Package ‘seqArchR’

October 16, 2025
Type Package

Title Identify Different Architectures of Sequence Elements
Version 1.12.0

Description seqArchR enables unsupervised discovery of _de novo_ clusters
with characteristic sequence architectures characterized by
position-specific motifs or composition of stretches of nucleotides,

e.g., CG-richness. seqArchR does _not_ require any specifications

w.r.t. the number of clusters, the length of any individual motifs, or

the distance between motifs if and when they occur in pairs/groups; it
directly detects them from the data. seqArchR uses non-negative

matrix factorization (NMF) as its backbone, and employs a chunking-based
iterative procedure that enables processing of large sequence collections
efficiently. Wrapper functions are provided for visualizing cluster
architectures as sequence logos.

License GPL-3 | file LICENSE

URL https://snikumbh.github.io/segArchR/,
https://github.com/snikumbh/seqgArchR

BugReports https://github.com/snikumbh/seqArchR/issues

SystemRequirements Python (>= 3.5), scikit-learn (>=0.21.2),
packaging

Depends R (>=4.2.0)

Imports utils, graphics, cvTools (>= 0.3.2), MASS, Matrix, methods,
stats, cluster, matrixStats, fpc, cli, prettyunits, reshape2
(>= 1.4.3), reticulate (>= 1.22), BiocParallel, Biostrings,
grDevices, ggplot2 (>=3.1.1), ggseqlogo (>=0.1)

Suggests cowplot, hopach (>= 2.42.0), BiocStyle, knitr (>= 1.22),
rmarkdown (>= 1.12), testthat (>= 3.0.2), covr, vdiffr (>=
0.3.0)

VignetteBuilder knitr

biocViews MotifDiscovery, GeneRegulation, MathematicalBiology,

SystemsBiology, Transcriptomics, Genetics, Clustering,
DimensionReduction, FeatureExtraction, DNASeq

1

https://snikumbh.github.io/seqArchR/
https://github.com/snikumbh/seqArchR
https://github.com/snikumbh/seqArchR/issues

collate_clusters

Encoding UTF-8
LazyData false

RoxygenNote 7.2.1

git_url https://git.bioconductor.org/packages/seqArchR
git_branch RELEASE_3_21

git_last_commit 686a521

git_last commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

Author Sarvesh Nikumbh [aut, cre, cph] (ORCID:

<https://orcid.org/0000-0003-3163-4447>)

Maintainer Sarvesh Nikumbh <sarvesh.nikumbh@gmail.com>

Contents
collate_clusters e e 2
collate_seqArchR_result 3
get_clBasVec e 5
get_one_hot_encoded_seqs e 6
get_seqs_clust_list 7
make PWMS e 8
plot_arch_for_clusters 9
plot_ggseqlogo_of seqs L 10
prepare_data_from_FASTA 12
seqArchR L 13
SEOS_SIT . v o o e e e e e e e 16
set_configo 17
VIZ_DAS_VEC . . . o o o e e e e e e 19
VIZUPWIM . oo e e e e e e e e e 20
VIZ_SeqS_acgt_mat e e e e e e e e e 22

Index 24

collate_clusters Collate sequence IDs from an existing clustering according to a new,
given clustering of the existing clusters
Description

Collate sequences original divided across n clusters into a new set of m clusters. These ‘m* clusters
obtained by clustering the original ‘n‘ clusters. Assume a collection of 100 sequences across seven
existing clusters. These seven clusters are collated to obtain three resulting clusters. Collating 100
sequences distributed across the seven clusters into the resulting three clusters can be achieved with
collate clusters.

https://orcid.org/0000-0003-3163-4447

collate_seqArchR_result 3

Usage

collate_clusters(to_clust, orig_clust)

Arguments
to_clust A list giving clustering of factors. In other words this is the clustering of clusters
of sequences given in ‘orig_clust*
orig_clust A list of sequence IDs in existing clusters
Value

A list with sequence IDs collated by the specified clustering

Examples

set.seed(123)

n <-7; nn <- 100

orig_clust_labels <- ceiling(n * runif(nn))

orig_clust <- segArchR::get_seqs_clust_list(orig_clust_labels)

to_clust <- list(c(1,4), c(2,3,5), c(6,7))

collate_clusters(to_clust = to_clust, orig_clust = orig_clust)

collate_seqArchR_result
Collate raw clusters at the chosen iteration of seqArchR result

Description

We use hierarchical clustering for reordering/collating raw clusters from seqArchR’s given iteration.

Usage

collate_segArchR_result(
result,
iter = length(result$seqsClustLabels),
clust_method = "hc",
aggl_method = "ward.D",
dist_method = "euclid”,
regularize = FALSE,
topn = 50,
collate = TRUE,
return_order = FALSE,
flags = list(debugFlag = FALSE, verboseFlag = TRUE),

Arguments

result

iter

clust_method

aggl_method

dist_method

regularize

topn

collate

return_order

flags

Value

collate_seqArchR_result

The seqArchR result object.

Specify clusters at which iteration of seqArchR are to be reordered/collated.
Default is the last iteration of the seqArchR result object.

Specify "he’ for hierarchical clustering. Currently, only hierarchical clustering
is supported.

One of linkage values as specified for hierarchical clustering with hclust. De-
fault is "'ward.D’.

Distance measure to be used with hierarchical clustering. Available options are
"euclid" (default), "cor" for correlation, "cosangle" for cosine angle.

Logical. Specity TRUE if regularization is to be performed before comparison.
Default is FALSE. Also see argument "topN’.

Use only the top N dimensions of each basis vector for comparing them. Note
that since each basis vector has 4L or 16L. (mono- or dinucleotides) dimensions,
each dimension is a combination of nucleotide and its position in the sequence.
This argument selects the top N dimensions of the basis vector. This is ignored
when argument ‘regularize’ is FALSE.

Logical. Specify TRUE if collation using hierarchical agglomerative clustering
is to be performed, otherwise FALSE.

Logical. Use this argument when you want hierarchical clustering to be per-
formed but not collation of clusters. Therefore, setting return_order to TRUE
will return the hierarchical clustering object itself. This enables custom down-
stream processing/analysis.

Pass the flags object similar to the flags in configuration of the seqArchR result
object.

ignored

When ‘collate* is TRUE, a list with the following elements is returned:

basisVectorsCLust A list storing collation information of the basis vectors, i.e, IDs of basis vectors
that were collated into one.

clusters A list of sequences in each collated cluster.

seqClustLabels Cluster labels for all sequences according to the collated clustering.

When ’collate’ is FALSE, it returns the already existing basis vectors, each as singleton clusters.
The sequence cluster labels and sequence clusters are also handled accordingly. All are available as
part of the same list as the earlier case.

When ’return_order’ is set to TRUE, the hierarchical clustering result is returned instead.

get_clBasVec

Examples

res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR", mustWork = TRUE))

While the default settings for collation use Euclidean distance and

ward.D agglomeration, one can choose to use different settings, say,

correlation distance and complete linkage, and also regularizing to use

only top 50 dimensions (nucleotide-positions combinations)

collated_res <- collate_segArchR_result(result = res, iter = 2,
aggl_method = "complete”, dist_method = "cor”,
regularize = TRUE, topn = 50)

names(collated_res)

get_clBasVec Get functions for seqArchR result object

Description

Basis vectors’ information for the selected iteration.

Usage

get_clBasVec(res, iter)
get_clBasVec_k(res, iter)
get_clBasVec_m(res, iter)

get_seqClLab(res, iter = NULL)

Arguments

res seqArchR result object.

iter Choose the iteration of seqArchR result to get from.
Value

get_clBasVec A list with two elements ‘nBasisVectors® (integer) and ‘basisVectors® (matrix).
get_clBasVec_k The number of basis vectors (integer).
get_clBasVec_m The basis vectors’ matrix with features along the rows of the matrix.

get_seqClLab A character vector denoting the cluster IDs for each sequence.

6 get_one_hot_encoded_seqs

Functions

e get_clBasVec_k: Get the number of basis vectors (clusters) at the selected iteration.

» get_clBasVec_m: The basis vectors matrix at the selected iteration. Note that eatures along
TOWS.

» get_seqClLab: Get the cluster IDs for each sequence. Note that order of sequences here is as
per the input.

See Also

seqs_str

Examples

res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR", mustWork = TRUE))

k <- get_clBasVec_k(res=res, iter=2)
bMat <- get_clBasVec_m(res=res, iter=2)

cluster labels of sequences from final clustering
scLab <- get_seqClLab(res=res, iter=2)

get_one_hot_encoded_seqs
Get one-hot encoded sequences

Description

Get the one-hot encoding representation of the given sequences.

Usage

get_one_hot_encoded_seqs(seqs, sinuc_or_dinuc = "sinuc")
Arguments

seqs A DNAStringSet object holding the given DNA sequences

sinuc_or_dinuc character string, ’sinuc’ or ’dinuc’ to select for mono- or dinucleotide profiles.

Value

A sparse matrix of sequences represented with one-hot-encoding

get_seqs_clust_list 7

See Also

prepare_data_from_FASTA for generating one-hot encoding of sequences from a FASTA file

Other input functions: prepare_data_from_FASTA()

Examples

fname <- system.file("extdata”, "example_data.fa.gz",
package = "seqArchR", mustWork = TRUE)

rawSeqs <- prepare_data_from_FASTA(fasta_fname = fname,
raw_seq = TRUE)

segs_dinuc <- get_one_hot_encoded_seqs(seqs = rawSegs,
sinuc_or_dinuc = "dinuc")

get_segs_clust_list Retrieve sequence clusters as a list from the sequence labels

Description

Given the sequence cluster labels from the seqArchR result object, returns the clusters separated as
a list.

Usage

get_seqs_clust_list(seqs_clust_lab)

Arguments

seqs_clust_lab Sequences with cluster labels as in the seqArchR result object.

Value

A list holding sequence IDs belonging in each cluster.

Examples

clustlLabels <- sample(seq_len(4), 50, replace = TRUE)
print(clustLabels)
get_seqs_clust_list(clustLabels)

8 make PWMs

make_PWMs Make a PWM-resembling matrix out of a given n-vector

Description

The given matrix (or simply a vector) is reshaped to have four rows for four nucleotides and a
relevant number of columns.

Usage

make_PWMs (vec, add_pseudo_counts = TRUE, scale = TRUE, sinuc = TRUE)

Arguments

vec A vector that will be reshaped into a PWM matrix of DNA sequences. Note that
the matrix is formed by row.

add_pseudo_counts
Logical, taking values TRUE or FALSE, specifying whether or not pseudo-
counts are added to the matrix.

scale Logical, taking values TRUE or FALSE, specifying whether or not the matrix is
scaled column-wise, i.e., all columns summed to 1.
sinuc Logical. Specify TRUE for mononucleotides (default), FALSE to for dinu-
cleotides.
Value

A PWM. If sinuc is ‘TRUE®, the PWM has 4 rows corresponding to the 4 nucleotides (A, C, G, T)
and the relevant number of columns (i.e., number of elements in given vector/4). If dinucleotide is
selected, by setting ‘sinuc‘ to ‘FALSE‘, the PWM has 16 rows corresponding to the dinucleotide
combinations of the four nucleotides (A, C, G, T) and the relevant number of columns (i.e., number
of elements in given vector/16).

Examples

Mononucleotides case

Make a dummy PWM of dimensions 4 * 10 from a vector

vec <- runif(4*10)

pwm <- segArchR::make_PWMs(vec = vec, add_pseudo_counts = FALSE)

Dinucleotides case
res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR"”, mustWork = TRUE))

pwm <- segArchR::make_PWMs(get_clBasVec_m(res,iter=1)[,1],
add_pseudo_counts = FALSE, sinuc = FALSE)

plot_arch_for_clusters 9

plot_arch_for_clusters
Plot cluster architectures as sequence logos.

Description

Given a collection of FASTA sequences as a DNAStringSet object, and the clusters information, this
function plots the architectures for all clusters. If a name for the PDF file is provided, the resulting
set of architecture sequence logos are saved as a multi-page PDF.

Usage

plot_arch_for_clusters(
segs,
clust_list,
pos_lab = NULL,
xt_freq = 5,
set_titles = TRUE,
pdf_width = 11,
pdf_height = 2,
pdf_name = NULL,

show = FALSE,
)
Arguments

seqs Sequences as a DNAStringSet.

clust_list Clusters as a list of sequence IDs in each cluster.

pos_lab Labels for sequence positions, should be of same length as that of the sequences.
Default value is NULL, when the positions are labeled from 1 to the length of
the sequences.

xt_freq Frequency of x-axis ticks.

set_titles Specify TRUE if titles are to be written for the plots. With FALSE, there are no

titles for the plots. The title for each plot includes the current cluster number,
total number of clusters, start and end sequence numbers in the collection.

pdf_width, pdf_height
Width and height in inches of the PDF file. Default values are 11 and 2.
pdf_name Specify the PDF filename.

show Set TRUE if plot should be immediately shown/plotted. Default is TRUE. By
setting FALSE, one can simply collect the list of plots and use any other ap-
proach to arrange/display them. See examples.

Additional args passed to plot_ggseglogo_of_seqgs.

10 plot_ggseqlogo_of_seqs

Value

A list of (ggplot2-based) sequence logo plots is returned. When a valid file name is specified, the
list of plots is also written to the PDF file (one plot per page).

Examples

res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR", mustWork = TRUE))

Default position labels 1 to length of the sequences.
Can also set pos_lab based on biology, e.g., use -50 to 49 denoting
50 basepairs upstream and 49 downstream of the transcription start site
located at position 0.
arch_pl <- plot_arch_for_clusters(seqs = seqs_str(res),
clust_list = res$clustSol$clusters,
pos_lab = NULL,
pdf_name = NULL,
fixed_coord = TRUE)

Using cowplot::plot_grid
arch_pl <- plot_arch_for_clusters(seqgs = seqs_str(res),
clust_list = res$clustSol$clusters,
pos_lab = seq(100),
method = "bits",
pdf_name = NULL, show = FALSE)
cowplot::plot_grid(plotlist = arch_pl, ncol=1)

Plotting architecture sequence logos with probability instead of
information content
arch_pl <- plot_arch_for_clusters(seqs = seqgs_str(res),
clust_list = res$clustSol$clusters,
pos_lab = seq(100),
method = "prob”,
pdf_name = NULL, show = FALSE)
cowplot::plot_grid(plotlist = arch_pl, ncol=1)

plot_ggseqlogo_of_seqs
Plot sequence logo of a collection of sequences

Description

A wrapper to ggseqlogo plotting. Given a collection of sequences, this function plots the sequence
logo.

plot_ggseqlogo_of_seqs 11

Usage

plot_ggseqlogo_of_seqs(

segs,
pos_lab
xt_freq

NULL,

method = "bits",

title = NULL,

bits_yax = "full”,
fixed_coord = FALSE

Arguments

seqs

pos_lab

xt_freq
method
title
bits_yax

fixed_coord

Value

Collection of sequences as a DNAStringSet object.

Labels for sequence positions, should be of same length as that of the sequences.
Default value is NULL, when the positions are labeled from 1 to the length of
the sequences.

Specify the frequency of the x-axis ticks.
Specify either ’bits’ for information content or "prob’ for probability.
The title for the plot. Deafult is NULL.

Specify ’full’ if the information content y-axis limits should be 0-2 or ’auto’
for a suitable limit. The "auto’ setting adjusts the y-axis limits according to the
maximum information content of the sequence logo. Default is *full’.

Specify TRUE if the aspect ratio of the plot should be fixed, FALSE otherwise.
Default is TRUE. When ‘method* argument is set to ’bits’, ratio is 4, when
“prob’, ratio is 6.

A sequence logo plot of the given DNA sequences.

See Also

plot_arch_for_clusters for obtaining multiple sequence logo plots as a list.

Examples

res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,

package

= "segArchR", mustWork = TRUE))

Default, using information content on y-axis
pl <- plot_ggseqlogo_of_seqs(seqs = seqs_str(res, iter=1, cl=3),

pl

pos_lab = seq_len(100), title = NULL,
fixed_coord = TRUE)

Using probability instead of information content
pl <- plot_ggseqlogo_of_seqs(seqs = seqs_str(res, iter=1, cl=3),

12 prepare_data_from_FASTA

pos_lab = seq_len(100), title = "",
method = "prob"”, fixed_coord = TRUE)
pl

prepare_data_from_FASTA
Generate one-hot encoding of sequences given as FASTA file

Description

Given a set of sequences in a FASTA file this function returns a sparse matrix with one-hot encoded
sequences. In this matrix, the sequence features are along rows, and sequences along columns.
Currently, mono- and dinucleotide features for DNA sequences are supported. Therefore, the length
of the feature vector is 4 and 16 times the length of the sequences (since the DNA alphabet is four
characters) for mono- and dinucleotide features respectively.

Usage

prepare_data_from_FASTA(fasta_fname, raw_seq = FALSE, sinuc_or_dinuc = "sinuc")

Arguments

fasta_fname Provide the name (with complete path) of the input FASTA file.
raw_seq TRUE or FALSE, set this to TRUE if you want the raw sequences.

sinuc_or_dinuc character string, ’sinuc’ or ’dinuc’ to select for mono- or dinucleotide profiles.

Value

A sparse matrix of sequences represented with one-hot-encoding.

See Also

get_one_hot_encoded_seqs for directly using a DNAStringSet object

Other input functions: get_one_hot_encoded_seqs()

Examples

fname <- system.file("extdata”, "example_data.fa.gz",
package = "seqArchR", mustWork = TRUE)

mononucleotides feature matrix
rawSeqs <- prepare_data_from_FASTA(fasta_fname = fname,
sinuc_or_dinuc = "sinuc")

dinucleotides feature matrix
rawSeqs <- prepare_data_from_FASTA(fasta_fname = fname,
sinuc_or_dinuc = "dinuc")

seqArchR 13

FASTA sequences as a Biostrings::DNAStringSet object
rawSeqs <- prepare_data_from_FASTA(fasta_fname = fname,
raw_seq = TRUE)

segArchR seqArchR: A package for de novo discovery of different sequence ar-
chitectures

Description

Given a set of DNA sequences, seqArchR enables unsupervised discovery of _de novo_ clusters
with characteristic sequence architectures characterized by position-specific motifs or composition
of stretches of nucleotides, e.g., CG-richness, etc.

Call this function to process a data set using seqArchR.

Usage

segArchR(
config,
segs_ohe_mat,
seqs_raw,
seqs_pos = NULL,
total_itr = NULL,
set_ocollation = NULL,

fresh = TRUE,
use_oc = NULL,
o_dir = NULL
)
Arguments
config seqArchR configuration object as returned by set_config. This is a required

argument.

segs_ohe_mat A matrix of one-hot encoded sequences with sequences along columns. This is
a required argument.

seqs_raw A DNAStringSet object. The FASTA sequences as a DNAStringSet object. This
argument required argument.

seqs_pos Vector. Specify the tick labels for sequence positions. Default is NULL.

total_itr Numeric. Specify the number of iterations to perform. This should be greater
than zero. Default is NULL.

set_ocollation Logical vector. A logical vector of length ‘total_itr‘ specifying for every itera-
tion of seqArchR if collation of clusters from outer chunks should be performed.
TRUE denotes clusters are collated, FALSE otherwise.

14 seqArchR

fresh Logical. Specify if this is (not) a fresh run. Because seqArchR enables check-
pointing, it is possible to perform additional iterations upon clusters from an ex-
isting seqArchR result (or a checkpoint) object. See 'use_oc’ argument. For ex-
ample, when processing a set of FASTA sequences, if an earlier call to seqArchR
performed two iterations, and now you wish to perform a third, the arguments
‘fresh® and ‘use_oc‘ can be used. Simply set ‘fresh® to FALSE and assign the
sequence clusters from iteration two from the earlier result to ‘use_oc‘. As of
v0.1.3, with this setting, seqArchR returns a new result object as if the additional
iteration performed is the only iteration.

use_oc List. Clusters to be further processed with seqArchR. These can be from a pre-
vious seqArchR result (in which case use get_seqs_clust_list function), or
simply clusters from any other method. Warning: This has not been rigorously
tested yet (v0.1.3).

o_dir Character. Specify the output directory with its path. seqArchR will create
this directory. If a directory with the given name exists at the given location,
seqArchR will add a suffix to the directory name. This change is reported to the
user. Default is NULL. When NULL, just the result is returned, and no plots or
checkpoints or result is written to disk.

Details

The seqArchR package provides three categories of important functions: related to data prepara-
tion and manipulation, performing non-negative matrix factorization, performing clustering, and
visualization-related functions.

Value

A nested list of elements as follows:

seqsClustLabels A list with cluster labels for all sequences per iteration of seqArchR. The cluster
labels as stored as characters.

clustBasisVectors A list with information on NMF basis vectors per iteration of seqArchR. Per
iteration, there are two variables ‘nBasisVectors® storing the number of basis vectors after
model selection, and ‘basisVectors‘, a matrix storing the basis vectors themselves. Dimen-
sions of the ‘basisVectors® matrix are 4*L x nBasisVectors (mononucleotide case) or 16*L x
nBasisVectors (dinucleotide case).

clustSol The clustering solution obtained upon processing the raw clusters from the last iteration
of seqArchR’s result. This is handled internally by the function collate_segArchR_result
using the default setting of Euclidean distance and ward.D linkage hierarchical clustering.

rawSeqs The input sequences as a DNAStringSet object.

timeInfo Stores the time taken (in minutes) for processing each iteration. This element is added
only if ‘time‘ flag is set to TRUE in config.

config The configuration used for processing.

call The function call itself.

seqArchR

Functions for data preparation and manipulation

e prepare_data_from_FASTA

* get_one_hot_encoded_seqs

Functions for visualizations

e plot_arch_for_clusters
* plot_ggseqglogo_of_seqs
* viz_bas_vec

* viz_seqgs_acgt_mat

* viz_pwm
Examples

Here,we re-use the example input sequences and one-hot encoded matrix
shipped with segArchR. Please see examples in the corresponding man pages
for generating a one-hot encoded input matrix from raw FASTA sequences
in “prepare_data_from_FASTA®
#
inputSeqsMat <- readRDS(system.file("extdata”, "tssSinuc.rds”,
package = "seqArchR”, mustWork = TRUE))

inputSeqsRaw <- readRDS(system.file("extdata”, "tssSeqsRaw.rds”,
package = "seqArchR”, mustWork = TRUE))

Set segArchR configuration
seqArchRconfig <- segArchR::set_config(
parallelize = TRUE,
n_cores = 2,
n_runs = 100,

k_min = 1,

k_max = 20,

mod_sel_type = "stability”,
bound = 10*-8,

chunk_size = 100,
flags = list(debug = FALSE, time = TRUE, verbose = TRUE,
plot = FALSE)

Run segArchR

segArchRresult <- segArchR::segArchR(config = segArchRconfig,
seqs_ohe_mat = inputSeqsMat,
seqs_raw = inputSeqsRaw,
segs_pos = seq(1,100,by=1),
total_itr = 2,
set_ocollation = c(TRUE, FALSE))

16 seqs_str

seqs_str Get sequences from the seqArchR result object

Description

Wrapper to fetch sequences from the seqArchR result object as character

Usage
seqs_str(res, iter = NULL, cl = NULL, ord = FALSE)

Arguments
res seqArchR result object
iter Specify the iteration of seqArchR result. If set to NULL (the default), the origi-
nal set of sequences (‘seqArchRresult$rawSeqs®) is returned.
cl Specify the cluster number. Sequences belonging to this cluster in iteration

‘iter* of seqArchR result are returned as character. When ‘iter is NULL, this
is treated as denoting the cluster number in seqArchR’s final clustering solution
(‘seqArchRresult$clustSol$clusters).

ord Specify TRUE if sequences are ordered by clusters. The original ordering of the
sequences can be fetched by setting ‘iter* to NULL and ‘ord* to FALSE.
Details

Setting iter to NULL will fetch sequences as per the final clustering solution of seqArchR (‘clust-
Sol$clusters‘). When ‘iter‘ is not NULL, use ‘cl‘ to further choose a particular cluster. When ‘cl
is NULL, the set of sequences returned can be ordered by clusters with ‘ord = TRUE®. Using ‘ord
= FALSE* fetches the sequences by their original order.

Value

The selected DNA sequences from the DNAStringSet object as a character vector.

Examples

res <- system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR”, mustWork = TRUE)

Fetch sequences from 2nd cluster of segArchR's final solution
ans <- segArchR::seqgs_str(readRDS(res), iter=NULL, cl=2)

Fetch all sequences ordered by the final clustering
ans <- segArchR::seqs_str(readRDS(res), iter=NULL, cl=NULL, ord=TRUE)

Fetch sequences belonging to first cluster in segArchR's first iteration
ans <- segArchR::seqs_str(readRDS(res), iter=1, cl=1)

set_config 17

set_config Set seqArchR run configuration

Description

This function sets the configuration for ‘seqArchR°.

Usage

set_config(
chunk_size = 500,
k_min = 1,
k_max = 50,
mod_sel_type = "stability",
bound = 10*-6,
cv_folds = 5,
parallelize = FALSE,
n_cores = NA,
n_runs = 100,
alpha_base = 0,
alpha_pow = 1,
min_size = 25,
result_aggl = "complete”,
result_dist = "euclid”,
checkpointing = TRUE,
flags = list(debug = FALSE, time = FALSE, verbose = TRUE, plot = FALSE)

Arguments
chunk_size Numeric. Specify the size of the inner chunks of sequences.
k_min Numeric. Specify the minimum of the range of values to be tested for number
of NMF basis vectors. Default is 1.
k_max Numeric. Specify the maximum of the range of values to be tested for number

of NMF basis vectors. Default is 50.

mod_sel_type Character. Specify the model selection strategy to be used. Default is ’stabil-
ity’. Another option is ’cv’, short for cross-validation. Warning: The cross-
validation approach can be time consuming and computationally expensive than
the stability-based approach.

bound Numeric. Specify the lower bound value as criterion for choosing the most
appropriate number of NMF factors. Default is 1e-08.

cv_folds Numeric. Specify the number of cross-validation folds used for model selection.
Only used when mod_sel_type is set to "cv’. Default value is 5.

18

parallelize

n_cores

n_runs

set_config

Logical. Specify whether to parallelize the procedure. Note that running se-
gArchR serially can be time consuming, especially when using cross-validation
for model selection. See ‘n_cores‘. Consider parallelizing with at least 2 or 4
cores.

The number of cores to be used when ‘parallelize’ is set to TRUE. If ‘parallelize’
is FALSE, nCores is ignored.

Numeric. Specify the number of bootstrapped runs to be performed with NMF.
Default value is 100. When using cross-validation more than 100 iterations may
be needed (upto 500).

alpha_base, alpha_pow

min_size

result_aggl

result_dist

checkpointing

flags

Details

Specify the base and the power for computing ’alpha’ in performing model se-
lection for NMF. alpha = alpha_base”alpha_pow. Alpha specifies the regular-
ization for NMF. Default: 0 and 1 respectively. _Warning_: Currently, not used
(for future).

Numeric. Specify the minimum number of sequences, such that any cluster/chunk
of size less than or equal to it will not be further processed. Default is 25.

Character. Specify the agglomeration method to be used for final result collation
with hierarchical clustering. Default is ’complete’ linkage. Possible values are
those allowed with hclust. Also see details below.

Character. Specify the distance method to be used for final result collation with
hierarchical clustering. Default is *cor’ for correlation. Possible values are those
allowed with hclust. Also see details below.

Logical. Specify whether to write intermediate checkpoints to disk as RDS files.
Checkpoints and the final result are saved to disk provided the ‘o_dir‘ argument
is set in seqArchR. When ‘o_dir‘ argument is not provided or NULL, this is
ignored. Default is TRUE.

List with four logical elements as detailed.

debug Whether debug information for the run is printed
verbose Whether verbose information for the run is printed
plot Whether verbose plotting is performed for the run
time Whether timing information is printed for the run

Setting suitable values for the following parameters is dependent on the data: ’inner_chunk_size’,
’k_min’, ’k_max’, *'mod_sel_type’, 'min_size’, result_aggl’, 'result_dist’.

Value

A list with all params for seqArchR set

Examples

Set segArchR configuration
seqArchRconfig <- segArchR::set_config(
chunk_size = 100,

viz_bas_vec 19

parallelize = TRUE,
n_cores = 2,
n_runs = 100,

k_min = 1,

k_max = 20,

mod_sel_type = "stability”,
bound = 10*-8,

flags = list(debug = FALSE, time = TRUE, verbose = TRUE,
plot = FALSE)

viz_bas_vec Visualize the NMF basis vectors

Description

The given features matrix is visualized as a paired heatmap and sequence logo where the positions
are aligned for better visualization., or as a single heatmap or as a single sequence logo.

Usage

viz_bas_vec(
feat_mat,
ptype = c("heatmap”, "seqlogo"),
method = "bits",
pos_lab = NULL,
pdf_name = NULL,
add_pseudo_counts = FALSE,

sinuc_or_dinuc = "sinuc",
fixed_coord = FALSE
)
Arguments
feat_mat The features matrix (basis vectors matrix) from seqArchR.
ptype Character vector of length one or two. Specify just one of "heatmap" or "se-
qlogo" to visualize the basis vectors as such, or specify a vector of length two
for plotting both, heatmap and seqlogo. These are then arranged one below the
other, the first on top and the second under it.
method Specify either of "custom", "bits", or "probability” for plotting sequence logo.
Default is "bits".
pos_lab Labels for sequence positions, should be of same length as that of the sequences.

Default value is NULL, when the positions are labeled from 1 to the length of
the sequences.

pdf_name Filename to save the plot, also provide the extension.

20 viz_pwm

add_pseudo_counts
Logical, taking values TRUE or FALSE, default set to FALSE. Setting it to
TRUE will enable adding pseudo-counts to the features matrix.

sinuc_or_dinuc "sinuc" or "dinuc" for choosing between mono- and dinucleotide profiles respec-
tively.

fixed_coord Set this to TRUE to use a fixed aspect ratio for the plot irrestive of the width and
height of the PDF. Default is FALSE.

Value

nothing

See Also

Other visualization functions: viz_pwm(), viz_seqs_acgt_mat ()

Examples

res <- readRDS(system.file("extdata”, "example_segArchRresult.rds”,
package = "segArchR", mustWork = TRUE))

Visualize basis vectors at iteration 1 of segArchR result as heatmap and

sequence logo

viz_bas_vec(feat_mat = get_clBasVec_m(res,iter=1), sinuc_or_dinuc = "dinuc”,
ptype = c("heatmap”, "seqlogo"))

Visualize basis vectors at iteration 1 of segArchR result as sequence logos
viz_bas_vec(feat_mat = get_clBasVec_m(res,iter=1), ptype = "seqlogo”,
sinuc_or_dinuc = "dinuc")

Visualizing basis vector for a single cluster as a heatmap
viz_bas_vec(feat_mat = as.matrix(get_clBasVec_m(res,iter=1)[,3]),
ptype = "heatmap”, sinuc_or_dinuc = "dinuc")

viz_pwm Visualize a position weight matrix as a heatmap or sequence logo

Description

The given position weight matrix is plotted as a heatmap or sequence logo

viz_pwm

Usage

viz_pwm(
pwm_mat,

21

method = "heatmap”,
pos_lab = NULL,
pdf_name = NULL,

fixed_coord =

FALSE,

bits_yax = "full”

Arguments

pwm_mat

method

pos_lab

pdf_name
fixed_coord

bits_yax

Value

A ggplot object so
saved and the ggpl

See Also

Matrix (usually a PWM, but can be any non-normalized matrix) to be visualized.
Rownames must be letters.

Character. Set this to "heatmap’ when plotting a heatmap, else you can set it
to either of ’custom’, ’bits’, or “probability’ when you wish to visualize it as a
sequence logo. Default is "heatmap’.

Labels for sequence positions, should be of same length as that of the sequences.
Default value is NULL, when the positions are labeled from 1 to the length of
the sequences.

Name of the file which will be saved as PDF.
Set this to TRUE to use a fixed aspect ratio for the plot. Default is FALSE.

Specify ’full’ if the information content y-axis limits should be 0-2 or ’auto’
for a suitable limit. The ’auto’ setting adjusts the y-axis limits according to the
maximum information content of the sequence logo. Default is *full’.

you can simply call print or save on it later. If pdf_name is given, it is also
ot2 object returned.

plot_ggseqlogo_of_seqs for visualizing a collection of sequences by their sequence logo.

Other visualization

Examples

res <- readRDS(sy
package

pwm <- segArchR::

viz_pwm(pwm_mat =

viz_pwm(pwm_mat =

functions: viz_bas_vec(), viz_seqs_acgt_mat()

stem.file("extdata”, "example_seqArchRresult.rds”,
= "segArchR", mustWork = TRUE))

make_PWMs (get_clBasVec_m(res,iter=1)[,1],
add_pseudo_counts = FALSE, sinuc = FALSE)

pwm, method = "heatmap"”, fixed_coord = TRUE)

pwm, method = "bits", fixed_coord = TRUE)

22

viz_seqs_acgt_mat

viz_seqs_acgt_mat Visualize raw DNA sequences as an image

Description

This function plots the collection of sequences as an image matrix.

Usage

viz_seqs_acgt_mat(

segs,
pos_lab
xt_freq
yt_freq
use_col

add_legend
use_legend
save_fname

NULL,
min(length(pos_lab), 5),
min(length(seqs), 100),

c("darkgreen”, "blue”, "orange"”, "red"),
= TRUE,

= Biostrings: :DNA_BASES,

= NULL,

file_type = "PNG",
f_width = 450,
f_height = 900,

f_units

Arguments
seqs

pos_lab

xt_freq

yt_freq

use_col
add_legend

use_legend

save_fname
file_type
f_width
f_height

f_units

n

pPX

n

The sequences as a DNAStringSet object.

The labels to be used for the sequence positions. Default: Sequence positions
are labeled from 1 to the length of the sequences.

The x-axis tick frequency. Expects a positive integer less than the length of the
sequences. Default is 5.

The y-axis tick frequency. Expects a positive integer less than number of se-
quences. Default is 100.

A vector of four colors used for the DNA bases A, C, G, and T (in that order).
Logical. Whether legend should be added to the plot. Default is TRUE.

A character vector of letters in the input sequences. Default is DNA_BASES, used
for DNA sequences.

Specify the filename (with extension) for saving the plot to disk.

Specify the file type, namely PNG, JPEG, TIFF.

Specify the width for the plot. This depends on the length of sequences.
Specify the height for the plot. This depends on the number of sequences.
Specify the units in which the height and width are given.

viz_seqs_acgt_mat 23

Value

Nothing returned to the R interpreter.

See Also

Other visualization functions: viz_bas_vec(), viz_pwm()

Examples

res <- readRDS(system.file("extdata"”, "example_segArchRresult.rds”,
package = "seqArchR"”, mustWork = TRUE))

Image matrix of sequences in the input order
viz_seqs_acgt_mat(seqs = seqs_str(res))

Image matrix of sequences ordered by the clustering from segArchR
use_seqs <- seqs_str(res, iter = NULL, cl = NULL, ord = TRUE)
viz_seqs_acgt_mat(seqs = use_seqs)

Image matrix of sequences belonging to a single cluster
use_seqs <- seqs_str(res, iter = 2, cl = 2)
viz_seqs_acgt_mat(seqs = use_seqs)

Index

* input functions
get_one_hot_encoded_seqgs, 6
prepare_data_from_FASTA, 12

x visualization functions
viz_bas_vec, 19
viz_pwm, 20
viz_seqs_acgt_mat, 22

collate_clusters, 2
collate_segArchR_result, 3, /4

DNA_BASES, 22
DNAStringSet, 6,9, 11, 13

get_clBasVec, 5

get_clBasVec_k (get_clBasVec), 5
get_clBasVec_m (get_clBasVec), 5
get_one_hot_encoded_seqs, 6, 12, 15
get_seqClLab (get_clBasVec), 5
get_seqs_clust_list, 7, 14

hclust, 4, I8
make_PWMs, 8

plot_arch_for_clusters, 9, 11, 15
plot_ggseqlogo_of_segs, 9, 10, 15, 21
prepare_data_from_FASTA, 7,12, 15

segArchRr, 13, 18
segs_str, 6, 16
set_config, 13,17

viz_bas_vec, 15,19, 21, 23

viz_pwm, 15, 20, 20, 23
viz_seqs_acgt_mat, 15, 20, 21, 22

24

	collate_clusters
	collate_seqArchR_result
	get_clBasVec
	get_one_hot_encoded_seqs
	get_seqs_clust_list
	make_PWMs
	plot_arch_for_clusters
	plot_ggseqlogo_of_seqs
	prepare_data_from_FASTA
	seqArchR
	seqs_str
	set_config
	viz_bas_vec
	viz_pwm
	viz_seqs_acgt_mat
	Index

