Package ‘CytoMDS’

October 16, 2025

Title Low Dimensions projection of cytometry samples
Version 1.5.0

Description This package implements a low dimensional visualization of a set
of cytometry samples, in order to visually assess the 'distances' between them.
This, in turn, can greatly help the user to identify quality issues
like batch effects or outlier samples, and/or check the presence of potential
sample clusters that might align with the exeprimental design.

The CytoMDS algorithm combines, on the one hand, the concept of Earth Mover's

Distance (EMD), a.k.a. Wasserstein metric and, on the other hand,

the Multi Dimensional Scaling (MDS) algorithm for the low dimensional
projection.

Also, the package provides some diagnostic tools for both checking the quality
of the MDS projection, as well as tools to help with the interpretation of

the axes of the projection.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

BugReports https://github.com/UCLouvain-CBIO/CytoMDS/issues

URL https://uclouvain-cbio.github.io/CytoMDS

biocViews FlowCytometry, QualityControl, DimensionReduction,
MultidimensionalScaling, Software, Visualization

Collate 'CytoMDS-package.R' 'stats.R' 'ggplots.R' 'MDS-class.R'
'DistSum-class.R'

Depends R (>=4.4), Biobase

Imports methods, stats, rlang, pracma, withr, flowCore, reshape2,
ggplot2, ggrepel, ggforce, patchwork, transport, smacof,
BiocParallel, CytoPipeline

Suggests testthat (>= 3.0.0), vdiffr, diffviewer, knitr, rmarkdown,
BiocStyle, HDCytoData

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/CytoMDS
git_branch devel

https://github.com/UCLouvain-CBIO/CytoMDS/issues
https://uclouvain-cbio.github.io/CytoMDS

2 CytoMDS-package

git_last_commit c99dbb8
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-10-16

Author Philippe Hauchamps [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2865-1852>),
Laurent Gatto [aut] (ORCID: <https://orcid.org/0000-0002-1520-2268>),
Dan Lin [ctb]

Maintainer Philippe Hauchamps <philippe.hauchamps@uclouvain.be>

Contents
CytoMDS-package e e
channelSummaryStats 3
computeMetricMDS 5
DistSum e 7
EMDDIist e 10
ggplotDistFeaturelmportance oL 11
ggplotMarginalDensities L 13
ggplotSampleMDS L 14
ggplotSampleMDSShepard oL oo 19
ggplotSampleMDSWrapBiplots 21
MDS-Classo e e 23
pairwiseEMDDist oL L e e 25

Index 28

CytoMDS-package CytoMDS: Low Dimensions projection of cytometry samples
Description

This package implements a low dimensional visualization of a set of cytometry samples, in order
to visually assess the ’distances’ between them. This, in turn, can greatly help the user to identify
quality issues like batch effects or outlier samples, and/or check the presence of potential sample
clusters that might align with the exeprimental design. The CytoMDS algorithm combines, on the
one hand, the concept of Earth Mover’s Distance (EMD), a.k.a. Wasserstein metric and, on the other
hand, the Multi Dimensional Scaling (MDS) algorithm for the low dimensional projection. Also,
the package provides some diagnostic tools for both checking the quality of the MDS projection, as
well as tools to help with the interpretation of the axes of the projection.

Author(s)

Maintainer: Philippe Hauchamps <philippe.hauchamps@uclouvain.be> (ORCID)
Authors:

¢ Laurent Gatto <laurent.gatto@uclouvain.be> (ORCID)

Other contributors:

e Dan Lin <dan.8.1in@gsk.com> [contributor]

https://orcid.org/0000-0003-2865-1852
https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0003-2865-1852
https://orcid.org/0000-0002-1520-2268

channelSummaryStats 3

See Also
Useful links:

* https://uclouvain-cbio.github.io/CytoMDS
* Report bugs at https://github.com/UCLouvain-CBIO/CytoMDS/issues

channelSummaryStats Summary statistics per channel computation

Description

Computation of summary statistic for selected channels, for all flowFrames of a flowSet, or for all
expression matrices of a list. This method provides three different input modes:

* the user provides directly a flowCore::flowSet loaded in memory (RAM)

* the user provides directly a list of expression matrices of which the column names are the
channel/marker names

e the user provides (1.) a number of samples nSamples; (2.) an ad-hoc function that takes
as input an index between 1 and nSamples, and codes the method to load the corresponding
expression matrix in memorys;

Usage

channelSummaryStats(
X,
loadExprMatrixFUN = NULL,
loadExprMatrixFUNArgs = NULL,
channels = NULL,
statFUNs = stats::median,
verbose = FALSE,
BPPARAM = BiocParallel::SerialParam(),
BPOPTIONS = BiocParallel: :bpoptions(packages = c("flowCore"))

Arguments

X can be:

* a flowCore::flowSet

* alist of expression matrices (Double matrix with named columns)

¢ the number of samples (integer >=1)

loadExprMatrixFUN

the function used to translate an integer index into an expression matrix. In other
words, the function should code how to load the indexth expression matrix into
memory. IMPORTANT: the expression matrix index should be the first function
argument and should be named exprMatrixIndex.

loadExprMatrixFUNArgs
(optional) a named list containing additional input parameters of loadExprMatrixFUN()

channels which channels needs to be included:

https://uclouvain-cbio.github.io/CytoMDS
https://github.com/UCLouvain-CBIO/CytoMDS/issues

4 channelSummaryStats

e if it is a character vector, it can refer to either the channel names, or the
marker names

 if it is a numeric vector, it refers to the indices of channels in f's
e if NULL, all scatter and fluorescent channels of fs #* will be selected.
statFUNs a list (possibly of length one) of functions to call to calculate the statistics, or

a simple function. This list can be named, in that case, these names will be
transfered to the returned list.

verbose if TRUE, output a message after each single statistics calculation

BPPARAM sets the BPPARAM back-end to be used for the computation. If not provided, will
use BiocParallel::SerialParam() (no task parallelization)

BPOPTIONS sets the BPOPTIONS to be passed to bplapply() function. Note that if you

use a SnowParams back-end, you need to specify all the packages that need to
be loaded for the different CytoProcessingStep to work properly (visibility of
functions). As a minimum, the flowCore package needs to be loaded. (hence
the default BPOPTIONS = bpoptions(packages = c("flowCore”)))

Value

a list of named statistic matrices. In each stat matrix, the columns are the channel statistics for
all flowFrames of the flowSet. Exception: if only one stat function (and not a list) is passed in
statFUNs, the return value is simplified to the stat matrix itself.

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]],
fluoMethod = "estimatelLogicle”,
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIP@21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)
channelsOrMarkers <- c("FSC-A", "SSC-A", "BV785 - CD3")
calculate mean for each 4 selected channels, for each 2 samples
channelMeans <- channelSummaryStats(
OMIP@21Trans,
channels = channelsOrMarkers,

statFUNs = mean)

calculate median AND std deviation
for each 4 selected channels, for each 2 samples

channelMedians <- channelSummaryStats(

computeMetricMDS

OMIP@21Trans,

channels = channelsOrMarkers,
statFUNs = list("median” = stats::median,

"std.dev" = stats::sd))

computeMetricMDS

metric MDS projection of sample

Description

Multi-dimensional

scaling projection of samples, using a distance matrix as an input. The MDS

algorithm is not the classical MDS (cmdscale alike, aka Torgerson’s algorithm), but is the SMA-
COF algorithm for metric distances that are not necessarily euclidean. After having obtained the
projections on the nDim dimensions, we always apply svd decomposition to visualize as first axes
the ones that contain the most variance of the projected dataset in nDim dimensions. Instead of being
provided directly by the user, the nDim parameter can otherwise be found iteratively by finding the
minimum nDim parameter that allows the projection to reach a target pseudo RSquare. If this is the
case, the maxDim parameter is used to avoid looking for too big projection spaces.

Usage

computeMetricMDS(

pwDist,
whichChannels
nDim = NULL,
seed = NULL,

= NULL,

targetPseudoRSq = 0.95,

maxDim = 128,

Arguments

pwDist

whichChannels

nDim
seed

targetPseudoRSq

maxDim

(nSamples rows, nSamples columns), previously calculated pairwise distances
between samples, can be provided as :

* aDistSum object

* adist object

* a full symmetric square matrix, with 0. diagonal
if pwDist has been provided as a DistSum object, a vector of channels to be
included in the distances. In that case the distances have been computed as
a sum of unidimensional distances for each channel, and the DistSum object
allows to restrict the channel sets to be included in the distance accounting
number of dimensions of projection, as input to SMACOF algorithm if not pro-
vided, will be found iteratively using targetPseudoRSq
seed to be set when launching SMACOF algorithm (e.g. when init is set to
"random” but not only)

target pseudo RSquare to be reached (only used when nDim is set to NULL)

in case nDim is found iteratively, maximum number of dimensions the search
procedure is allowed to explore

additional parameters passed to SMACOF algorithm

6 computeMetricMDS

Value

an object of S4 class MDS

Examples
library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]],
fluoMethod = "estimatelLogicle”,
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIP@21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

As there are only 2 samples in OMIP@21Samples dataset,
we create artificial samples that are random combinations of both samples

ffList <- c(
flowCore::flowSet_to_list(OMIP@21Trans),
lapply(3:5,

FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%i,
nTotalEvents = 5000)[,1:22]
m

fsNames <- c("Donor1”, "Donor2", paste@("Agg",1:3))
names(ffList) <- fsNames

fsAll <- as(ffList,"flowSet")

flowCore: :pData(fsAll)$type <- factor(c("real”, "real”, rep(”synthetic”, 3)))
flowCore: :pData(fsAll)$grpld <- factor(c("D1", "D2", rep("Agg", 3)))

calculate all pairwise distances

pwDist <- pairwiseEMDDist(fsAll,
channels = c("FSC-A", "SSC-A"),
verbose = FALSE)

compute Metric MDS object with explicit number of dimensions
mdsObj <- computeMetricMDS(pwDist, nDim = 4, seed = 0)

dim <- nDim(mdsObj) # should be 4

#' # compute Metric MDS object by reaching a target pseudo RSquare
mdsObj2 <- computeMetricMDS(pwDist, seed = @, targetPseudoRSq = ©.999)

DistSum 7

DistSum DistSum class

Description
Class representing pairwise distances between multiple multidimensional distributions, when the
distance is calculated as a sum of marginal distribution distances.

Usage

S4 method for signature 'DistSum’
show(object)

S4 method for signature 'matrix’
DistSum(object)

S4 method for signature 'list'
DistSum(object)

S4 method for signature 'DistSum’
dim(x)

S4 method for signature 'DistSum'
dimnames(x)

S4 replacement method for signature 'DistSum,list'’
dimnames(x) <- value

S4 replacement method for signature 'DistSum,ANY'
dimnames(x) <- value

S4 method for signature 'DistSum'
ncol(x)

S4 method for signature 'DistSum'
colnames(x)

S4 replacement method for signature 'DistSum'
colnames(x) <- value

S4 method for signature 'DistSum'
nrow(x)

S4 method for signature 'DistSum'
rownames (x)

S4 replacement method for signature 'DistSum'
rownames(x) <- value

nFeatures(x)

DistSum

S4 method for signature 'DistSum'

featureNames(

object)

S4 replacement method for signature 'DistSum'’
featureNames(object) <- value

S4 method
x[i, 3, ...,

S4 method
xCi, 3, ...,

S4 method
x[i, j, ...,

S4 method

for signature
drop = TRUE]

for signature
drop = TRUE]

for signature
drop = TRUE]

for signature

'DistSum, ANY, ANY, ANY'

'DistSum,ANY,ANY,missing’

'DistSum,ANY,missing, ANY'

'DistSum,ANY,missing,missing’

x[i, j, ..., drop = TRUE]
S4 method for signature 'DistSum'
as.matrix(x, whichFeatures = NULL)

distByFeature(distObj)

Arguments
object a DistSum object
X a DistSum object
value the new feature names to be assigned
i the array index
j the column index
other arguments (not used)
drop not supported (set to FALSE)
whichFeatures either an array of feature names, or an array of feature indices, or NULL If
NULL, the full distance (for all features) will be returned If not NULL, whichFeatures
array should not contain duplicates
distObj a DistSum object
Value
nothing

a data.frame, with 3 columns:

* featureName : self explainatory
* distanceContrib : unidimensional distance along the corresponding feature

 percentage : percentage of feture distance w.r.t. full distance

DistSum 9

Slots

pwDistPerFeature A list of matrix objects storing the contribution of each feature (dimension)
of the multidimensional distributions to the full pairwise distance matrix. Note these matrices
are not necessarily square symmetric matrices, as the DistSum could be occasionally used to
store a given block of a bigger distance matrix.

Examples

create a dummy distance matrix

to do this we use “nPoints” points

in an euclidian space of “nFeat”™ dimensions

nPoints <- 5

nFeat <- 7

M <- matrix(data = rnorm(nPoints * nFeat), ncol = nFeat)
rownames(M) <- paste@(”"point”, 1:nPoints)

colnames(M) <- paste@("feat”, 1:nFeat)

DList <- lapply(colnames(M),
FUN = function(colName) {
D <- as.matrix(dist(
ML, colName, drop = FALSE]))

»
D <- Reduce(x = DList, f = function(A, B) A + B)
names(DList) <- colnames(M)

Example of creating of a DistSum object based on the full distance matrix
distObj1 <- DistSum(D)
show(distObj1)

Example of creation of a DistSum object based on a list of matrices
representing the additive contribution of each feature
distObj2 <- DistSum(DList)

show(distObj2)

getting dimensions

myDim <- dim(distObj2) # c(nPoints, nPoints)

ncols <- ncol(distObj2) # nPoints

nrows <- nrow(distObj2) # nPoints

nFeats <- nFeatures(distObj2) # nFeat

myFeatNames <- featureNames(distObj2) # paste@("feat”, 1:nFeat)
myRowNames <- rownames(distObj2) # paste@("point”, 1:nPoints)
myRowNames <- colnames(distObj2) # paste@(”"point”, 1:nPoints)

get full distance matrix
dd <- as.matrix(distObj2)

get partial distance matrix for feature 1
dd1 <- as.matrix(distObj2, whichFeatures = 1)

same thing, using feature name
ddlbis <- as.matrix(distObj2, whichFeatures = "featl1")

10

EMDDist

getting partial distance for feature 1 & 2

ddPart <- as.matrix(distObj2, whichFeatures = colnames(M)[1:2])

getting distance by feature
DF <- distByFeature(distObj2)

EMDDist

Calculate Earth Mover’s distance between two samples

Description

Calculate Earth Mover’s distance between two samples

Usage

EMDDist(

x1,

X2,

channels = NULL,
binSize = 0.05,
minRange = -10,
maxRange = 10,
returnAll = FALSE

Arguments

x1
X2

channels

binSize
minRange
maxRange

returnAll

Value

can be either a flowCore::flowFrame, or an expression matrix

can be either a flowCore::flowFrame, or an expression matrix

which channels (integer index(ices) or character(s)):

if it is a character vector, it can refer to either the channel names, or the
marker names if x1 and x2 have been provided as flowCore::flowFrame

if it is a numeric vector, it refers to the indexes of channels in x1

if NULL : if x1 and x2 are provided as flowCore::flowFrames, all scatter
and fluorescent channels of x1 will be selected; if x1 and x2 are provided
as expression matrices, all colnames of x1 will be selected.

size of equal bins to approximate the marginal distributions.
minimum value taken when approximating the marginal distributions
maximum value taken when approximating the marginal distributions

If TRUE, distributions and marginal distribution distances are returned as well.

Default = FALSE.

the Earth Mover’s distance between x1 and x2, which is calculated by summing up all EMD ap-
proximates for the marginal distributions of each channel

ggplotDistFeatureImportance 11

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]1],
fluoMethod = "estimatelLogicle",
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIPQ21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

distance with itself (all channels at once)
=> should return @
dist@ <- EMDDist(

x1 OMIPQ21Trans[[1]1],

x2 = OMIP@21Trans[[1]])

returning only distance, 2 channels
dist1l <- EMDDist(

x1 = OMIP@21Trans[[1]],

x2 = OMIP@21Trans[[2]1],

channels = c("FSC-A", "SSC-A"))

using only one channel, passed by marker name
dist2 <- EMDDist(x1 = OMIP@21Trans[[1]],
x2 = OMIP@21Trans[[2]1],
channels = c("BV785 - CD3"))

using only one channel, passed by index

dist3 <- EMDDist(x1 = OMIP@21Trans[[1]],
x2 = OMIP@21Trans[[2]1],
channels = 10)

dist2 == dist3

ggplotDistFeatureImportance
Plot of feature relative importance in distance

Description
ggplotDistFeatureImportance uses ggplot2 to provide a stacked bar plot of feature importance
in a distance matrix.

Usage

ggplotDistFeatureImportance(distObj)

12 ggplotDistFeatureImportance

Arguments

distObj a DistSum object.

Value

a ggplot object

See Also
pairwiseEMDDist

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]1],
fluoMethod = "estimatelLogicle",
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIPQ21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

As there are only 2 samples in OMIP@21Samples dataset,
we create artificial samples that are random combinations of both samples

ffList <- c(
flowCore::flowSet_to_list(OMIP@21Trans),
lapply(3:5,

FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%*i,
nTotalEvents = 5000)[,1:22]
19))

fsNames <- c("Donor1”, "Donor2", paste@("Agg",1:3))
names(ffList) <- fsNames

fsAll <- as(fflList,"flowSet")

flowCore: :pData(fsAll)$type <- factor(c("real”, "real”, rep("synthetic”, 3)))
flowCore: :pData(fsAll)$grpId <- factor(c("D1", "D2", rep("Agg", 3)))

calculate all pairwise distances
pwDist <- pairwiseEMDDist(fsAll,

channels = c("FSC-A", "SSC-A"),
verbose = FALSE)

ggplotMarginalDensities 13

p <- ggplotDistFeatureImportance(pwDist)

ggplotMarginalDensities
Plot of channel intensity marginal densities

Description

ggplotMarginalDensities uses ggplot2 to draw plots of marginal densities of selected channels
of a flowSet. If the flowSet contains several flowFrames, events are concatenated together per group,
or all together in the absence of groups.

Usage

ggplotMarginalDensities(
X,
sampleSubset,
channels,
pDataForColour,
pDataForGroup,
nEventInSubsample = Inf,
seed = NULL,
transList

Arguments

X a flowCore: :flowSet (or a single flowCore: : flowFrame)

sampleSubset (optional) a logical vector, of the same length as x, indicating which flow frames
to keep in the plot. Typically it is obtained through the evaluation of a logical
condition the rows of phenoData(fs).

channels (optional) - can be indices, or channel names, or markers.

pDataForColour (optional) which variable of phenoData(fs) will be used as colour aesthetic.
Should be a character.

pDataForGroup (optional) which variable of phenoData(fs) will be used as group aesthetic.
Should be a character. A separate marginal density will be calculated for each
group and overlaid on the same channel density plots.

nEventInSubsample
how many event to take (per flowFrame of the flowSet) for marginal density
approximation.

seed if not null, used in subsampling.

transList a flowCore: :transformList that will be applied before plotting.

Value

a ggplot object

14 ggplotSampleMDS

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]1],
fluoMethod = "estimatelLogicle",
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIPQ21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

As there are only 2 samples in OMIP@21Samples dataset,
we create artificial samples that are random combinations of both samples

ffList <- c(
flowCore::flowSet_to_list(OMIP@21Trans),
lapply(3:5,

FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%i,
nTotalEvents = 5000)[,1:22]
m

fsNames <- c(”"Donor1”, "Donor2", paste@("Agg",1:3))
names(ffList) <- fsNames

fsAll <- as(ffList,"flowSet")

flowCore: :pData(fsAll)$grpld <- factor(c("D1", "D2", rep("Agg", 3)))
flowCore: :pData(fsAll)$1lbl <- paste@("S", 1:5)

plot densities, all samples together
p <- ggplotMarginalDensities(fsAll)

plot densities, per sample
p <- ggplotMarginalDensities(fsAll, pDataForGroup = "1lbl")

plot densities, per sample and coloured by group
p <- ggplotMarginalDensities(

fsAll,

pDataForGroup = "1bl",

pDataForColour = "grpId”)

ggplotSampleMDS Plot of Metric MDS object

ggplotSampleMDS

Description

15

ggplotSampleMDS uses ggplot2 to provide plots of Metric MDS results. By default, a pseudo

Rsquare projection quality indicator, and the number of dimensions of the MDS projection are

provided in sub-title

Usage

ggplotSampleMDS(
mdsObj,
pData,
sampleSubset,
projectionAxes = c(1, 2),
biplot = FALSE,

biplotType = c("correlation”, "regression”),

extVariables,

pDataForColour,

pDataForShape,

pDataForLabel,
pDataForAdditionallabelling,
pointSize = 1,
pointSizeReflectingStress = FALSE,
title = "Multi Dimensional Scaling”,
displayPointLabels = TRUE,
pointLabelSize = 3.88,
repelPointLabels = TRUE,
displayArrowLabels = TRUE,
arrowLabelSize = 3.88,
repelArrowLabels = FALSE,
arrowThreshold = 0.8,

flipXAxis = FALSE,

flipYAxis = FALSE,
displayPseudoRSq = TRUE,

(optional) a data.frame providing user input sample data. These can be design of
experiment variables, phenotype data per sample,... and will be used to highlight

(optional) a logical vector, of size nrow(pData), which is by construction the nb
of samples, indicating which samples to keep in the plot. Typically it is obtained

Arguments
mdsOb j a MDS object, output of the computeMetricMDS() method.
pData
sample categories in the plot and/or for subsetting.
sampleSubset
through the evaluation of a logical condition on pData rows.
projectionAxes which two axes should be plotted (should be a numeric vector of length 2)
biplot if TRUE, adds projection of external variables
biplotType type of biplot used:

* if "correlation”, projection of external variables will be according to Pear-
son correlations w.r.t. projection axes (arrow x & y coordinates)

16

ggplotSampleMDS

* if "regression", a linear regression of external variables using the 2 projec-
tion axes as explanatory variables is performed, and the projection of exter-
nal variables will be according to regression coefficients (arrow direction)
and R square of regression (arrow size)

extVariables are used to generate a biplot these are the external variables that will be used
in the biplot. They should be provided as a matrix with named columns cor-
responding to the variables. The number of rows should be the same as the
number of samples. The matrix might contain some NA’s, in that case only
complete rows will be used to calculate biplot arrows.

pDataForColour (optional) which pData variable will be used as colour aesthetic. Should be a
character.

pDataForShape (optional) which pData variable will be used as shape aesthetic. Should be a
character.

pDataForLabel (optional) which pData variable will be used as point labels in the plot. Should
be a character. If missing, point labels will be set equal to point names defined
in MDS object (if not NULL, otherwise no labels will be set).

pDataForAdditionallLabelling
(optional) which pData variable(s) will be added to the ggplot mapping, as to
make them available for plotly tooltipping. Should be an array of character. Note
this works only if biplot=FALSE, as biplots contain circle and arrows that are
currently not supported under ggplotly.

pointSize size of all points on the plots - only when pointSizeReflectingStress is
FALSE.

pointSizeReflectingStress
if TRUE, size of points will appear proportional to stress by point, i.e. the big-
ger the sample point appears, the less accurate its representation is (in terms of
distances w.r.t. other points)

title title to give to the plot

displayPointLabels
if TRUE, displays labels attached to points (see pDataForLabels for the setting
of the label values)

pointLabelSize size of point labels (default: 3.88 as in geom_text())

repelPointLabels
if TRUE, uses ggrepel : : geom_text_repel () instead of ggplot2: :geom_text ()
(try to split the labels such that they do not overlap) for the points

displayArrowlLabels
if TRUE, displays arrows labels (only with biplot)

arrowLabelSize size of arrow labels (default: 3.88 as in geom_text())

repelArrowLabels
if TRUE, uses ggrepel : :geom_text_repel () instead of ggplot2: :geom_text ()
for the arrows (only with biplot)

arrowThreshold (only with biplot), arrows will be made barely visible if their length is (in abso-
lute value) less than this threshold.

flipXAxis if TRUE, take the opposite of x values (provided as it might ease low dimen-
sional projection comparisons)

flipYAxis if TRUE, take the opposite of y values (provided as it might ease low dimen-
sional projection comparisons)

displayPseudoRSq

if TRUE, display pseudo RSquare in subtitle, on top of nb of dimensions
additional parameters passed to ggrepel: :geom_text_repel() (if used)

ggplotSampleMDS

Value

a ggplot object

See Also

ggplotSampleMDSWrapBiplots, ggplotSampleMDSShepard, computeMetricMDS

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]],
fluoMethod = "estimatelLogicle”,
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIP@21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

As there are only 2 samples in OMIP@21Samples dataset,
we create artificial samples that are random combinations of both samples

ffList <- c(
flowCore: :flowSet_to_list(OMIP@21Trans),
lapply(3:5,
FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%i,
nTotalEvents = 5000)[,1:22]
1))

fsNames <- c("Donor1”, "Donor2", paste@("Agg",1:3))
names(ffList) <- fsNames

fsAll <- as(fflList,"flowSet")

flowCore: :pData(fsAll)$type <- factor(c("real”, "real”, rep("synthetic”, 3)))
flowCore: :pData(fsAll)$grpIld <- factor(c("D1", "D2", rep("Agg", 3)))

calculate all pairwise distances

pwDist <- pairwiseEMDDist(fsAll,
channels = c("FSC-A", "SSC-A"),
verbose = FALSE)

compute Metric MDS object with explicit number of dimensions
mdsObj <- computeMetricMDS(pwDist, nDim = 4, seed = @)

17

ggplotSampleMDS

dim <- nDim(mdsObj) # should be 4

#' # compute Metric MDS object by reaching a target pseudo RSquare
mdsObj2 <- computeMetricMDS(pwDist, seed = @, targetPseudoRSq = 0.999)

plot mds projection on axes 1 and 2,
use 'grpld' for colour, 'type' for shape, and no label

p_12 <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c(1,2),
pDataForColour = "grpId"”,
pDataForShape = "type")

plot mds projection on axes 3 and 4,
use 'grpld' for colour, and 'name' as point label

p_34 <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c(3,4),
pDataForColour = "grpId”,
pDataForLabel = "name")

plot mds projection on axes 1 and 2,

use 'group' for colour, 'type' for shape, and 'name' as point label
have sample point size reflecting 'stress'

i.e. quality of projection w.r.t. distances to other points

p12_Stress <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c(1,2),
pDataForColour = "grpId”,
pDataForLabel = "name"”,
pDataForShape = "type"”,
pointSizeReflectingStress = TRUE)

try to associate axes with median of each channel
=> use bi-plot

extVars <- channelSummaryStats(
fsAll,
channels = c("FSC-A", "SSC-A"),
statFUNs = stats::median)

bp_12 <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c¢(1,2),
biplot = TRUE,
extVariables = extVars,
pDataForColour = "grpId”,

ggplotSampleMDSShepard 19

pDataForShape = "type”,
seed = 0)

bp_34 <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c¢(3,4),
biplot = TRUE,
extVariables = extVars,
pDataForColour = "grpId”,
pDataForLabel = "name”,
seed = 0)

ggplotSampleMDSShepard
Plot of Metric MDS object - Shepard diagram

Description

ggplotSampleMDSShepard uses ggplot2 to provide plot of Metric MDS results. Shepard diagram
provides a scatter plot of :

* on the x axis, the high dimensional pairwise distances between each sample pairs

* on the y axis, the corresponding pairwise distances in the obtained low dimensional projection

Usage
ggplotSampleMDSShepard(
mdsObj,
nDim,
title = "Multi Dimensional Scaling - Shepard's diagram”,

pointSize = 0.5,
lineWidth = 0.5,
displayPseudoRSq = TRUE

)
Arguments
mdsOb j a MDS object, output of the computeMetricMDS() method.
nDim (optional) number of dimensions to use when calculating Shepard’s diagram
and pseudoRSquare. If missing, it will be set equal to the number of projection
dimensions as calculated in mdsObj
title title to give to the plot
pointSize point size in plot
lineWidth line width in plot
displayPseudoRSq
if TRUE, display pseudo RSquare in subtitle, on top of nb of dimensions
Value

a ggplot object

20 ggplotSampleMDSShepard

See Also

ggplotSampleMDS, computeMetricMDS

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]],
fluoMethod = "estimatelLogicle”,
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIP@21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

ffList <- c(
flowCore: :flowSet_to_list(OMIP@21Trans),
lapply(3:5,
FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%i,
nTotalEvents = 5000)[,1:22]
1))

fsNames <- c("Donor1”, "Donor2", paste@("Agg",1:3))
names(ffList) <- fsNames

fsAll <- as(fflList,"flowSet")

flowCore: :pData(fsAll)$type <- factor(c("real”, "real”, rep("synthetic”, 3)))
flowCore: :pData(fsAll)$grpIld <- factor(c("D1", "D2", rep("Agg", 3)))

calculate all pairwise distances

pwDist <- pairwiseEMDDist(fsAll,
channels = c("FSC-A", "SSC-A"),
verbose = FALSE)

compute Metric MDS object with explicit number of dimensions
mdsObj <- computeMetricMDS(pwDist, nDim = 4, seed = @)

dim <- nDim(mdsObj) # should be 4

#' # compute Metric MDS object by reaching a target pseudo RSquare
mdsObj2 <- computeMetricMDS(pwDist, seed = @, targetPseudoRSq = 0.999)

Shepard diagrams

ggplotSampleMDS WrapBiplots 21

p2D <- ggplotSampleMDSShepard(
mdsObj,
nDim = 2,
pointSize = 1,
title = "Shepard with 2 dimensions")

p3D <- ggplotSampleMDSShepard(
mdsObj,
nDim = 3,
title = "Shepard with 3 dimensions”)
4
pDefD <- ggplotSampleMDSShepard(
mdsObj,
title = "Shepard with default nb of dimensions")

ggplotSampleMDSWrapBiplots
SampleMDS biplot wrapping

Description

ggplotSampleMDSWrapBiplots calls ggplotSampleMDS repeatly to generate biplots with different
sets of external variables and align them in a grid using the patchwork package, in a similar fashion
as ggplot2::facet_wrap() does.

Usage

ggplotSampleMDSWrapBiplots(
mdsObj,
extVariablelist,
ncol = NULL,
nrow = NULL,
byrow = NULL,
displayLegend = TRUE,

)
Arguments

mdsOb j a MDS object, output of the computeMetricMDS() method

extVariablelist
should be a named list of external variable matrices Each element of the list
should be a matrix with named columns corresponding to the variables. The
number of rows should be the same as the number of samples.

ncol passed to patchwork: :wrap_plots()

nrow passed to patchwork: :wrap_plots()

byrow passed to patchwork: :wrap_plots()

displaylLegend if FALSE, will de-active the legend display
additional parameters passed to ggplotSampleMDS() (if used)

22 ggplotSampleMDS WrapBiplots

Value

a ggplot object

See Also

ggplotSampleMDS, ggplotSampleMDSShepard, computeMetricMDS

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]1],
fluoMethod = "estimatelLogicle",
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIPQ21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

As there are only 2 samples in OMIP@21Samples dataset,
we create artificial samples that are random combinations of both samples

ffList <- c(
flowCore: :flowSet_to_list(OMIP@21Trans),
lapply(3:5,
FUN = function(i) {
aggregateAndSample(
OMIP@21Trans,
seed = 10%*i,
nTotalEvents = 5000)[,1:22]
m

fsNames <- c("Donor1”, "Donor2", paste@("Agg"”,1:3))
names(ffList) <- fsNames

fsAll <- as(fflList,"flowSet")

flowCore: :pData(fsAll)$type <- factor(c("real”, "real”, rep("synthetic”, 3)))
flowCore: :pData(fsAll)$grpId <- factor(c("D1", "D2", rep("Agg", 3)))

calculate all pairwise distances

pwDist <- pairwiseEMDDist(fsAll,
channels = c("FSC-A", "SSC-A"),
verbose = FALSE)

compute Metric MDS object with explicit number of dimensions
mdsObj <- computeMetricMDS(pwDist, nDim = 4, seed = Q)

MDS-class 23

dim <- nDim(mdsObj) # should be 4

#' # compute Metric MDS object by reaching a target pseudo RSquare
mdsObj2 <- computeMetricMDS(pwDist, seed = @, targetPseudoRSq = 0.999)

plot mds projection on axes 1 and 2,
use 'group' for colour, 'type' for shape, and no label

p_12 <- ggplotSampleMDS(
mdsObj = mdsObj,
pData = flowCore::pData(fsAll),
projectionAxes = c¢(1,2),
pDataForColour = "grpId”,
pDataForShape = "type")

try to associate axes with median or std deviation of each channel
=> use bi-plots

extVarList <- channelSummaryStats(

fsAll,
channels = c("FSC-A", "SSC-A"),
statFUNs = c("median” = stats::median,

"std.dev" = stats::sd))

bpFull <- ggplotSampleMDSWrapBiplots(
mdsObj = mdsObj,
extVariablelList = extVarlList,
pData = flowCore::pData(fsAll),
projectionAxes = c(1,2),

pDataForColour = "group”,
pDataForShape = "type",
seed = 0)
MDS-class MDS class
Description

Class representing Multi Dimensional Scaling (MDS) projection.
returns the value of the stress criterion, minimized by the SMACOF algorithm.

returns a vector of nPoints dimension, containing the stress indicator per point. The stress mini-
mization criterion can indeed be allocated per represented point. The more the stress of a particular
point, the less accurate its distances w.r.t. the other points.

Usage

S4 method for signature 'MDS'
show(object)

nDim(x)

24 MDS-class

nPoints(x)
pwDist(x)
projections(x)
projDist(x)
stress(x)
spp(x)
eigenVals(x)
pctvar(x)
RSq(x)
RSgVec(x)
GoF (x)

smacofRes(x)

Arguments

object a MDS object
X a MDS object

Value

nothing

Slots

nDim numeric, nb of dimensions of the projection

pwDist An object of class dist storing the triangular relevant part of the symmetric, zero diagonal
pairwise distance matrix (nPoints * nPoints), BEFORE projection.

proj The projection matrix, resulting from MDS

projDist An object of class dist storing the triangular relevant part of the symmetric, zero diag-
onal pairwise distance matrix (nPoints * nPoints), AFTER projection.

eigen numeric, vector of nDim length, containing the eigen values of the PCA that is applied after
the Smacof algorithm.

pctvar numeric, vector of nDim length, containing the percentage of explained variance per axis.

RSq numeric, vector of pseudo R square indicators, as a function of number of dimensions. RSq[nDim]
is the global pseudo R square, as displayed on plots.

GoF numeric, vector of goodness of fit indicators, as a function of number of dimensions. GoF [nDim]
is the global goodness of fit.

Note pseudo R square and goodness of fit indicators are essentially the same indicator, only
the definition of total sum of squares differ:

pairwiseEMDDist 25

* for pseudo RSq: TSS is calculated using the mean pairwise distance as minimum
* for goodness of fit: TSS is calculated using 0 as minimum

smacofRes an object of class ’smacofB’ containing the algorithmic optimization results, for exam-
ple stress and stress per point, as returned by smacof : : smacofSym() method.

Examples
nHD <- 10
nLD <- 2

nPoints <- 20

generate uniformly distributed points in 10 dimensions
points <- matrix(

data = runif(n = nPoints * nHD),

nrow = nPoints)

calculate euclidian distances
pwDist <- dist(points)

compute Metric MDS object by reaching a target pseudo RSquare
mdsObj <- computeMetricMDS(pwDist, targetPseudoRSq = 0.95)

show(mdsObj)

pairwiseEMDDist Pairwise Earth Mover’s Distance calculation

Description

Computation of all EMD between pairs of flowFrames belonging to a flowSet. This method pro-
vides three different input modes:

* the user provides directly a flowCore::flowSet loaded in memory (RAM).

* the user provides directly a list of expression matrices loaded in RAM, of which the column
names are the channel/marker names

e the user provides (1.) a number of samples nSamples; (2.) an ad-hoc function that takes
as input an index between 1 and nSamples, and codes the method to load the corresponding
expression matrix in memory; Optional row and column ranges can be provided to limit the
calculation to a specific rectangle of the matrix. These i.e. can be specified as a way to split
heavy calculations of large distance matrices on several computation nodes.

Usage

pairwiseEMDDist(
X,
rowRange = c(1, nSamples),
colRange = c(min(rowRange), nSamples),
loadExprMatrixFUN = NULL,
loadExprMatrixFUNArgs = NULL,

26 pairwiseEMDDist

channels = NULL,

verbose = FALSE,

BPPARAM = BiocParallel::SerialParam(),

BPOPTIONS = BiocParallel: :bpoptions(packages = c("flowCore")),
binSize = 0.05,

minRange = -10,
maxRange = 10
)
Arguments
X can be:
¢ a flowCore::flowSet
* alist of expression matrices (Double matrix with named columns)
¢ the number of samples (integer >=1)
rowRange the range of rows of the distance matrix to be calculated
colRange the range of columns of the distance matrix to be calculated
loadExprMatrixFUN

the function used to translate an integer index into an expression matrix. In other
words, the function should code how to load the indexth expression matrix into
memory. IMPORTANT: the expression matrix index should be the first function
argument and should be named exprMatrixIndex.

loadExprMatrixFUNArgs
(optional) a named list containing additional input parameters of loadExprMatrixFUN()
channels which channels (integer index(ices) or character(s)):
e if it is a character vector, it can refer to either the channel names, or the
marker names
e if it is a numeric vector, it refers to the indexes of channels in fs

 if NULL all scatter and fluorescent channels of fs #* will be selected
verbose if TRUE, output a message after each single distance calculation

BPPARAM sets the BPPARAM back-end to be used for the computation. If not provided, will
use BiocParallel::SerialParam() (no task parallelization)

BPOPTIONS sets the BPOPTIONS to be passed to bplapply() function. Note that if you
use a SnowParams back-end, you need to specify all the packages that need to
be loaded for the different CytoProcessingStep to work properly (visibility of
functions). As a minimum, the flowCore package needs to be loaded. (hence
the default BPOPTIONS = bpoptions(packages = c("flowCore")))

binSize size of equal bins to approximate the marginal distributions.

minRange minimum value taken when approximating the marginal distributions

maxRange maximum value taken when approximating the marginal distributions
Value

a distance matrix of pairwise distances (full symmetric with 0. diagonal)

pairwiseEMDDist

Examples

library(CytoPipeline)
data(OMIP@21Samples)

estimate scale transformations
and transform the whole OMIP@21Samples

transList <- estimateScaleTransforms(
ff = OMIP@21Samples[[1]1],
fluoMethod = "estimatelLogicle",
scatterMethod = "linearQuantile”,
scatterRefMarker = "BV785 - CD3")

OMIPQ21Trans <- CytoPipeline::applyScaleTransforms(
OMIP@21Samples,
transList)

calculate pairwise distances using only FSC-A & SSC-A channels
pwDist <- pairwiseEMDDist(

x = OMIP@21Trans,

channels = c("FSC-A", "SSC-A"))

27

Index

* internal
CytoMDS-package, 2

[,DistSum,ANY,ANY,ANY-method (DistSum),
7

[,DistSum,ANY,ANY, missing-method
(DistSum), 7

[,DistSum,ANY,missing,ANY-method
(DistSum), 7

[,DistSum,ANY,missing,missing-method
(DistSum), 7

as.matrix,DistSum-method (DistSum), 7

channelSummaryStats, 3
colnames,DistSum-method (DistSum), 7
colnames<-,DistSum-method (DistSum), 7
computeMetricMDS, 5, 17, 20, 22

CytoMDS (CytoMDS-package), 2
CytoMDS-package, 2

dim,DistSum-method (DistSum), 7

dimnames,DistSum-method (DistSum), 7

dimnames<-,DistSum, ANY-method
(DistSum), 7

dimnames<-,DistSum,list-method
(DistSum), 7

distByFeature (DistSum), 7

DistSum, 7

DistSum,list-method (DistSum), 7

DistSum,matrix-method (DistSum), 7

DistSum-class (DistSum), 7

eigenVals (MDS-class), 23
EMDDist, 10

featureNames,DistSum-method (DistSum), 7
featureNames<-,DistSum-method
(DistSum), 7

ggplotDistFeatureImportance, 11
ggplotMarginalDensities, 13
ggplotSampleMDS, 14, 20, 22
ggplotSampleMDSShepard, 17, 19, 22
ggplotSampleMDSWrapBiplots, 17, 21
GoF (MDS-class), 23

MDS-class, 23

ncol,DistSum-method (DistSum), 7
nDim (MDS-class), 23

nFeatures (DistSum), 7

nPoints (MDS-class), 23
nrow,DistSum-method (DistSum), 7

pairwiseEMDDist, 12, 25
pctvar (MDS-class), 23
projDist (MDS-class), 23
projections (MDS-class), 23
pwDist (MDS-class), 23

rownames,DistSum-method (DistSum), 7
rownames<-,DistSum-method (DistSum), 7
RSq (MDS-class), 23

RSgVec (MDS-class), 23

show,DistSum-method (DistSum), 7
show,MDS-method (MDS-class), 23
smacofRes (MDS-class), 23

spp (MDS-class), 23

stress (MDS-class), 23

	CytoMDS-package
	channelSummaryStats
	computeMetricMDS
	DistSum
	EMDDist
	ggplotDistFeatureImportance
	ggplotMarginalDensities
	ggplotSampleMDS
	ggplotSampleMDSShepard
	ggplotSampleMDSWrapBiplots
	MDS-class
	pairwiseEMDDist
	Index

