames to channels. This resulting flowSet can then be used with spillover
using the option prematched = TRUE.

Matching stain channels to compensation controls is done via a csv file (matchfile) with columns
’filename’ and *channel’. The ’channel’ entries should exactly match the channel names in the FCS
files. The ’filename’ should be the FCS file name of each compensation control which should also
be the corresponding sample name in the flowSet. There should also be one unstained control with
the *channel’ entry of "unstained’.

The method also allows for x to be missing if path is provided, pointing to a directory contain-
ing the control FCS files.

Usage

S4 method for signature 'flowSet'
spillover_match(x, fsc = "FSC-A", ssc = "SSC-A",
matchfile = NULL, path)

S4 method for signature 'missing'’
spillover_match(x, fsc = "FSC-A", ssc = "SSC-A", matchfile, path)

Arguments
X A flowSet of compensation beads or cells
fsc The name or index of the forward scatter parameter
ssc The name or index of the side scatter parameter
matchfile The name or path of the csv file holding the compensation control file to channel
matching information.
path The name or path of the directory containing the control FCS files to be matched

to channels by matchfile.

50

spillover_ng-flowSet

Value

A flowSet with the sample names of its flowFrames corresponding to the channels specified by
the matchfile.

Author(s)

B. Ellis, J. Wagner

See Also

compensate, spillover

spillover_ng-flowSet Compute a spillover matrix from a flowSet, simplified API

Description

Spillover information for a particular experiment is often obtained by running several tubes of beads
or cells stained with a single color that can then be used to determine a spillover matrix for use with
compensate.

Matching stain channels to compensation controls is done via a matching csv file (at the path given
by matchfile) with columns ’filename’ and ’channel’. The ’channel’ entries should exactly match
the channel names in the FCS files. The ’filename’ should be the FCS file name of each compen-
sation control which should also be the corresponding sample name in the flowSet. There should
also be one unstained control with the ’channel’ entry of ’unstained’.

The method also allows for x to be missing if path is provided, pointing to a directory contain-
ing the control FCS files.

By default, pregating is always done on the channels using this API, and the mode of the chan-
nel is used to compute the spillover matrix. FSC and SSC channels can be provided to allow a
pregating on (approximately) a population in the FSC and SSC dimensions. Also by default, a
norm2Filter is applied before computing the spillover. These defaults can be overridden using the
pregate, method, and useNormFilt arguments.

Usage

S4 method for signature 'flowSet'
spillover_ng(x, fsc = "FSC-A", ssc = "SSC-A",
plot = FALSE, matchfile, path,
useNormFilt = TRUE, patt = NULL, pregate = TRUE, method = "mode”, ...)
S4 method for signature 'missing'’
spillover_ng(x, fsc = "FSC-A", ssc = "SSC-A",
plot = FALSE, matchfile, path,
useNormFilt = TRUE, patt = NULL, pregate = TRUE, method = "mode”, ...)

spillover_ng-flowSet

S4 method for signature 'missing'’
spillover_ng(

51

X ’
fsc = "FSC-A",
ssc = "SSC-A",
plot = FALSE,
matchfile,
path,
useNormFilt = TRUE,
patt = NULL,
pregate = TRUE,
method = "mode”,
)
Arguments
X A flowSet of compensation beads or cells
fsc The name or index of the forward scatter parameter
ssc The name or index of the side scatter parameter
plot logical. Plots the kernel density for each channel when pregating. Displays the
gate used. If pregate is set to FALSE, this argument is ignored.
matchfile Name of the csv file holding the compensation control file to channel matching
information.
path A path to a directory containing the control files, to be used if x is not provided.
useNormFilt logical Indicating whether to apply a norm2Filter first before computing the
spillover
patt An optional regular expression defining which parameters should be considered
pregate logical Indicating whether to pregate using 1ink{rangeGate} before computing
the spillover
method The statistic to use for calculation. Traditionally, this has been the median so it
is the default. The mean is sometimes more stable.
Additional arguments passed to rangeGate.
Details

The algorithm used is fairly simple. First, using the scatter parameters, we restrict ourselves to
the most closely clustered population to reduce the amount of debris. The selected statistic is then
calculated on all appropriate parameters and the unstained values swept out of the matrix. Every
sample is then normalized to [0,1] with respect to the maximum value of the sample, giving the
spillover in terms of a proportion of the primary channel intensity.

Value

A matrix for each of the parameters

52 warpSet

Author(s)
B. Ellis

References

C. B. Bagwell & E. G. Adams (1993). Fluorescence spectral overlap compensation for any number
of flow cytometry parameters. in: Annals of the New York Academy of Sciences, 677:167-184.

See Also

compensate, spillover

warpSet Normalization based on landmark registration

Description

This function will perform a normalization of flow cytometry data based on warping functions
computed on high-density region landmarks for individual flow channels.

Usage

warpSet(x, ...)

S3 method for class 'cytoset'
warpSet (
X7
stains,
grouping = NULL,
subsample = NULL,
peakNr = NULL,
clipRange = 0.01,
nbreaks = 11,
fres,
bwFac = 2,
warpFuns = FALSE,
target = NULL,
chunksize = 10,

Arguments

X A flowSet.
Further arguments that are passed on to landmarkreg.

stains A character vector of flow parameters in x to be normalized.

warpSet

grouping

subsample

peakNr
clipRange

nbreaks

fres

bwFac

warpFuns

target

chunksize

Details

53

A character indicating one of the phenotypic variables in the phenoData slot
of x used as a grouping factor. The within-group and between-group variance
is computed and a warning is issued in case the latter is bigger than the for-
mer, indicating the likely removal of signal by the normalization procedure.
landmarkreg.

Numeric. Reduce the number of events in each flowSet by sub sampling for
all density estimation steps and the calculation of the warping functions. This
can increase computation time for large data sets, however it might reduce the
accuracy of the density estimates. To be used with care.

Numeric scalar. Force a fixed number of peaks to use for the normalization.

Only use peaks within a clipped data range. Essentially, the number indicates
the percent of clipping on both sides of the data range, e.g. min(x) - 0.01 *
diff(range(x)).

The number of spline sections used to approximate the data. Higher values
produce more accurate results, however this comes with the cost of increaseqd
computing times. For most data, the default setting is good enough.

A named list of filterResultList objects. This can be used to speed up the
process since the curviFilter step can take quite some time.

Numeric of lenght 1 used to set the bandwidth factor by curviFilter for smooth-
ing of the density estimate.

Logical indcating whether to return the normalized flowSet or a list of warping
functions.

Character vector specifying the target sample to which other samples in the
flowSet should be normalized. If NULL, then the mean of the peaks is used.

an integer. For a memory-efficient implementation of normalization, chunksize
can be set to perform normalization on chunks of the data of size chunksize

Normalization is achived by first identifying high-density regions (landmarks) for each flowFrame
in the flowSet for a single channel and subsequently by computing warping functions for each
flowFrame that best align these landmarks. This is based on the algorithm implemented in the
landmarkreg function in the fda package. An intermediate step classifies the high-density regions,
see landmarkMatrix for details.

Please note that this normalization is on a channel-by-channel basis. Multiple channels are normal-

ized in a loop.

Value

The normalized flowSet if warpFuns is FALSE, otherwise a list of warping functions. Additional
inforamtion is attached as the warping attribute to the flowSet in form of a list.

Note

We currently use a patched fda version.

54 warpSet

Author(s)

Florian Hahne

References

J.0. Ramsay and B.W. Silverman: Applied Functional Data Analysis, Springer 2002

See Also

curviFilter landmarkMatrix

Examples

Not run:
library(flowCore)
data(ITN)
dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
lg <- lymphGate(dat, channels=c("CD3", "SSC"), preselection="CD4",6 scale=1.5)
dat <- Subset(dat, 1lg)
datr <- warpSet(dat, "CD8", grouping="GroupID")
if(require(flowViz)){
dl <- densityplot(~CD8, dat, main="original”, filter=curvi1Filter("CD8"))
d2 <- densityplot(~CD8, datr, main="normalized"”, filter=curv1Filter("CD8"))
plot(dl, split=c(1,1,2,1))
plot(d2, split=c(2,1,2,1), newpage=FALSE)
3

End(Not run)

Index

* aplot
plotPrior, 39

* classes
curviFilter-class, 8
curv2Filter-class, 10
lymphFilter-class, 29
norm2Filter-class, 32

* datagen
SimulateMixture, 46

+ datasets
BackGating, 5
ITN, 27

* dplot
plotPrior, 39

+ methods
curviFilter-class, 8
curv2Filter-class, 10
norm2Filter-class, 32
normalize-methods, 35
spillover-flowSet, 47

spillover_match-flowSet, 49
spillover_ng-flowSet, 50

* misc
autoGate, 4
binByRef, 5
calcPBChiSquare, 6
calcPearsonChi, 7

idFeaturesByBackgating, 23

lymphFilter-class, 29
plotBins, 38
proBin, 40

* package
flowStats-package, 3

%in%,flowFrame,curviFilter-method
(curviFilter-class), 8

%in%,flowFrame,curv2Filter-method
(curv2Filter-class), 10

%in%,flowFrame,lymphFilter-method
(lymphFilter-class), 29

%in%,flowFrame,norm2Filter-method
(norm2Filter-class), 32

%in%,flowFrame, rangeFilter-method
(rangeGate), 43

addName, curviFilter,character-method,
3

addName, curviFilter,logical-method
(addName, curv1Filter,character-method),
3

addName, curv2Filter,character-method
(addName, curviFilter,character-method),
3

addName, curv2Filter,logical-method
(addName, curviFilter,character-method),
3

autoGate, 4

BackGating, 5, 24
binByRef, 5, 41

calcPBChiSquare, 6, 7, 39
calcPearsonChi, 7, 39

compensate, 47-50, 52
concreteFilter, 9, 11, 30, 33
cov.rob, 34

CovMcd, 34
curviFilter, 11, 12, 28-30, 53, 54
curvlFilter (curviFilter-class), 8
curviFilter-class, 8
curv2Filter, 9, 11

curv2Filter (curv2Filter-class), 10
curv2Filter-class, 10
curvPeaks, 12

density, 13
densityld, 13, 42
diana, 23, 24

ellipse, 16
ellipsoidGate, 30

56

fda, 28, 53

fdPar, 16

filter, 8-11, 30, 32-34

filterResult, 4

filterResultList, 28

flowClust, 46

flowClust2Prior, 17

flowFrame, 6, 8, 9, 11, 13, 14, 18, 20, 21, 28,
33,39, 40,42, 44, 53

flowFrames, 27

flowSet, 4, 9,11, 14, 19,21, 27-29, 33, 37,
42,44,47, 52

flowStats (flowStats-package), 3

flowStats-package, 3

flowviz, 9, 11, 34

gate_singlet, 17
gaussNorm, 19
gpaSet, 20, 24, 26

hubers, 15,45

idFeatures (idFeaturesByBackgating), 23
idFeaturesByBackgating, 23
iProcrustes, 25

ITN, 27

landmarkMatrix, 13, 28, 53, 54
landmarkreg, 28, 29, 53
logicalFilterResult, 33
lymphFilter (lymphFilter-class), 29
lymphFilter-class, 29
lymphGate, 4, 5

lymphGate (lymphFilter-class), 29

mkPrior, 31

mkPrior,list,flowSet,ANY,missing-method

(mkPrior), 31

mkPrior,list,flowSet,missing,missing-method

(mkPrior), 31

INDEX

mkPrior,rectangleGate, flowFrame,numeric,matrix-method
(mkPrior), 31
multipleFilterResult, 8, 11, 13

ncdfFlowSet, 36

norm2Filter, 4, 5, 29, 30, 33, 48, 50, 51

norm2Filter (norm2Filter-class), 32

norm2Filter-class, 32

normalize (normalize-methods), 35

normalize,GatingSet,missing-method
(normalize-methods), 35

normalize,GatingSetInternal,missing-method
(normalize-methods), 35

normalize-methods, 35

normQA, 36

oneDGate (rangeGate), 43
overton_like, 37

parameterFilter, 9, 11, 30, 33
plotBins, 6, 38, 41
plotPrior, 39
polygonGate, 19
proBin, 6, 7, 39, 40

quadGate, 43
quadrantGate, 42

rangeFilter (rangeGate), 43
rangeFilter-class (rangeGate), 43
rangeGate, 13, 15,42, 43,43, 45,51
read.FCS, 47
rectangleGate, 4, 29, 45

rim, 17, 18

show, curviFilter-method
(curvlFilter-class), 8

show, curv2Filter-method
(curv2Filter-class), 10

mkPrior,missing, flowFrame,missing,missing-metébow,norm2Filter-method

(mkPrior), 31

mkPrior,missing, flowSet,ANY,missing-method

(mkPrior), 31

(norm2Filter-class), 32
SimulateMixture, 46
singletGate (gate_singlet), 17

mkPrior,polygonGate, flowFrame,missing,missingsméthoder, 49, 50, 52

(mkPrior), 31

spillover (spillover-flowSet), 47

mkPrior,polygonGate, flowFrame,numeric,matrix-seithbaver, flowSet-method

(mkPrior), 31

(spillover-flowSet), 47

mkPrior,rectangleGate, flowFrame,missing,missisgtinkdahed-flowSet, 47

(mkPrior), 31

spillover_match, 47, 48

INDEX

spillover_match
(spillover_match-flowSet), 49
spillover_match, flowSet-method
(spillover_match-flowSet), 49
spillover_match,missing-method
(spillover_match-flowSet), 49
spillover_match-flowSet, 49
spillover_ng (spillover_ng-flowSet), 50
spillover_ng, flowSet-method
(spillover_ng-flowSet), 50
spillover_ng,missing-method
(spillover_ng-flowSet), 50
spillover_ng-flowSet, 50
split, 9,11, 34
Subset, 34
summarizeFilter,multipleFilterResult,curviFilter-method
(curviFilter-class), 8
summarizeFilter,multipleFilterResult,curv2Filter-method
(curv2Filter-class), 10

warpSet, 15, 29, 44, 45, 52
warpSetGS (warpSet), 52
warpSetNCDF (warpSet), 52
warpSetNCDFLowMem (warpSet), 52

	flowStats-package
	addName,curv1Filter,character-method
	autoGate
	BackGating
	binByRef
	calcPBChiSquare
	calcPearsonChi
	curv1Filter-class
	curv2Filter-class
	curvPeaks
	density1d
	ellipse
	fdPar
	flowClust2Prior
	gate_singlet
	gaussNorm
	gpaSet
	idFeaturesByBackgating
	iProcrustes
	ITN
	landmarkMatrix
	lymphFilter-class
	mkPrior
	norm2Filter-class
	normalize-methods
	normQA
	overton_like
	plotBins
	plotPrior
	proBin
	quadrantGate
	rangeGate
	SimulateMixture
	spillover-flowSet
	spillover_match-flowSet
	spillover_ng-flowSet
	warpSet
	Index

