Package ‘nucleR’

October 16, 2025
Type Package

Title Nucleosome positioning package for R

Version 2.40.0

Date 2021-11-21

Author Oscar Flores, Ricard Illa

Maintainer Alba Sala <alba.sala@irbbarcelona.org>

Description Nucleosome positioning for Tiling Arrays and NGS experiments.
License LGPL (>=3)

Depends methods

Imports Biobase, BiocGenerics, Biostrings, GenomeInfoDb,
GenomicRanges, IRanges, Rsamtools, S4Vectors, ShortRead, dplyr,
ggplot2, magrittr, parallel, stats, utils, grDevices

Suggests BiocStyle, knitr, rmarkdown, testthat
LazyLoad yes

biocViews NucleosomePositioning, Coverage, ChIPSeq, Microarray,
Sequencing, Genetics, QualityControl, Datalmport

VignetteBuilder knitr

RoxygenNote 7.0.2

Roxygen list(markdown = TRUE)

Encoding UTF-8

git_url https://git.bioconductor.org/packages/nucleR
git_branch RELEASE_3_21

git_last_commit 00e4290

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

2 nucleR-package

Contents
nucleR-package 2
fftRegion . . . L Lo 4
.getThreshold 5
JoadFiles o L 5
JoadPairedBam L. 5
JoadSingleBam Lo 6
mid Lo e 6
processStrand oL L L L L e e e 6
anlist_as_INteger e e e e e e 7
vectorizedAlL . . L L 7
XIapply . oo e e 7
controlCorrection e 8
COVETAZE.IPIIL . .« . v v v vttt e e et e e e e e e e e e e 9
export.hedo 10
EXPOILWIZ « « v v v v vt e e e e e e e e 12
filtertFFT e 13
fragmentLenDetect 16
mergeCalls e 18
nucleosome_htseq L 20
nucleosome_tiling 20
pcKeepCompDetect L e e e 21
peakDetection L L e e e e e 23
peakScoring L 25
plotPeaks L 28
processReads 30
processTilingArray e 32
readBAM 35
readBowtie L 36
syntheticNucMap e 36

Index 39

nucleR-package Nucleosome positioning package for R
Description

Nucleosome positioning from Tiling Arrays and High-Troughput Sequencing Experiments

Details

Package: nucleR

Type: Package
License: LGPL (>=3)
LazyLoad: yes

nucleR-package 3

This package provides a convenient pipeline to process and analize nucleosome positioning experi-
ments from High-Troughtput Sequencing or Tiling Arrays.

Despite it’s use is intended to nucleosome experiments, it can be also useful for general ChIP
experiments, such as ChIP-on-ChIP or ChIP-Seq.

See following example for a brief introduction to the available functions

Author(s)
Oscar Flores Ricard Illa

Maintainer: Ricard Illa <ricard.illa@irbbarcelona.org>

Examples

library(ggplot2)

Load example dataset:

some NGS paired-end reads, mapped with Bowtie and processed with R
it is a GRanges object with the start/end coordinates for each read.
reads <- get(data(nucleosome_htseq))

Process the paired end reads, but discard those with length > 200
preads_orig <- processReads(reads, type="paired”, fragmentLen=200)

Process the reads, but now trim each read to 40bp around the dyad
preads_trim <- processReads(reads, type="paired”, fragmentLen=200, trim=40)

Calculate the coverage, directly in reads per million (r.p.m.)
cover_orig <- coverage.rpm(preads_orig)
cover_trim <- coverage.rpm(preads_trim)

Compare both coverages, the dyad is much more clear in trimmed version
t1 <- as.vector(cover_orig[[1]1)[1:2000]

t2 <- as.vector(cover_trim[[1]])[1:2000]

t1 <= (t1-min(t1)) / max(t1-min(t1)) # Normalization

t2 <= (t2-min(t2)) / max(t2-min(t2)) # Normalization

plot_data <- rbind(
data.frame(
x=seq_along(t1),
y=t1,
coverage="original”
),
data.frame(
x=seq_along(t2),
y=t2,
coverage="trimmed"
)
)

gplot(x=x, y=y, color=coverage, data=plot_data, geom="line",

4 fftRegion

xlab="position”, ylab="coverage")

Let's try to call nucleosomes from the trimmed version

First of all, let's remove some noise with FFT

Power spectrum will be plotted, look how with a 2%

of the components we capture almost all the signal

cover_clean <- filterFFT(cover_trim, pcKeepComp=0.02, showPowerSpec=TRUE)

How clean is it now?
plot_data <- rbind(
data.frame(
x=1:4000,
y=as.vector(cover_trim[[1]])[1:4000],
coverage="noisy"

),

data.frame(
x=1:4000,
y=as.vector(cover_clean[[1]])[1:4000],
coverage="filtered"

)

)
gplot(x=x, y=y, color=coverage, data=plot_data, geom="line",
xlab="position", ylab="coverage")

And how similar? Let's see the correlation
cor(cover_clean[[1]], as.vector(cover_trim[[1]1]))

Now it's time to call for peaks, first just as points
See that the score is only a measure of the height of the peak
peaks <- peakDetection(cover_clean, threshold="25%", score=TRUE)
plotPeaks(peaks[[1]], cover_clean[[1]], threshold="25%")

Do the same as previously, but now we will create the nucleosome calls:
peaks <- peakDetection(cover_clean, width=147, threshold="25%", score=TRUE)
plotPeaks(peaks, cover_clean[[1]], threshold="25%")

#This is all. From here, you can filter, merge or work with the nucleosome
#calls using standard IRanges functions and R/Bioconductor manipulation

.fftRegion FFT Region

Description

Define FFT by regions to avoid a large amount of memory use and a drop in performance

Usage
.fftRegion(data2, pcKeepComp)

.getThreshold 5

.getThreshold Threshold getter

Description

If threshold is given as a string with percentage, convert it

Usage
.getThreshold(threshold, data)

Arguments

threshold threshold given as an absolute value or as a string percentage

data vector with values from which to derive the threshold if it’s relative
Value

a numeric vector

.loadFiles File loader Higher order function to import BAM or Bowtie files.
Deals with wether type is single or paired and with the number of
input files

Description

File loader Higher order function to import BAM or Bowtie files. Deals with wether type is single
or paired and with the number of input files

Usage

.loadFiles(singlelLoad, pairedLoad)

.loadPairedBam Load a paired-end-end BAM

Description

Load a paired-end-end BAM

Usage

.loadPairedBam(file)

6 .processStrand

.loadSingleBam Load a single-end BAM

Description

Load a single-end BAM

Usage
.loadSingleBam(exp)

.mid Find midpoints

Description

Simple function for returning the middle point of a of a GRanges (normal mid doesn’t work there)

Usage
.mid(x)

.processStrand Process a given strand from a BAM file to read

Description

Process a given strand from a BAM file to read

Usage

.processStrand(strand, bam)

Arguments

strand either strand "+" or "-"

bam data.frame representing the BAM file as read by Rsamtools::scanBam
Value

GenomicRanges::GRanges object representing the reads in a given strand

.unlist_as_integer 7

.unlist_as_integer Unlist an IRanges object into a vector
Description
Wrapper to internal function from the IRanges package. Avoids use of ::: and thus prevents a

NOTE warning about the use of a non-exported function

Usage

.unlist_as_integer(x)

Author(s)

H. Pages, P. Aboyoun and M. Lawrence

.vectorizedAll Vectorized version of all

Description

Helper function that behaves as a vectorized version of the function all

Usage

.vectorizedAll(...)

Arguments

arbitraty amount of logical vectors, expected to have the same length

Value

logical vector

.xlapply mclapply warapper

Description

Wrapper to choose between lapply and mclapply accordingly

Usage

.xlapply(X, FUN, ..., mc.cores = 1)

controlCorrection

controlCorrection

Correct experimental profiles with control sample

Description

This function allows the correction of experimental coverage profiles (usually MNase digested nu-
cleosomal DNAs in this library) with control samples (usually naked DNA sample digested with
MNase). This is useful to correct MNase biase.

Usage

controlCorrection(exp, ctr, ...)

S4 method for signature 'SimpleRlelist'
controlCorrection(exp, ctr, mc.cores = 1)

S4 method for signature 'Rle’
controlCorrection(exp, ctr)

S4 method for signature 'list'
controlCorrection(exp, ctr, mc.cores = 1)

S4 method for signature 'numeric'
controlCorrection(exp, ctr)

Arguments

exp, ctr

mc.cores

Details

Further arguments to be passed to or from other methods.

Number of cores available for parallel list processing

Comparable experimental and control samples (this means same format and
equivalent preprocessment)

This substracts the enrichment in the control sample respect it’s mean from the experimental profile.

This is useful for examinating the effect of the MNase digestion in nucleosome experiments using a
nucleosomal DNA and a genomic (naked) DNA sample. Notice that genomic DNA samples cannot
be strand-corrected using single end data, so only paired end controls are useful for this proupose,
despite they can be compared against extended nucleosomal DNA single end reads. Furthermore,
both datasets must be converted to reads per milion.

This process dificults the nucleosome positioning due the lower sharpness of the peaks, but allows
a complementary study of the MNase digestion effect.

Value

Corrected experimental profile

coverage.rpm 9

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

Examples

map = syntheticNucMap(as.ratio=TRUE)
exp = coverage.rpm(map$syn.reads)

ctr = coverage.rpm(map$ctr.reads)
corrected = controlCorrection(exp, ctr)

coverage.rpm Coverage calculation and normalization to reads per million (rpm)

Description

Calculates the coverage values from a GenomicRanges::GRanges or IRanges::IRanges object nor-
malized to reads per million, allowing the comparison of experiments with a different absolut num-
ber of reads.

Usage

coverage.rpm(data, scale = 1e+06, ...)

S4 method for signature 'GRanges'
coverage.rpm(data, scale = 1e+06, ...)

S4 method for signature 'CompressedGRangeslList'
coverage.rpm(data, scale = 1e+06, ...)

S4 method for signature 'IRanges'

coverage.rpm(data, scale = 1le+06, ...)
Arguments
data GenomicRanges::GenomicRanges or IRanges::IRanges with the reads informa-
tion
scale By default, a million (1e6), but you could change this value for abnormal high

or low amount of reads.

Additional arguments to be passed to coverage function

Value

RlelList object with the coverage objects

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

10 export.bed

See Also

processReads(), IRanges: :coverage()

Examples

Load the example dataset and get the coverage

data(nucleosome_htseq)

cov <- coverage.rpm(nucleosome_htseq)

print(cov)

Plot it

library(ggplot2)

cover <- as.vector(cov[["chr1"]])

gplot(seg_along(cover), cover, geom="line", ylab="coverage",
xlab="position")

export.bed Export ranges in BED format

Description

Export ranges in BED format, compatible with UCSC genome browser, IGB, and others.

Usage
export.bed(
ranges,
score = NULL,
chrom,
name,

desc = name,
filepath = name,
splitByChrom = TRUE

S4 method for signature 'IRanges'
export.bed(ranges, score = NULL, chrom, name, desc = name, filepath = name)

S4 method for signature 'CompressedIRangeslList'
export.bed(

ranges,

score = NULL,

name,

desc = name,

filepath = name,

splitByChrom = TRUE

export.bed 11

S4 method for signature 'GRanges'
export.bed(

ranges,

score = NULL,

name,

desc = name,

filepath = name,

splitByChrom = TRUE

)
Arguments

ranges Ranges to export, in IRanges::IRanges, IRanges::IRangesList or GenomicRanges::GRanges
format

score Score data if not included in ranges object. Bed file will put all scores=1000 if
scores are not present

chrom For single IRanges objects, the chromosome they represent. For other data
types, values from names(. . .) will be used.

name Name of the track

desc Description of the track

filepath Path and prefix of the file(s) to write. Chromosome number and "bed" extension

will be automatically added.

splitByChrom If multiple chromosomes are given, should they be splitted into one file per
chromosome or shall them be saved all together?

Value

(none)

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

References

BED format specification: http://genome.ucsc.edu/FAQ/FAQformat#format1

Examples

Generate some ranges with scores

library(GenomicRanges)

ran <- GRanges(
segnames="chrX", ranges=IRanges(start=1:100, end=101:200),
score=(1:100)/100

)

Export as bed file

12 export.wig

export.bed(ran, name="test_track”, desc="Just a test track")
If executed, this would create a file named "test_track.chrX.bed” with:

track name="test_track” description="Just a test track” useScore=0
chrX 1 101 nucll 0.01

chrXx 2 102 nucl2 0.02

chrX 3 103 nucl3 0.03

...

export.wig Export values in WIG format

Description

Export coverage/intensity values in WIG format, compatible with UCSC genome browser, IGB and
others.

Usage

nn

export.wig(data, name, chrom = , filepath = name)

Arguments
data Coverage/intensity values (numeric vector)
name Name of the track
chrom Information about chromosome if not inferrable from data (only for numeric
vectors)
filepath Filepath where to save the object. Chromosome name and "wig" extension will
be automatically added
Value
(none)
Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

References

WIG format specification: http://genome.ucsc.edu/FAQ/FAQformat#format6

filterFFT 13

Examples

Load data
data(nucleosome_htseq)
cover <- coverage.rpm(nucleosome_htseq)

Create wig file
export.wig(cover, name="example_track")

This would create the file "example_track.chrl.wig” with:

track type=wiggle_0 name="example_track”
fixedStep chrom=chri1 start=1 step=1
55.55247

55.55247

55.55247

277.7623

388.8673

e A E EEE

filterFFT Clean noise and smoothing for genomic data using Fourier-analysis

Description

Remove noise from genomic data smoothing and cleaning the observed signal. This function
doesn’t alter the shape or the values of the signal as much as the traditional method of sliding
window average does, providing a great correlation within the original and filtered data (>0.99).

Usage

filterFFT(
data,
pcKeepComp = "auto”,
showPowerSpec = FALSE,
useOptim = TRUE,

)
S4 method for signature 'SimpleRlelist'
filterFFT(

data,

pcKeepComp = "auto”,

showPowerSpec = FALSE,
useOptim = TRUE,
mc.cores = 1,

14

filterFFT

S4 method for signature 'Rle’

filterFFT(
data,
pcKeepComp =
showPowerSpec

”auto”,

= FALSE,

useOptim = TRUE,

)

S4 method for signature 'list'

filterFFT(
data,
pcKeepComp =
showPowerSpec

uauton’

= FALSE,

useOptim = TRUE,

mc.cores = 1,

)

S4 method for signature 'numeric'

filterFFT(
data,
pcKeepComp =
showPowerSpec

"auto”,

= FALSE,

useOptim = TRUE,

Arguments

data

pcKeepComp

showPowerSpec

useOptim

mc.cores

Coverage or intensities values representing the results of the NGS of TA exper-
iment. This attribute could be a individual vector representing a chromosome
(Rle or numeric object) or a list of them.

Number of components to select, in percentage respect total length of the sam-
ple. Allowed values are numeric (in range 0:1) for manual setting or "auto" for
automatic detection. See details.

Plot the Power Spectrum of the Fast Fourier Transform to visually identify the
selected components (see details).

This function implements tweaks to a standard fft call to improve (dramatically)
the performance in large genomic data. These optimizations can be bypassed by
setting this parameter to FALSE.

Other parameters to be passed to pcKeepCompDetect function

If multiple cores are available, maximum number of them to use for parallel
processing of data elements (only useful if data is a list of elements)

filterFFT 15

Details

Fourier-analysis principal components selection is widely used in signal processing theory for an
unbiased cleaning of a signal over the time.

Other procedures, as the traditional sliding window average, can change too much the shape of the
results in function of the size of the window, and moreover they don’t only smooth the noise without
removing it.

With a Fourier Transform of the original signal, the input signal is descomposed in diferent wavelets
and described as a combination of them. Long frequencies can be explained as a function of two ore
more periodical shorter frequecies. This is the reason why long, unperiodic sequences are usually
identified as noise, and therefore is desireable to remove them from the signal we have to process.

This procedure here is applied to genomic data, providing a novel method to obtain perfectly clean
values wich allow an efficient detection of the peaks which can be used for a direct nucleosome
position recognition.

This function select a certain number of components in the original power spectrum (the result of
the Fast Fourier Transform which can be seen with showPowerSpec=TRUE) and sets the rest of them
to O (component knock-out).

The amout of components to keep (given as a percentage of the input lenght) can be set by the
pcKeepComp. This will select the first components of the signal, knock-outing the rest. If this value
is close to 1, more components will be selected and then more noise will be allowed in the output.
For an effective filtering which removes the noise keeping almost all relevant peaks, a value between
0.01 and 0.05 is usually sufficient. Lower values can cause merging of adjacent minor peaks.

This library also allows the automatic detection of a fitted value for pcKeepComp. By default, if uses
the pcKeepCompDetect function, which looks which is the minimum percentage of components
than can reproduce the original signal with a corelation between the filtered and the original one
of 0.99. See the help page of pcKeepCompDetect for further details and reference of available
parameters.

One of the most powerful features of nucleR is the efficient implementation of the FFT to genomic
data. This is achived trought few tweaks that allow an optimum performance of the Fourier Trans-
form. This includes a by-range filtering, an automatic detection of uncovered regions, windowed
execution of the filter and padding of the data till nearest power of 2 (this ensures an optimum
case for FFT due the high factorization of components). Internal testing showed up that in specific
datasets, these optimizations lead to a dramatic improvement of many orders of magnitude (from 3
days to few seconds) while keeping the correlation between the native fft call and our filterFFT
higher than 0.99. So, the use of these optimizations is highly recomended.

If for some reason you want to apply the function without any kind of optimizations you can specify
the parameter useOptim=FALSE to bypass them and get the pure knockout inverse from native FFT
call. All other parameters can be still applyied in this case.

Value

Numeric vector with cleaned/smoothed values

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>, David Rosell <david.rossell@irbbarcelona.org>

16 fragmentLenDetect

References

Smith, Steven W. (1999), The Scientist and Engineer’s Guide to Digital Signal Processing (Second
ed.), San Diego, Calif.: California Technical Publishing, ISBN 0-9660176-3-3 (availabe online:
http://www.dspguide.com/pdfbook.htm)

Examples

Load example data, raw hybridization values for Tiling Array
raw_data <- get(data(nucleosome_tiling))

Filter data
fft_data <- filterFFT(raw_data, pcKeepComp=0.01)

See both profiles
library(ggplot2)
plot_data <- rbind(
data.frame(x=seq_along(raw_data), y=raw_data, intensities="raw"),
data.frame(x=seq_along(fft_data), y=fft_data, intensities="filtered")
)
gplot(x=x, y=y, data=plot_data, geom="line", xlab="position”,
ylab="intensities") + facet_grid(intensities~.)

The power spectrum shows a visual representation of the components
fft_data <- filterFFT(raw_data, pcKeepComp=0.01, showPowerSpec=TRUE)

fragmentLenDetect Fragments length detection from single-end sequencing samples

Description

When using single-ended sequencing, the resulting partial sequences map only in one strand, caus-
ing a bias in the coverage profile if not corrected. The only way to correct this is knowing the
average size of the real fragments. nucleR uses this information when preprocessing single-ended
sequences. You can provide this information by your own (usually a 147bp length is a good aprox-
imation) or you can use this method to automatically guess the size of the inserts.

Usage

fragmentLenDetect(
reads,
samples = 1000,
window = 5000,
min.shift = 1,
max.shift = 100,
mc.cores = 1,
as.shift = FALSE

fragmentLenDetect 17

S4 method for signature 'AlignedRead'
fragmentLenDetect(

reads,

samples = 1000,

window = 1000,

min.shift = 1,

max.shift = 100,

mc.cores = 1,

as.shift = FALSE

)

S4 method for signature 'GRanges'
fragmentLenDetect(

reads,

samples = 1000,

window = 1000,

min.shift =1,

max.shift = 100,

mc.cores = 1,

as.shift = FALSE

)
Arguments
reads Raw single-end reads ShortRead::AlignedRead or GenomicRanges::GRanges
format)
samples Number of samples to perform the analysis (more = slower but more accurate)
window Analysis window. Usually there’s no need to touch this parameter.

min.shift, max.shift
Minimum and maximum shift to apply on the strands to detect the optimal frag-
ment size. If the range is too big, the performance decreases.

mc.cores If multicore support, maximum number of cores allowed to use.

as.shift If TRUE, returns the shift needed to align the middle of the reads in opposite
strand. If FALSE, returns the mean inferred fragment length.

Details

This function shifts one strand downstream one base by one from min.shift to max.shift. In
every step, the correlation on a random position of length window is checked between both strands.
The maximum correlation is returned and averaged for samples repetitions.

The final returned length is the best shift detected plus the width of the reads. You can increase
the performance of this function by reducing the samples value and/or narrowing the shift range.
The window size has almost no impact on the performance, despite a to small value can give biased
results.

18 mergeCalls

Value

Inferred mean lenght of the inserts by default, or shift needed to align strands if as. shift=TRUE.

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

Examples

library(GenomicRanges)
library(IRanges)

Create a sinthetic dataset, simulating single-end reads, for positive and
negative strands
Positive strand reads
pos <- syntheticNucMap(nuc.len=40, lin.len=130)$syn.reads
Negative strand (shifted 147bp)
neg <- IRanges(end=start(pos)+147, width=40)
sim <- GRanges(

seqgnames="chr1",

ranges=c(pos, neg),

strand=c(rep("+", length(pos)), rep("-", length(neg)))
)

Detect fragment lenght (we know by construction it is really 147)
fragmentLenDetect(sim, samples=50)
The function restricts the sampling to speed up the example

mergeCalls Automatic merging of overlapped nucleosome calls

Description

This function joints close nucleosome calls into one larger, fuzzy nucleosome.

Usage

mergeCalls(
calls,
min.overlap = 50,
discard.low = 0.2,
mc.cores = 1,
verbose = TRUE

S4 method for signature 'GRanges'
mergeCalls(calls, min.overlap = 50, discard.low = 0.2, verbose = TRUE)

mergeCalls 19

Arguments
calls GenomicRanges::GRanges with scored and ranged nucleosome calls from peakScoring
or peakDetection(..., score=TRUE).
min.overlap Minimum overlap between two reads for merge them
discard.low Discard low covered calls (i.e. calls with score_h < discard. low will be dis-
carded)
mc.cores Number of cores available to parallel data processing.
verbose Show progress info?
Details

This functions looks for overlapped calls and join those with more than min.overlap bases over-
lapped. More than two reads can be joined in one single call if all of them are overlapped at least
that distance with almost another read in the range.

Joining is performed in chain, so if nucleosome call A is close to B and B is close to C, the final
call will comprise the range A-B-C. The resulting scores (mixed, width, height) of the final joined
call will be the average value of the individual scores.

The parameter discard. Llow allows to ignore the small peaks that could be merged with larger ones,
originating large calls. In the case that all of the overlapped reads in a given position have score_h
less than discard. low, all of them will be selected instead of deleting that call.

Value

GenomicRanges::GRanges with merged calls and the additional data column nmerge, with the count
of how many original ranges are merged in the resulting range.

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

See Also

peakScoring()

Examples

Generate a synthetic coverage map (assuming reads of 40bp and fragments
of 130)
map <- syntheticNucMap(
wp.num=20, fuz.num=20, nuc.len=40, lin.len=130, rnd.seed=1
)

cover <- filterFFT(coverage.rpm(map$syn.reads))

Find peaks over FFT filtered coverage
calls <- peakDetection(filterFFT(

cover, pcKeepComp=0.02), width=130, score=TRUE
)

20 nucleosome._tiling

Merge overlapped calls
merged_calls <- mergeCalls(calls)

plotPeaks(merged_calls, cover)

nucleosome_htseq Example reads from high-troughtput sequencing nucleosome position-
ing experiment

Description
Few reads from paired-ended MNase-seq experiment in S.cerevisiae where mononucleosomes were
sequenced

Format

GRanges with the range of the reads and a data column with the strand information.

Details

This data is obtained from MNase digested nucleosomal DNA and sequenced with Illumina plat-
form. Paired-ended reads where mapped to SacCerl genome using Bowtie, and imported to R using
the package ShortRead and paired ends where merged into a single range.

Reads were sorted by chromosome and starting position and only a few reads from the starting
positions of chromosome 1 are presented.

Source

Publication pending

nucleosome_tiling Example intensities from Tiling Microarray nucleosome positioning
experiment

Description

Some bases from S.cerevisiae tiling microarray where mononucleosomes were sequenced and hy-
bridizated with histone-free naked DNA. The intensity is the normalized ratio between the intensi-
ties from nucleosomic and naked DNA.

Format

numeric vector with the intensities.

pcKeepCompDetect 21

Details

Due to the difficulty of providing a raw file, this file has been preprocessed. See details.

The raw .CEL files from Affymetrix S.Cerevisiae Tilling 1.0R Array (3 nucleosomal + 3 naked
DNA) has been merged using package Starr and the resulting ExpressionSet object has been
passed to processTilingArray function from this package as follows:

processTilingArray(data, exprName, chrPAttern="Sc:0ct_2003;chr1”, closeGaps=50)
The first 8000bp of the chrl have been saved as this example dataset.

Source

Publication pending

pcKeepCompDetect Auto detection of a fitted pcKeepComp param for filterFFT function

Description

This function tries to obtain the minimum number of components needed in a FFT filter to achieve
or get as close as possible to a given correlation value. Usually you don’t need to call directly this
function, is used in filterFFT by default.

Usage

pcKeepCompDetect(
data,
pc.min
pc.max
max.iter ,
verbose = FALSE,
cor.target = 0.98,
cor.tol = 0.001,
smpl.num = 25,
smpl.min.size = 2*10,

I u
N o
N —
S -

1,

smpl.max.size = 2*14
)
Arguments
data Numeric vector to be filtered

pc.min, pc.max Range of allowed values for pcKeepComp (minimum and maximum), in the
range 0:1.

max.iter Maximum number of iterations

verbose Extra information (debug)

22

pcKeepCompDetect
cor.target Target correlation between the filtered and the original profiles. A value around
0.99 is recommeded for Next Generation Sequencing data and around 0.7 for
Tiling Arrays.
cor.tol Tolerance allowed between the obtained correlation an the target one.
smpl.num If data is a large vector, some samples from the vector will be used instead the

whole dataset. This parameters tells the number of samples to pick.
smpl.min.size, smpl.max.size

Minimum and maximum size of the samples. This is used for selection and sub-

selection of ranges with meaningful values (i,e, different from 0 and NA). Power

of 2 values are recommended, despite non-mandatory.

Parameters to be pass to autoPcKeepComp

Details

This function predicts a suitable pcKeepComp value for filterFFT function. This is the recom-
mended amount of components (in percentage) to keep in the filterFFT function to obtain a cor-
relation of (or near of) cor. target.

The search starts from two given values pc.min, pc.max and uses linial interpolation to quickly
reach a value that gives a corelation between the filtered and the original near cor. target within
the specified tolerance cor. tol.

To allow a quick detection without an exhaustive search, this function uses a subset of the data by
randomly sampling those regions with meaningful coverage values (i,e, different from O or NA)
larger than smpl.min.size. If it’s not possible to obtain smpl.max.size from this region (this
could be due to flanking O’s, for example) at least smpl.min.size will be used to check correlation.
Mean correlation between all sampled regions is used to test the performance of the pcKeepComp
parameter.

If the number of meaningful bases in data is less than smpl.min.size * (smpl.num/2) all the
data vector will be used instead of using sampling.

Value

Fitted pcKeepComp value

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>, David Rosell <david.rosell@irbbarcelona.org>

Examples

Load dataset
data(nucleosome_htseq)
data <- as.vector(coverage.rpm(nucleosome_htseq)[[1]1]1)

Get recommended pcKeepComp value
pckeepcomp <- pcKeepCompDetect(data, cor.target=0.99)
print(pckeepcomp)

Call filterFFT

peakDetection 23

f1 <- filterFFT(data, pcKeepComp=pckeepcomp)

Also this can be called directly
f2 <- filterFFT(data, pcKeepComp="auto"”, cor.target=0.99)

Plot

library(ggplot2)

i <- 1:2000

plot_data <- rbind(
data.frame(x=i, y=data[il], coverage="original"),
data.frame(x=i, y=f1[i], coverage="two calls"),
data.frame(x=1i, y=f2[i], coverage="one call")

)

gplot(x=x, y=y, color=coverage, data=plot_data, geom="line",

xlab="position", ylab="coverage")

peakDetection Detect peaks (local maximum) from values series

Description

This function allows a efficient recognition of the local maximums (peaks) in a given numeric
vector.

Usage

peakDetection(
data,
threshold = .25,
chromosome = NULL,
width = 1,
score = TRUE,
min.cov = 2,
mc.cores = 1

S4 method for signature 'list'
peakDetection(

data,

threshold = "25%",

width = 1,

score = TRUE,

min.cov = 2,

mc.cores = 1

S4 method for signature 'numeric'

peakDetection(

data,

threshold = "25%",
chromosome = NULL,
width = 1,

score = TRUE,
min.cov = 2,
mc.cores = 1

peakDetection

Arguments

data
threshold

chromosome

width

score

min.cov

mc.cores

Details

Input numeric values, or a list of them

Threshold value from which the peaks will be selected. Can be given as a per-
centage string (i.e., "25\\%" will use the value in the 1st quantile of data) or as
an absolute coverage numeric value (i.e., 20 will not look for peaks in regions
without less than 20 reads (or reads per milion)).

Optionally specify the name of the chromosome for input data that doesn’t spec-
ify it.
If a positive integer > 1 is given, the peaks are returned as a range of the given

width centered in the local maximum. Useful for nucleosome calling from a
coverage peak in the dyad.

If TRUE, the results will be scored using peakScoring() function.

Minimum coverage that a peak needs in order to be considered as a nucleosome
call.

The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Parallelization requires at least two cores.

It’s recommended to smooth the input with filterFFT prior the detection.

Value

The type of the return depends on the input parameters:

* numeric (or a list of them) if width==1 & score==FALSE containing the position of the peaks.

* data.frame (or list of them) if width==1 & score==TRUE containing a ’peak’ column with
the position of the peak plus a ’score’ column with its score.

* IRanges (or IRangesList) if width>1 & score==FALSE containing the ranges of the peaks.

* GRanges if width>1 & score==TRUE containing the ranges of the peaks and the assigned score.

Note

If width > 1, those ranges outside the range 1:length(data) will be skipped.

peakScoring 25

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

See Also
filterFFT(), peakScoring()

Examples

Generate a random peaks profile
reads <- syntheticNucMap(nuc.len=40, lin.len=130)$syn.reads
cover <- coverage.rpm(reads)

Filter them
cover_fft <- filterFFT(cover)

Detect and plot peaks (up a bit the threshold for accounting synthetic
data)

peaks <- peakDetection(cover_fft, threshold="40%", score=TRUE)
plotPeaks(peaks, cover_fft, threshold="40%", start=10000, end=15000)

Now use ranges version, which accounts for fuzziness when scoring
peaks <- peakDetection(cover_fft, threshold="40%", score=TRUE, width=147)
plotPeaks(peaks, cover_fft, threshold="40%", start=10000, end=15000)

peakScoring Peak scoring function

Description

Scores peaks detected with function peakDetection according the height and the sharpness (width)
of the peak. This function can be called automatically from peakDetection if score=TRUE.

Usage

peakScoring(peaks, data, threshold = 0.25, ...)

S4 method for signature 'list'
peakScoring(peaks, data, threshold

"25%", mc.cores = 1)

S4 method for signature 'IRangeslList'
peakScoring(

peaks,

data,

threshold = "25%",

weight.width = 1,

weight.height = 1,

26

peakScoring

dyad.length = 38,

mc.cores =

)

1

S4 method for signature 'numeric'
peakScoring(peaks, data, chromosome = NULL, threshold = "25%")

S4 method for signature 'IRanges'

peakScoring(
peaks,
data,
chromosome

NULL,

threshold = "25%",
weight.width = 1,
weight.height = 1,
dyad.length = 38

Arguments

peaks

data
threshold

mc.cores

The identified peaks resulting from peakDetection. Could be a numeric vector
with the position of the peaks, or a IRanges object with the extended range of
the peak. For both types, list support is implemented as a numeric list or a
IRangesList

Data of nucleosome coverage or intensites.

The non-default threshold previously used in peakDetection function, if ap-
plicable. Can be given as a percentage string (i.e., "25\\%" will use the value in
the 1st quantile of data) or as an absolute coverage numeric value (i.e., 20 will
not look for peaks in regions without less than 20 reads (or reads per million)).

Further arguments to be passed to or from other methods.

If input is a 1ist or IRangelList, and multiple cores support is available, the
maximum number of cores for parallel processing.

weight.height, weight.width

dyad.length

chromosome

Details

If the score is a range, the height and the widht score (coverage and fuzzynes)
can be defined with different weigths with these parameters. See details.

How many bases account in the nucleosome dyad for sharpness description. If
working with NGS data, works best with the reads width value for single-ended
data or the trim value given to the processReads function.

Optionally specify the name of the chromosome for input data that doesn’t spec-
ify it.

This function scores each previously identified peak according its height and sharpness.

The height score (score_h) tells how large is a peak, higher means more coverage or intensity,
so better positioned nucleosome. This score is obtained by checking the observed peak value in a
Normal distribution with the mean and sd of data. This value is between 0 and 1.

peakScoring 27

The width score (score_w) is a mesure of how sharp is a peak. With a NGS coverage in mind, a
perfect phased (well-positioned) nucleosome is this that starts and ends exactly in the same place
many times. The shape of this ideal peak will be a rectangular shape of the lenght of the read. A
wider top of a peak could indicate fuzzyness. The parameter dyad. length tells how long should be
the "flat" region of an ideal peak. The optimum value for this parameter is the lenght of the read in
single-ended data or the trim value of the function processReads. For Tiling Arrays, the default
value should be fine.

This score is obtained calculating the ratio between the mean of the nucleosome scope (the one
provided by range in the elements of peaks) and the dyad.length central bases. This value is
normalized between 0 and 1.

For punctual, single points peaks (provided by numeric vector or list as peaks attribute) the score
returned is the height score.

For range peaks the weighted sum of the heigth and width scores is used. This is: ((score_h
*weigth.height) / sum.wei) + ((score_w *x weigth.width) / sum.wei). Note that you can
query for only one score by setting its weight to 1 and the other to 0.

Value

In the case of numeric input, the value returned is a data. frame containing a ’peak’ and a ’score’
column. If the input is a 1ist, the result will be a 1ist of data. frame.

If inputis a IRanges or IRangesList, the result will be a data. frame or GenomicRanges::GRanges
object with one or multiple spaces respectively and a 3 data column with the mixed, width and heigh
score.

Author(s)

Oscar Flores <oflores@mmb.cpb.ub.es>

See Also

peakDetection(), processReads(),

Examples

Generate a synthetic map

Trimmed length nucleosome map
map <- syntheticNucMap(nuc.len=40, lin.len=130)

Get the information of dyads and the coverage
peaks <- c(map$wp.starts, map$fz.starts)
cover <- filterFFT(coverage.rpm(map$syn.reads))

Calculate the scores
scores <- peakScoring(peaks, cover)
plotPeaks(scores$peak, cover, scores=scores$score, start=5000, end=10000)

28

plotPeaks

plotPeaks Nucleosome calling plot function

Description

Helper function for a quick and convenient overview of nucleosome calling data.

Usage

plotPeaks(peaks, data, ...)

S4 method for signature 'numeric'
plotPeaks(

peaks,

data,

threshold = 0,

scores = NULL,

start = 1,

end = length(data),
xlab = "position”,
ylab = "coverage”,
type = 1,

col.points = "red",
thr.lty = 1,

thr.lwd = 1,

thr.col = "darkred”,

scor.col = col.points,
scor.cex = 2.5,
scor.digits = 2,
scor.nudge = 2000

)

S4 method for signature 'data.frame

plotPeaks(peaks, data, ...)
S4 method for signature 'GRanges'
plotPeaks(peaks, data, ...)
S4 method for signature 'IRanges'
plotPeaks(

peaks,

data,

threshold = 0,

scores = NULL,

start = 1,

end = length(data),

dyn.pos = TRUE,

plotPeaks

29
xlab = "position”,
ylab = "coverage”,
type = 1,
col.points = "red",
thr.lty = 1,
thr.lwd = 1,
thr.col = "darkred”,

rect.thick = 2,
rect.lwd = 0.5,
rect.border = "black”,
scor.col = col.points,
scor.cex = 2.5,
scor.digits = 2,
indiv.scores = FALSE,
scor.nudge = 2000

Arguments

peaks

data

threshold

scores

start, end

numeric, data.frame, IRanges or GRanges object containing the detected peaks
information. See help of peakDetection() or peakScoring() for more details.

Coverage or Tiling Array intensities
Arguments to be passed to other methods.
Threshold applied in peakDetection

If peaks is a data. frame or a GRanges it’s obtained from ’score’ column, oth-
erwise, scores can be given here as a numeric vector.

Start and end points defining a subset in the range of data. This is a convenient
way to plot only a small region of data, without dealing with subsetting of range
or score objects.

xlab, ylab, type, col.points

Default values with general properties of the plot

thr.1ty, thr.1lwd, thr.col

Default values with general properties for threshold representation

scor.col, scor.nudge, scor.cex, scor.digits

dyn.pos

Default values for ggplot2: : geom_text () representation for score numbers, if
available.

If peaks are ranges, should they be positioned dynamicaly on top of the peaks or
staticaly at threshold baseline. Spacing of overlapping ranges is automatically
applied if FALSE.

rect.thick, rect.1lwd, rect.border

indiv.scores

Default values for ggplot2: : geom_rect () representation of ranges. rect.thick
indicates the thickness of the rectangles.

Show or hide individual scores for width and height in brakets besides the mixed
score.

30 processReads

Details

This function is intended to plot data previously processed with nucleR pipeline. It shows a cov-
erage/intensity profile toghether with the identified peaks. If available, score of each peak is also
shown.

Value

(none)

Author(s)

Ricard Illa <ricard.illa@irbbarcelona.org>

See Also

peakDetection(), peakScoring(), ggplot2::ggplot(),

Examples

Generate a random peaks profile
reads <- syntheticNucMap(nuc.len=40, lin.len=130)$syn.reads
cover <- coverage.rpm(reads)

Filter them
cover_fft <- filterFFT(cover)

Detect peaks
peaks <- peakDetection(cover_fft, threshold="40%", score=TRUE, width=140)

Plot peaks and coverage profile (show only a window)
plotPeaks(peaks, cover_fft, threshold="40%", start=1000, end=6000)

processReads Process reads from High-Troughtput Sequencing experiments

Description

This method allows the processment of NGS nucleosome reads from different sources and a basic
manipulation of them. The tasks includes the correction of strand-specific single-end reads and the
trimming of reads to a given length.

Usage

processReads(data, type = "single", fragmentLen, trim, ...)

S4 method for signature 'AlignedRead'’
processReads(data, type = "single"”, fragmentLen, trim, ...)

processReads 31

S4 method for signature 'CompressedGRangeslList'
processReads(data, type = "single"”, fragmentLen, trim, ...)

S4 method for signature 'GRanges'

processReads(data, type = "single"”, fragmentLen, trim, ...)
Arguments
data Sequence reads objects, probably imported using other packages as ShortRead.

Allowed object types are ShortRead:: AlignedRead and GenomicRanges::GRanges
with a strand attribute.

type Describes the type of reads. Values allowed are single for single-ended reads
and paired for paired-ended.

fragmentLen Expected original length of the sequenced fragments. See details.

trim Length to trim the reads (or extend them if trim > read length)

Other parameters passed to fragmentLenDetect if no fixed fragmentLen is
given.

Details

This function reads a ShortRead::AlignedRead or a GenomicRanges::GRanges object containing
the position, length and strand of the sequence reads.

It allows the processment of both paired and single ended reads. In the case of single end reads
this function corrects the strand-specific mapping by shifting plus strand reads and minus strand
reads towards a middle position where both strands are overlaped. This is done by accounting the
expected fragment length (fragmentLen).

For paired end reads, mononucleosomal reads could extend more than expected length due to map-
ping issues or experimental conditions. In this case, the fragmentlLen variable sets the threshold
from which reads longer than it should be ignored.

If no value is supplied for fragmentLen it will be calculated automatically (increasing the com-
puting time) using fragmentLenDetect with default parameters. Performance can be increased by
tunning fragmentLenDetect parameteres in a separated call and passing its result as fragmentLen
parameter.

In some cases, could be useful trim the reads to a shorter length to improve the detection of nu-
cleosome dyads, easing its detection and automatic positioning. The parameter trim allows the
selection of how many nucleotides select from each read.

A special case for single-ended data is setting the trim to the same value as fragmentLen, so the
reads will be extended strand-wise towards the 3’ direction, creating an artificial map comparable
with paired-ended data. The same but opposite can be performed with paired-end data, setting a
trim value equal to the read length from paired ended, so paired-ended data will look like single-
ended.

Value

GenomicRanges::GRanges containing the aligned/trimmed individual reads.

32 processTilingArray

Note

IMPORTANT: this information is only used to correct possible strand-specific mapping, this pack-
age doesn’t link the two ends of paired reads.

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

See Also

ShortRead::AlignedRead, GenomicRanges::GRanges, fragmentLenDetect ()

Examples

Load data
data(nucleosome_htseq)

Process nucleosome reads, select only those shorter than 200bp
pr1 <- processReads(nucleosome_htseq, fragmentlLen=200)

Now process them, but picking only the 40 bases surrounding the dyad
pr2 <- processReads(nucleosome_htseq, fragmentLen=200, trim=40)

Compare the results:

library(ggplot2)

covl <- as.vector(coverage.rpm(pr1)[["chr1”]1)

cov2 <- as.vector(coverage.rpm(pr2)[["chr1”]1)

plot_data <- rbind(
data.frame(x=seq_along(covl), y=covl, coverage="original"),
data.frame(x=seq_along(cov2), y=cov2, coverage="trimmed")

)

gplot(x=x, y=y, geom="line", data=plot_data, xlab="position”,

ylab="coverage") + facet_grid(coverage~.)

processTilingArray Obtain and clean nucleosome positioning data from tiling array

Description

Process and transform the microarray data coming from tiling array nucleosome positioning exper-
iments.

Usage

processTilingArray(
data,
exprName,
chrPattern,

processTilingArray 33

inferLen = 50,
mc.cores = 1,
quiet = FALSE

)
Arguments
data ExpressionSet object wich contains the data of the tiling array.
exprName Name of the sample in ExpressionSet which contains the ratio between nucle-
osomal and genomic dna (if using Starr, the description argument supplied
to getRatio function). If this name is not provided, it is assumed data has only
one column.
chrPattern Only chromosomes that contain chrPattern string will be selected from Ex-
pressionSet. Sometimes tilling arrays contain control quality information that is
imported as a chromosome. This allows filtering it. If no value is supplied, all
chromosomes will be used.
inferLen Maximum length (in basepairs) for allowing data gaps inference. See details
for further information.
mc.cores Number of cores available to parallel data processing.
quiet Avoid printing on going information (TRUE | FALSE)
Details

The processing of tiling arrays could be complicated as many types exists on the market. This
function deals ok with Affymetrix Tiling Arrays in yeast, but hasn’t been tested on other species or
platforms.

The main aim is convert the output of preprocessing steps (supplied by third-parties packages) to a
clean genome wide nucleosome occupancy profile.

Tiling arrays doesn’t use to provide a one-basepair resolution data, so one gets one value per probe
in the array, covering X basepairs and shifted (tiled) Y basepairs respect the surrounding ones. So,
one gets a piece of information every Y basepairs.

This function tries to convert this noisy, low resolution data, to a one-basepair signal, which allows a
fast recognition of nucleosomes without using large and artificious statistical machinery as Hidden
Markov Models using posterionr noise cleaning process.

As example, imagine your array has probes of 20mers and a tiling between probes of 10bp. Starting
at position 1 (covering coordinates from 1 to 20), the next probe will be in position 10 (covering the
coordinates 10 to 29). This can be represented as two hybridization intensity values on coordinates
1 and 10. This function will try to infer (using a lineal distribution) the values from 2 to 9 using the
existing values of probes in coordinate 1 and coordinate 10.

The tiling space between adjacent array probes could be not constant, or could be also there are
regions not covered in the used microarray. With the function argument inferlLen you can specify
wich amout of space (in basepairs) you allow to infer the non-present values.

If at some point the range not covered (gap) between two adjacent probes of the array is greater than
inferLen value, then the coordinates between these probes will be setted to NA.

34 processTilingArray

Value

RlelList with the observed/inferred values for each coordinate.

Warning

This function could not cover all kind of arrays in the market. This package assumes the data is
processed and normalized prior this processing, using standard microarray packages existing for R,
like Starr.

Note

This function should be suitable for all data objects of kind ExpressionSet coding the annotations
"chr" for chromosome and "pos” for position (acccessible by pData(data@featureData)) and a
expression value (accessible by exprs(data)).

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

See Also

Biobase::ExpressionSet, Starr: :getRatio()

Examples

Not run:
Dataset cannot be provided for size restrictions
This is the code used to get the hybridization ratio with Starr from
CEL files
library("Starr")
TA_parsed <- readCelFile(
BPMap, CELfiles, CELnames, CELtype, featureData=TRUE, log.it=TRUE
)
TA_loess <- normalize.Probes(TA_parsed, method="loess")
TA_ratio <- getRatio(
TA_loess, TA_loess$type=="IP", TA_loess$type=="CONTROL"”, "myRatio”
)

From here, we use nucleR:

Preprocess the array, using the calculated ratio feature we named
"myRatio”.

This will also select only those chromosomes with the pattern
"Sc:0ct_2003;chr”, removing control data present in that tiling
array.

Finally, we allow that loci not covered by a prove being inferred
from adjacent ones, as far as they are separated by 50bp or less
arr <- processTilingArray(

TA_ratio, "myRatio”, chrPattern="Sc:0ct_2003;chr"”, inferLen=50

readBAM 35

)

From here we can proceed with the analysis:
arr_fft <- filterFFT(arr)

arr_pea <- peakDetection(arr_fft)
plotPeaks(arr_pea, arr_fft)

End(Not run)

readBAM Import reads from a list of BAM files.

Description
This function allows to load reads from BAM files from both single and paired-end commming
from Next Generation Sequencing nucleosome mapping experiments.

Usage

readBAM(files, type = "paired")

Arguments
files List of input BAM files.
type Describes the type of reads. Values allowed are single for single-ended reads
and paired for pair-ended.
Value

GenomicRanges::GRangesList containing the reads of each input BAM file.

Author(s)

Ricard Illa <ricard.illa@irbbarcelona.org>

Examples

infile <- system.file(
"extdata", "cellCycleM_chrII_5000-25000.bam", package="nucleR"

)
reads <- readBAM(infile, type="paired")

36 syntheticNucMap

readBowtie Import reads from a vector of Bowtie files

Description
This function allows to load reads from Bowtie files from both single and paired-end commming
from Next Generation Sequencing nucleosome mapping experiments.

Usage

readBowtie(files, type = "paired”)

Arguments
files List of input Bowtie files.
type Describes the type of reads. Values allowed are single for single-ended reads
and paired for pair-ended.
Value

GenomicRanges::GRangesList containing the reads of each input BAM file.

Author(s)

Ricard Illa <ricard.illa@irbbarcelona.org>

syntheticNucMap Generates a synthetic nucleosome map

Description

This function generates a synthetic nucleosome map using the parameters given by the user and
returns the coverage (like NGS experiments) or a pseudo-hybdridization ratio (like Tiling Arrays)
toghether with the perfect information about the well positioned and fuzzy nucleosome positions.

Usage
syntheticNucMap(
wp.num = 100,
wp.del = 10,

wp.var = 20,
fuz.num = 50,
fuz.var = 50,
max.cover = 20,
nuc.len = 147,

syntheticNucMap

lin.len = 20,

37

rnd.seed = NULL,
as.ratio = FALSE,
show.plot = FALSE

Arguments

wp . num

wp.del

wp.var

fuz.

fuz.

max.

nuc.

lin.

rnd.

num

var

cover

len

len

seed

as.ratio

show.plot

Value

Number of well-positioned (non overlapped) nucleosomes. They are placed uni-
formly every nuc.len+lin.len basepairs.

Number of well-positioned nucleosomes (the ones generated by wp. num) to re-
move. This will create an uncovered region.

Maximum variance in basepairs of the well-positioned nucleosomes. This will
create some variation in the position of the reads describing the same nucleo-
some.

Number of fuzzy nucleosomes. They are distributed randomly over all the re-
gion. They could be overlapped with other well-positioned or fuzzy nucleo-
somes.

Maximum variance of the fuzzy nucleosomes. This allow to set different vari-
ance in well-positioned and fuzzy nucleosome reads (using wp. var and fuz. var).

Maximum coverage of a nucleosome, i.e., how many times a nucleosome read
can be repeated. The final coverage probably will be higher by the addition of
overlapping nucleosomes.

Nucleosome length. It’s not recomended change the default 147bp value.
Linker DNA length. Usually around 20 bp.

As this model uses random distributions for the placement, by setting the rnd.seed
to a known value allows to reproduce maps in different executions or computers.
If you don’t need this, just left it in default value.

If as.ratio=TRUE this will create and return a synthetic naked DNA control
map and the ratio between it and the nucleosome coverage. This can be used to
simulate hybridization ratio data, like the one in Tiling Arrays.

If TRUE, will plot the output coverage map, with the nucleosome calls and op-
tionally the calculated ratio.

A list with the following elements:

wp.starts Start points of well-positioned nucleosomes

wp.nreads Number of repetitions of each well positioned read

wp.reads Well positioned nucleosome reads (IRanges format), containing the repetitions

fuz.starts Start points of the fuzzy nucleosomes

fuz.nreads Number of repetitions of each fuzzy nucleosome read

fuz.reads Fuzzy nucleosome reads (IRanges format), containing all the repetitions

38 syntheticNucMap

* syn.reads All synthetic nucleosome reads togheter (IRanges format)
The following elements will be only returned if as.ratio=TRUE:

¢ ctr.reads The pseudo-naked DNA (control) reads (IRanges format)

* syn.ratio The calculated ratio nucleosomal/control (R1e format)

Author(s)

Oscar Flores <oflores@mmb.pcb.ub.es>

Examples

Generate a synthetic map with 50wp + 20fuzzy nucleosomes using fixed
random seed=1
res <- syntheticNucMap(wp.num=50, fuz.num=20, show.plot=TRUE, rnd.seed=1)

Increase the fuzzyness

res <- syntheticNucMap(
wp.num=50, fuz.num=20, wp.var=70, fuz.var=150, show.plot=TRUE,
rnd. seed=1

)

Calculate also a random map and get the ratio between random and
nucleosomal
res <- syntheticNucMap(
wp.num=50, wp.del=0, fuz.num=20, as.ratio=TRUE, show.plot=TRUE,
rnd. seed=1

print(res)

Different reads can be accessed separately from results

Let's use this to plot the nucleosomal + the random map

library(ggplot2)

as <- as.vector(coverage.rpm(res$syn.reads))

bs <- as.vector(coverage.rpm(res$ctr.reads))

cs <- as.vector(res$syn.ratio)

plot_data <- rbind(
data.frame(x=seq_along(as), y=as, lab="nucleosomal”),
data.frame(x=seq_along(bs), y=bs, lab="random"),
data.frame(x=seq_along(cs), y=cs, lab="ratio")

)

gplot(x=x, y=y, data=plot_data, geom="area", xlab="position”, ylab="") +
facet_grid(lab~., scales="free_y")

Index

+ attribute
fragmentlLenDetect, 16
pcKeepCompDetect, 21

x datagen
syntheticNucMap, 36

+ datasets
nucleosome_htseq, 20
nucleosome_tiling, 20

x file
export.bed, 10
export.wig, 12
readBAM, 35
readBowtie, 36

* hplot
plotPeaks, 28

* manip
controlCorrection, 8
coverage.rpm, 9
filterFFT, 13
mergeCalls, 18
peakDetection, 23
peakScoring, 25
processReads, 30
processTilingArray, 32

+ package
nucleR-package, 2

.fftRegion, 4

.getThreshold, 5

.loadFiles, 5

.loadPairedBam, 5

.loadSingleBam, 6

.mid, 6

.processStrand, 6

.unlist_as_integer,7

.vectorizedAll, 7

.xlapply, 7

Biobase: :ExpressionSet, 34

controlCorrection, 8

39

controlCorrection,list-method
(controlCorrection), 8
controlCorrection, numeric-method
(controlCorrection), 8
controlCorrection,Rle-method
(controlCorrection), 8
controlCorrection,SimpleRlelList-method
(controlCorrection), 8
coverage.rpm, 9
coverage.rpm,CompressedGRangesList-method
(coverage.rpm), 9
coverage.rpm,GRanges-method
(coverage.rpm), 9
coverage.rpm, IRanges-method
(coverage.rpm), 9

export.bed, 10

export.bed, CompressedIRangesList-method
(export.bed), 10

export.bed,GRanges-method (export.bed),
10

export.bed, IRanges-method (export.bed),
10

export.wig, 12

filterFFT, 13
filterFFT(), 25
filterFFT,list-method (filterFFT), 13
filterFFT,numeric-method (filterFFT), 13
filterFFT,Rle-method (filterFFT), 13
filterFFT,SimpleRlelList-method
(filterFFT), 13
fragmentLenDetect, 16
fragmentLenDetect(), 32
fragmentLenDetect,AlignedRead-method
(fragmentLenDetect), 16
fragmentLenDetect,GRanges-method
(fragmentLenDetect), 16

GenomicRanges: : GenomicRanges, 9

40

GenomicRanges: :GRanges, 6, 9, 11, 17, 19,
27,31, 32

GenomicRanges: :GRangeslList, 35, 36

ggplot2::geom_rect(), 29

ggplot2: :geom_text(), 29

ggplot2::ggplot(), 30

IRanges: :coverage(), 10
IRanges: :IRanges, 9, 11
IRanges: :IRangeslList, /1

mergeCalls, 18
mergeCalls,GRanges-method (mergeCalls),
18

nucleosome_htseq, 20
nucleosome_tiling, 20
nucleR (nucleR-package), 2
nucleR-package, 2

pcKeepCompDetect, 21

peakDetection, 23

peakDetection(), 27, 29, 30

peakDetection, list-method
(peakDetection), 23

peakDetection,numeric-method
(peakDetection), 23

peakScoring, 25

peakScoring(), 19, 24, 25, 29, 30

peakScoring,IRanges-method
(peakScoring), 25

peakScoring, IRangesList-method
(peakScoring), 25

peakScoring,list-method (peakScoring),
25

peakScoring,numeric-method
(peakScoring), 25

plotPeaks, 28

plotPeaks,data. frame-method
(plotPeaks), 28

plotPeaks,GRanges-method (plotPeaks), 28

plotPeaks, IRanges-method (plotPeaks), 28

plotPeaks,numeric-method (plotPeaks), 28

processReads, 30

processReads(), 10, 27

processReads,AlignedRead-method
(processReads), 30

processReads,CompressedGRangesList-method
(processReads), 30

processReads,GRanges-method
(processReads), 30
processTilingArray, 32

readBAM, 35
readBowtie, 36
Rsamtools: :scanBam, 6

ShortRead: :AlignedRead, 17, 31, 32
Starr::getRatio(), 34
syntheticNucMap, 36

INDEX

	nucleR-package
	.fftRegion
	.getThreshold
	.loadFiles
	.loadPairedBam
	.loadSingleBam
	.mid
	.processStrand
	.unlist_as_integer
	.vectorizedAll
	.xlapply
	controlCorrection
	coverage.rpm
	export.bed
	export.wig
	filterFFT
	fragmentLenDetect
	mergeCalls
	nucleosome_htseq
	nucleosome_tiling
	pcKeepCompDetect
	peakDetection
	peakScoring
	plotPeaks
	processReads
	processTilingArray
	readBAM
	readBowtie
	syntheticNucMap
	Index

