
Package ‘GBScleanR’
October 24, 2025

Type Package

Title Error correction tool for noisy genotyping by sequencing (GBS)
data

Version 2.3.2

Date 2025-06-18

Description GBScleanR is a package for quality check, filtering, and error
correction of genotype data derived from next generation sequcener (NGS)
based genotyping platforms. GBScleanR takes Variant Call Format (VCF) file as
input. The main function of this package is `estGeno()` which estimates the
true genotypes of samples from given read counts for genotype markers using a
hidden Markov model with incorporating uneven observation ratio of allelic
reads. This implementation gives robust genotype estimation even in noisy
genotype data usually observed in Genotyping-By-Sequnencing (GBS) and similar
methods, e.g. RADseq. The current implementation accepts genotype data of a
diploid population at any generation of multi-parental cross, e.g. biparental
F2 from inbred parents, biparental F2 from outbred parents, and 8-way
recombinant inbred lines (8-way RILs) which can be refered to as MAGIC
population.

License GPL-3 + file LICENSE

Encoding UTF-8

LinkingTo Rcpp, RcppParallel

SystemRequirements GNU make, C++11

Depends SeqArray

Imports stats, utils, methods, ggplot2, tidyr, expm, Rcpp,
RcppParallel, gdsfmt

Suggests BiocStyle, testthat (>= 3.0.0), knitr, rmarkdown

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

biocViews GeneticVariability, SNP, Genetics, HiddenMarkovModel,
Sequencing, QualityControl

BugReports https://github.com/tomoyukif/GBScleanR/issues

URL https://github.com/tomoyukif/GBScleanR

Config/testthat/edition 3

1

https://github.com/tomoyukif/GBScleanR/issues
https://github.com/tomoyukif/GBScleanR

2 Contents

git_url https://git.bioconductor.org/packages/GBScleanR

git_branch devel

git_last_commit d1bad5d

git_last_commit_date 2025-06-17

Repository Bioconductor 3.22

Date/Publication 2025-10-24

Author Tomoyuki Furuta [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0869-6626>)

Maintainer Tomoyuki Furuta <f.tomoyuki@okayama-u.ac.jp>

Contents
addScheme . 3
assignScheme . 5
boxplotGBSR . 6
closeGDS . 8
countGenotype . 9
countRead . 10
estGeno . 11
GBScleanR . 13
gbsrGDS2CSV . 14
gbsrGDS2VCF . 15
GbsrGenotypeData-class . 17
GbsrScheme-class . 17
gbsrVCF2GDS . 18
getAllele . 19
getChromosome . 20
getCountAlleleAlt . 21
getCountAlleleMissing . 22
getCountAlleleRef . 23
getCountGenoAlt . 24
getCountGenoHet . 25
getCountGenoMissing . 26
getCountGenoRef . 27
getCountRead . 28
getCountReadAlt . 29
getCountReadRef . 30
getFixedParameter . 31
getGenotype . 32
getHaplotype . 33
getInfo . 35
getMAC . 36
getMAF . 37
getMarID . 38
getMeanReadAlt . 39
getMeanReadRef . 40
getMedianReadAlt . 41
getMedianReadRef . 42
getParents . 43

https://orcid.org/0000-0002-0869-6626

addScheme 3

getPloidy . 44
getPosition . 44
getRead . 45
getReplicates . 46
getSamID . 48
getSDReadAlt . 49
getSDReadRef . 50
histGBSR . 51
initScheme . 52
isOpenGDS . 54
loadGDS . 55
makeScheme . 56
nmar . 57
nsam . 58
pairsGBSR . 59
plotDosage . 61
plotGBSR . 62
plotReadRatio . 64
reopenGDS . 65
resetCallFilter . 66
resetFilter . 67
resetMarFilter . 68
resetSamFilter . 69
setCallFilter . 70
setFixedParameter . 72
setInfoFilter . 73
setMarFilter . 74
setParents . 76
setPloidy . 78
setReplicates . 79
setSamFilter . 80
showScheme . 82
thinMarker . 83
validMar . 84
validSam . 85

Index 87

addScheme #’ Build a GbsrScheme object

Description

GBScleanR uses breeding scheme information to set the expected number of cross overs in a chro-
mosome which is a required parameter for the genotype error correction with the Hidden Markov
model implemented in the estGeno() function. This function build the object storing type crosses
performed at each generation of breeding and population sizes.

4 addScheme

Usage

addScheme(object, crosstype, mating, ...)

S4 method for signature 'GbsrGenotypeData'
addScheme(object, crosstype, mating)

S4 method for signature 'GbsrScheme'
addScheme(object, crosstype, mating)

Arguments

object A GbsrGenotypeData object.

crosstype A string to indicate the type of cross conducted with a given generation.

mating An integer matrix to indicate mating combinations. The each element should
match with member IDs of the last generation.

... Unused.

Details

A scheme object is just a data.frame indicating a population size and a type of cross applied to
each generation of the breeding process to generate the population which you are going to subject
to the estGeno() function. The crosstype can take either of "selfing", "sibling", "pairing", and
"random". When you set crosstype = "random", you need to specify pop_size to indicate how
many individuals were crossed in the random mating. You also need to specify a matrix indicating
combinations of mating, in which each column shows a pair of member IDs indicating parental
samples of the cross. Member IDs are serial numbers starts from 1 and automatically assigned by
initScheme() and addScheme(). To check the member IDs, run showScheme(). Please see the
examples section for more details of specifying a mating matrix. The created GbsrScheme object
is set in the scheme slot of the GbsrGenotypeData object.

Value

A GbsrGenotypeData object storing a GbsrScheme object in the "scheme" slot.

See Also

addScheme() and showScheme()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Biparental F2 population.
gds <- setParents(gds, parents = c("Founder1", "Founder2"))

setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Now the progenies of the cross above have member ID 3.
If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
gds <- addScheme(gds, crosstype = "self")

assignScheme 5

##
Now you can execute `estGeno()` which requires a [GbsrScheme] object.

Close the connection to the GDS file
closeGDS(gds)

assignScheme Assign member IDs to samples

Description

GBScleanR uses breeding scheme information to set the expected number of cross overs in a chro-
mosome which is a required parameter for the genotype error correction with the Hidden Markov
model implemented in the estGeno() function. This function assign member IDs to indicate which
samples were derived from which pedigree that recorded in the GbsrScheme object.

Usage

assignScheme(object, id, ...)

S4 method for signature 'GbsrGenotypeData'
assignScheme(object, id)

S4 method for signature 'GbsrScheme'
assignScheme(object, id)

Arguments

object A GbsrGenotypeData object.

id A numeric vector indicating member IDs to assign to samples.

... Unused.

Details

Member IDs can be shown by showScheme(). Only the member IDs assigned to progenies (not
parents) are available to assign to samples. If the last generation recorded in the GbsrScheme object
has only one member ID that should be assigned to all samples in your population, you can omit
assigning IDs by assignScheme(). In that case, estGeno() automatically assign the only one
member ID to all samples.

Value

A GbsrGenotypeData object storing a GbsrScheme object in the "scheme" slot.

See Also

addScheme() and showScheme()

6 boxplotGBSR

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Biparental F2 population.
gds <- setParents(gds, parents = c("Founder1", "Founder2"))

setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Now the progeny of the cross above have member ID 3.
If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
gds <- addScheme(gds, crosstype = "self")

The progeny of the selfing above has member ID 4.
To execute genotype estimation for your samples, you need to assign a member
ID to each of the samples.

Check IDs of samples to be assigned member IDs if necessary.
getSamID(gds)

The assignScheme() assign member IDs `id` to the samples in order.
Please confirm the order of the member IDs in `id` and the order of the
sample IDs shown by getSamID(gds).
gds <- assignScheme(gds, rep(4, nsam(gds)))

If your population has samples all of which belong to only one pedigree,
you can omit assignScheme() and let estGeno() automatically assign the
last member ID to all samples.

##
Now you can execute `estGeno()` which requires a [GbsrScheme] object.

Close the connection to the GDS file
closeGDS(gds)

boxplotGBSR Draw boxplots of specified statistics

Description

Draw boxplots of specified statistics

Usage

boxplotGBSR(
x,
stats = "missing",
target = c("marker", "sample"),
color = c(Marker = "darkblue", Sample = "darkblue"),
fill = c(Marker = "skyblue", Sample = "skyblue")

)

boxplotGBSR 7

Arguments

x A GbsrGenotypeData object.

stats A string to specify statistics to be drawn.

target Either or both of "marker" and "sample", e.g. target = "marker" to draw a
histogram only for SNPs.

color A named vector "Marker" and "Sample" to specify border color of bins in the
histograms.

fill A named vector "Marker" and "Sample" to specify fill color of bins in the his-
tograms.

Details

You can draw boxplots of several summary statistics of genotype counts and read counts per sample
and per marker. The "stats" argument can take the following values:

missing Proportion of missing genotype calls.

het Proportion of heterozygote calls.

raf Reference allele frequency.

dp Total read counts.

ad_ref Reference allele read counts.

ad_alt Alternative allele read counts.

rrf Reference allele read frequency.

mean_ref Mean of reference allele read counts.

sd_ref Standard deviation of reference allele read counts.

median_ref Quantile of reference allele read counts.

mean_alt Mean of alternative allele read counts.

sd_alt Standard deviation of alternative allele read counts.

median_alt Quantile of alternative allele read counts.

mq Mapping quality.

fs Phred-scaled p-value (strand bias)

qd Variant Quality by Depth

sor Symmetric Odds Ratio (strand bias)

mqranksum Alt vs. Ref read mapping qualities

readposranksum Alt vs. Ref read position bias

baseqranksum Alt Vs. Ref base qualities

To draw boxplots for "missing", "het", "raf", you need to run countGenotype() first to obtain
statistics. Similary, "dp", "ad_ref", "ad_alt", "rrf" requires values obtained via countRead(). "mq",
"fs", "qd", "sor", "mqranksum", "readposranksum", and "baseqranksum" only work with target =
"marker", if your data contains those values supplied via SNP calling tools like GATK.

Value

A ggplot object.

https://gatk.broadinstitute.org/hc/en-us

8 closeGDS

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize genotype count information to be used in `boxplotGBSR()`
gds <- countGenotype(gds)

boxplotGBSR(gds, stats = "missing")

Close the connection to the GDS file
closeGDS(gds)

closeGDS Close the connection to the GDS file

Description

Close the connection to the GDS file linked to the given GbsrGenotypeData object.

Usage

closeGDS(object, save_filter = FALSE, verbose = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
closeGDS(object, save_filter, verbose)

Arguments

object A GbsrGenotypeData object.

save_filter A logical whether to save the filtering information made via setSamFilter()
and setMarFilter() in the GDS file. The saved filter information can be reused
if set load_filter = TRUE for loadGDS().

verbose if TRUE, show information.

... Unused.

Value

NULL.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Close the connection to the GDS file
closeGDS(gds)

countGenotype 9

countGenotype Count genotype calls and alleles per sample and per marker.

Description

This function calculates several summary statistics of genotype calls and alleles per marker and per
sample. Those values will be stored in the SnpAnnotaionDataFrame slot and the sample slot and
obtained via getter functions, e.g.s getCountGenoRef(), getCountAlleleRef(), and getMAF().

Usage

countGenotype(object, target = "both", node = "raw", ...)

S4 method for signature 'GbsrGenotypeData'
countGenotype(object, target, node)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

node Either of "raw", "filt", and "cor". See details.

... Unused.

Details

#’ Genotype call data can be obtained from the "genotype" node, the "filt.genotype" node, or the
"corrected.genotype" node of the GDS file with node = "raw", node = "filt", or node = "raw", re-
spectively. The setCallFilter() function generate filtered genotype call data in the "filt.genotype"
node which can be accessed as mentioned above. On the other hand, the "corrected.genotype" node
can be generated via the estGeno() function.

Value

A GbsrGenotypeData object with genotype count information.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

Get the proportion of missing genotype per sample.
sample_missing_rate <- getCountGenoMissing(gds,

target = "sample",
prop = TRUE)

Get the minor allele frequency per marker.
marker_minor_allele_freq <- getMAF(gds, target = "marker")

10 countRead

Draw histograms of the missing rate per sample and marker.
histGBSR(gds, stats = "missing")

Close the connection to the GDS file.
closeGDS(gds)

countRead Count reads per sample and per marker.

Description

This function calculates several summary statistics of read counts per marker and per sample. Those
values will be stored in the SnpAnnotaionDataFrame slot and the sample slot and obtained via
getter functions, e.g. getCountReadRef() and getCountReadAlt(). This function first calculates
normalized allele read counts by dividing allele read counts at each marker in each sample by the
total allele read of the sample followed by multiplication by 10^6. In other words, it calculates reads
per million (rpm). Then, the function calculates mean, standard deviation, quantile values of rpm
per marker and per sample. The results will be stored in the SnpAnnotaionDataFrame slot and the
sample slot and obtained via getter functions, e.g. getMeanReadRef() and getMedianReadAlt().

Usage

countRead(object, target = "both", node = "raw", ...)

S4 method for signature 'GbsrGenotypeData'
countRead(object, target, node)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

node Either of "raw" and "filt". See details.

... Unused.

Details

Read count data can be obtained from the "annotation/format/AD/data" node or the "annotation/format/AD/filt.data"
node of the GDS file with node = "raw" or node = "filt", respectively. The setCallFilter()
function generate filtered read count data in the "annotation/format/AD/filt.data" node which can
be accessed as mentioned above.

Value

A GbsrGenotypeData object with read count information.

estGeno 11

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the read count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countRead(gds)

Get the total read counts per marker
read_depth_per_marker <- getCountRead(gds, target = "marker")

Get the proportion of reference allele rads per marker.
reference_read_freq <- getCountReadRef(gds, target = "marker", prop = TRUE)

Draw histgrams of reference allele read counts per sample and marker.
histGBSR(gds, stats = "ad_ref")

Close the connection to the GDS file.
closeGDS(gds)

estGeno Genotype estimation using a hiden Morkov model

Description

Clean up genotype data by error correction based on genotype estimation using a hidden Markov
model.

Usage

estGeno(
object,
node = "raw",
recomb_rate = 0.04,
error_rate = 0.0025,
call_threshold = 0.9,
het_parent = FALSE,
optim = TRUE,
iter = 4,
n_threads = 1,
dummy_reads = 5,
...

)

S4 method for signature 'GbsrGenotypeData'
estGeno(
object,
node,
recomb_rate,
error_rate,

12 estGeno

call_threshold,
het_parent,
optim,
iter,
n_threads,
dummy_reads

)

Arguments

object A GbsrGenotypeData object.

node Either "raw" or "filt" to indicate whether raw or filtered read counts are used
for genotype estimation. See setCallFilter() for the details of filtered read
counts.

recomb_rate A numeric value to indicate the expected recombination frequency per chromo-
some per megabase pairs.

error_rate A numeric value of the expected sequence error rate.

call_threshold A numeric value of the probability threshold to accept estimated genotype calls.

het_parent A logical value to indicate whether parental samples are outbred or inbred. If
FALSE, this function assume all true genotype of markers in parents are ho-
mozygotes.

optim A logical value to specify whether to conduct parameter optimization for error
correction.

iter An integer value to specify the number of iterative parameter updates.

n_threads An integer value to specify the number of threads used for the calculation. The
default is 1 and if n_threads = NULL, automatically set half the number of avail-
able threads on the computer.

dummy_reads An integer to specify the number of dummy reads to assign to dummy parental
samples for genotype estimation. See details.

... Unused.

Details

If you have not set parental samples by setParents() and initialized the scheme object using
initScheme(), you have the scheme object without explicit parental information that is assumed
to be a bi-parental population. In this case, estGeno() will run in the parentless mode. In the
parentless mode, the algorithm assumes that the given population is a bi-parental population. The
number of reference allele reads and the number of alternative allele reads of the dummy parents are
set based on dummy_reads, respectively. Dummy parent 1 has dummy_reads of the reference allele
reads and 0 alternative allele reads at all markers, while dummy parent 2 has 0 and dummy_reads of
reference and alternative allele reads at all markers. If the parents of your population were outbred
lines or you cannot assume one of the parents has completely reference homozygotes and another
has laternative homozygotes at all markers, Set dummy_reads = 0 to leave uncertainty to estimate
parental genotypes based on the offspring genotypes. Nevertheless, the parentless mode is less
accurate and has more chance to get a genotype estimate randomly selected from the equally likely
genotype estimates.

Value

A GbsrGenotypeData object in which the "estimated.haplotype", "corrected.genotype" and "par-
ents.genotype" nodes were added.

GBScleanR 13

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Find the IDs of parental samples.
parents <- grep("Founder", getSamID(gds), value = TRUE)

Set the parents and flip allele information
if the reference sample (Founder1 in our case) has homozygous
alternative genotype at some markers of which alleles will
be swapped to make the reference sample have homozygous
reference genotype.
gds <- setParents(gds, parents = parents)

Initialize a scheme object stored in the slot of the GbsrGenotypeData.
We chose `crosstype = "pair"` because two inbred founders were mated
in our breeding scheme.
We also need to specify the mating matrix which has two rows and
one column with integers 1 and 2 indicating a sample (founder)
with the memberID 1 and a sample (founder) with the memberID 2
were mated.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Add information of the next cross conducted in our scheme.
We chose 'crosstype = "selfing"', which do not require a
mating matrix.
gds <- addScheme(gds, crosstype = "selfing")

Execute error correction by estimating genotype and haplotype of
founders and offspring.
gds <- estGeno(gds)

Close the connection to the GDS file.
closeGDS(gds)

GBScleanR GBScleanR: A package to conduct error correction for noisy genotyp-
ing by sequencing (reduced representation sequencing based genoty-
oing) data.

Description

GBScleanR is a package for quality check, filtering, and error correction of genotype data derived
from next generation sequcener (NGS) based genotyping platforms. GBScleanR takes Variant
Call Format (VCF) file as input. The main function of this package is "clean.geno" which esti-
mates the true genotypes of samples from given read counts for genotype markers using a hidden
Markov model with incorporating uneven observation ratio of allelic reads. This implementation
gives robust genotype estimation even in noisy genotype data usually observed in Genotyping-
By-Sequnencing (GBS) and similar methods, e.g. RADseq. GBScleanR currenly only supports
genotype data of biparental populations.

14 gbsrGDS2CSV

Author(s)

Maintainer: Tomoyuki Furuta <f.tomoyuki@okayama-u.ac.jp> (ORCID)

See Also

Useful links:

• https://github.com/tomoyukif/GBScleanR

• Report bugs at https://github.com/tomoyukif/GBScleanR/issues

gbsrGDS2CSV Write a CSV file based on data in a GDS file

Description

Write out a CSV file with raw, filtered, corrected genotype data or estimated haplotype data stored
in a GDS file.

Usage

gbsrGDS2CSV(
object,
out_fn,
node = "raw",
incl_parents = TRUE,
bp2cm = NULL,
format = "",
read = FALSE,
...

)

S4 method for signature 'GbsrGenotypeData'
gbsrGDS2CSV(object, out_fn, node, incl_parents, bp2cm, format, read)

Arguments

object A GbsrGenotypeData object.
out_fn A string to specify the path to an output VCF file.
node Either one of "raw", "filt", "cor", "hap", "dosage to output raw genotype data,

filtered genotype data, corrected genotype data, estimated haplotype data, and
estimated allele dosage data, respectively.

incl_parents A logical value to specify whether parental samples should be included in an
output VCF file or not.

bp2cm A numeric value to convert positions in basepairs (bp) to centiMorgan (cm). The
specified here is used to multiply position values. The default is NULL and then
internally sets bp2cm = 4e-06 when format = "qtl. If not format = "qtl, 1
is set to bp2cm as default.

format A string to indicate the output format. See details.
read A logical value to indicate whether read counts should be output with genotype

data or not. See details.
... Unused.

https://orcid.org/0000-0002-0869-6626
https://github.com/tomoyukif/GBScleanR
https://github.com/tomoyukif/GBScleanR/issues

gbsrGDS2VCF 15

Details

Create a CSV file at location specified by out_fn. The setting format = "qtl" makes the function
export the data in the r/qtl format that can be loaded using read.cross as format = "csvs" with a
phenotype data. If you have executed estGeno() and your population is a biparental population,
set ’node = "dosage"’ to export a r/qtl format CSV in which homozygoutes of the alleles of Parent
1 and 2, which have been specified by setParents(), are represented by A and B, respectively.
If ’node = "raw"’, ’node = "fill"’, and ’node = "cor"’, A and B in the r/qtl format CSV indicate
homozygoutes of reference and alternative alleles shown in a given VCF file. This means that if
Parent 1 has the alternative allele homozygoute at Marker 1 and Offspring 1 has the same genotype
with Parent 1, the genotype of Offspring 1 at Marker 1 will be B in the r/qtl format CSV. On the
other hand, if you set ’node = "dosage"’, the genotype of Offspring 1 at Marker 1 will be A in the
r/qtl format CSV. The output CSV file has the rows indicating chromosome ID and positions of
markers followed by the rows indicating genotype or haplotype data of samples. If read = TRUE,
the output of each genotype call would be in the form of GT:ADR,ADA where GT, ADR, and ADA
represent genotype, referenece read count, and alternative read count, respectively. If format =
"qtl", read = TRUE will be ignored.

Value

The path to the CSV file.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Create a CSV file with data from the GDS file
connected to the [GbsrGenotypeData] oobject.
out_fn <- tempfile("sample_out", fileext = ".csv")
gbsrGDS2CSV(gds, out_fn)

Close the connection to the GDS file.
closeGDS(gds)

gbsrGDS2VCF Write a VCF file based on data in a GDS file

Description

Write out a VCF file with raw, filtered, or corrected genotype data stored in a GDS file. The output
VCF file contains the GT, AD, and DP fields.

Usage

gbsrGDS2VCF(
object,
out_fn,
node = "raw",
info.export = NULL,
fmt.export = NULL,

16 gbsrGDS2VCF

parents = TRUE,
...

)

S4 method for signature 'GbsrGenotypeData'
gbsrGDS2VCF(object, out_fn, node, info.export, fmt.export, parents)

Arguments

object A GbsrGenotypeData object.

out_fn A string to specify the path to an output VCF file.

node Either one of "raw" or "cor" to output raw genotype data or corrected genotype
data, respectively.

info.export characters, the variable name(s) in the INFO node for export; or NULL for
all variables. If you specify character(0), nothing will be exported from the
INFO node.

fmt.export characters, the variable name(s) in the FORMAT node for import; or NULL for
all variables. If you specify character(0), nothing will be exported from the
FORMAT node, except for GT.

parents A logical value to specify whether parental samples should be included in an
output VCF file or not.

... Unused.

Details

Create a VCF file at location specified by out_fn. The connection to the GDS file of the input
GbsrGenotypeData object will be automatically closed for internal file handling in this function.
Please use reopenGDS() to open the connection again. If you use loadGDS(), summary statistics
and filtering information will be discarded.

Value

The path to the VCF file.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Create a VCF file with data from the GDS file
connected to the [GbsrGenotypeData] oobject.
out_fn <- tempfile("sample_out", fileext = ".vcf.gz")
gbsrGDS2VCF(gds, out_fn)

Close the connection to the GDS file.
closeGDS(gds)

GbsrGenotypeData-class 17

GbsrGenotypeData-class

Class GbsrGenotypeData

Description

The GbsrGenotypeData class is the main class of GBScleanR and user work with this class object.

Details

The GbsrGenotypeData class is an extention of SeqVarGDSClass-class in the SeqArray pack-
age to store summary data of genotypes and reads and a GbsrScheme object that contains mating
scheme information of the given population.. The slots marker and sample store a data.frame ob-
ject for variant-wise and sample-wise summary information, respectively. The scheme slot holds a
GbsrScheme object. The function loadGDS() initialize the GbsrGenotypeData class.

Slots

marker A data.frame object.

sample A data.frame object.

scheme A GbsrScheme object.

Examples

[loadGDS()] initialize the [GbsrGenotypeData] object.

Load a GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Close connection to the GDS file.
closeGDS(gds)

GbsrScheme-class Class GbsrScheme

Description

GBScleanR uses breeding scheme information to set the expected number of cross overs in a chro-
mosome which is a required parameter for the genotype error correction with the hidden Markov
model implemented in the estGeno() function. This class stores those information including ID
of parental samples, type crosses performed at each generation of breeding and population sizes of
each generation. This class is not exported.

18 gbsrVCF2GDS

Slots

crosstype A vector of strings indicating the type of crossing done at each generation.

mating A list of matrices showing combinations member IDs of samples mated.

parents A vector of member IDs of parents.

progenies A vector of memeber IDs of progenies produced at each generation.

samples A vector of member IDs of samples indicating which samples are derived from which
pedigrees.

See Also

GbsrGenotypeData dnd loadGDS().

Examples

[loadGDS()] initialize a `GbsrScheme` object internally and
attache it to the shceme slot of a [GbsrGenotypeData] object.

Load data in the GDS file and instantiate
a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Print the information stored in the `GbsrScheme` object.
showScheme(gds)

Close the connection to the GDS file.
closeGDS(gds)

gbsrVCF2GDS Convert a VCF file to a GDS file

Description

This function converts a variant call data in the VCF format. The current implementation only
accepts biallelic single nucleotide polymorphisms. Please filter out variants which are insertions
and deletions or multiallelic. You may use "bcftools" or "vcftools" for filtering.

Usage

gbsrVCF2GDS(
vcf_fn,
out_fn,
gt = "GT",
info.import = NULL,
fmt.import = NULL,
force = FALSE,
verbose = TRUE

)

getAllele 19

Arguments

vcf_fn A string to indicate path to an input VCF file.

out_fn A string to indicate path to an output GDS file.

gt the ID for genotypic data in the FORMAT column; "GT" by default, VCFv4.0.

info.import characters, the variable name(s) in the INFO field for import; or NULL for all
variables. If you specify character(0), nothing will be retrieved from the
INFO filed.

fmt.import characters, the variable name(s) in the FORMAT field for import; or NULL for
all variables. If you specify character(0), nothing will be retrieved from the
FORMAT filed, except for GT.

force A logical value to overwrite a GDS file even if the file specified in "out_fn"
exists.

verbose if TRUE, show information.

Details

gbsrVCF2GDS converts a VCF file to a GDS file. The data structure of the GDS file created via
this functions is same with those created by seqVCF2GDS of SeqArray.

Value

The output GDS file path.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Close the connection to the GDS file.
closeGDS(gds)

getAllele Obtain reference allele information of markers

Description

This function returns the reference allele and alternative allele(s).

Usage

getAllele(object, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getAllele(object, valid, chr)

20 getChromosome

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

chr A index to spefcify chromosome to get information.

... Unused.

Details

If valid = TRUE, the alleles of markers which are labeled TRUE in the "valid" column of the "marker"
slot will be returned. If you need the number of over all markers, set valid = FALSE. validMar()
tells you which markers are valid.

Value

A vector of strings each of which is a "/" separated string and indicates the reference allele and the
alternative allele(s) at a marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

getAllele(gds)

Close the connection to the GDS file.
closeGDS(gds)

getChromosome Obtain chromosome IDs of markers

Description

This function returns chromosome IDs of markers.

Usage

getChromosome(object, valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getChromosome(object, valid)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

... Unused.

getCountAlleleAlt 21

Details

If valid = TRUE, the chromosome IDs of the markers which are labeled TRUE in the "valid" column
of the "marker" slot will be returned. If you need the number of over all markers, set valid = FALSE.
validMar() tells you which markers are valid.

Value

A vector of factors indicating chromosome IDs.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

getChromosome(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountAlleleAlt Obtain total alternative allele counts per SNP or per sample

Description

Obtain total alternative allele counts per SNP or per sample

Usage

getCountAlleleAlt(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountAlleleAlt(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total alternative allele
counts to total non missing allele counts or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

22 getCountAlleleMissing

Value

A numeric vector of (proportion of) alternative alleles per marker.

Examples

gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countGenotype(gds)
getCountAlleleAlt(gds)
closeGDS(gds) # Close the connection to the GDS file

getCountAlleleMissing Obtain total missing allele counts per SNP or per sample

Description

Obtain total missing allele counts per SNP or per sample

Usage

getCountAlleleMissing(
object,
target = "marker",
valid = TRUE,
prop = FALSE,
...

)

S4 method for signature 'GbsrGenotypeData'
getCountAlleleMissing(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total missing allele
counts to the total allele number or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) missing alleles per marker.

getCountAlleleRef 23

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getCountAlleleMissing(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountAlleleRef Obtain total reference allele counts per SNP or per sample

Description

Obtain total reference allele counts per SNP or per sample

Usage

getCountAlleleRef(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountAlleleRef(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total reference allele
counts to total non missing allele counts or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) reference alleles per marker.

24 getCountGenoAlt

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getCountAlleleRef(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountGenoAlt Obtain total alternative genotype counts per SNP or per sample

Description

Obtain total alternative genotype counts per SNP or per sample

Usage

getCountGenoAlt(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountGenoAlt(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total alternative geno-
type counts to total non missing genotype counts or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) homozygous alternative genotype calls per marker.

getCountGenoHet 25

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getCountGenoAlt(gds)

Close the connection to the GDS file
closeGDS(gds)

getCountGenoHet Obtain total heterozygote counts per SNP or per sample

Description

Obtain total heterozygote counts per SNP or per sample

Usage

getCountGenoHet(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountGenoHet(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total heterozygote
counts to total non missing genotype counts or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) heterozugous genotype calls per marker.

26 getCountGenoMissing

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getCountGenoHet(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountGenoMissing Obtain total missing genotype counts per SNP or per sample

Description

Obtain total missing genotype counts per SNP or per sample

Usage

getCountGenoMissing(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountGenoMissing(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total missing genotype
counts to the total genotype calls or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) missing genotype calls per marker.

getCountGenoRef 27

Examples

gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countGenotype(gds)
getCountGenoMissing(gds)
closeGDS(gds) # Close the connection to the GDS file

getCountGenoRef Obtain total reference genotype counts per SNP or per sample

Description

Obtain total reference genotype counts per SNP or per sample

Usage

getCountGenoRef(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountGenoRef(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total reference geno-
type counts to total non missing genotype counts or not.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) homozygous reference genotype calls per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

28 getCountRead

getCountGenoRef(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountRead Obtain total read counts per SNP or per sample

Description

Obtain total read counts per SNP or per sample

Usage

getCountRead(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountRead(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A integer vector of total read counts (reference allele reads + alternative allele reads) per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countRead(gds)

getCountRead(gds)

Close the connection to the GDS file.
closeGDS(gds)

getCountReadAlt 29

getCountReadAlt Obtain total alternative read counts per SNP or per sample

Description

Obtain total alternative read counts per SNP or per sample

Usage

getCountReadAlt(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountReadAlt(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total alternative read
counts in total read counts per SNP or not.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) alternative allele read counts per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countRead(gds)

getCountReadAlt(gds)

Close the connection to the GDS file.
closeGDS(gds)

30 getCountReadRef

getCountReadRef Obtain total reference read counts per SNP or per sample

Description

Obtain total reference read counts per SNP or per sample

Usage

getCountReadRef(object, target = "marker", valid = TRUE, prop = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getCountReadRef(object, target, valid, prop)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

prop A logical value whether to return values as proportions of total reference read
counts in total read counts per SNP or not.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of (proportion of) reference read counts per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countRead(gds)

getCountReadRef(gds)

Close the connection to the GDS file.
closeGDS(gds)

getFixedParameter 31

getFixedParameter Get fixed allele read biases and mismapping rate

Description

Get fixed allele read biases and mismapping rates of markers

Usage

getFixedParameter(object, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getFixedParameter(object, valid, chr)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

chr A integer or string to specify chromosome to get information.

... Unused.

Details

If valid = TRUE, A logical vector for the markers which are labeled TRUE in the "valid" column of
the "marker" slot will be returned. If you need check the dominant markers in all markers, set valid
= FALSE. validMar() tells you which markers are valid.

Value

A numeric vector of fixed allele read biases.

A GbsrGenotypeData object after adding dominant marker information

See Also

setFixedParameter()

Examples

vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Not run.
Run estGeno() and reuse the estimated parameters in the second run.
gds <- makeScheme(gds, generation = 2, crosstype = "self")
gds <- estGeno(gds)
fixed_param <- getFixedParameter(gds)
gds <- setFixedParameter(gds,
bias = fixed_param$bias,

32 getGenotype

mismap = fixed_param$mismap)
gds <- estGeno(gds, optim = FALSE, call_threshold = 0.5)

Close the connection to the GDS file
closeGDS(gds)

getGenotype Get genotype call data.

Description

Genotype calls are retrieved from the GDS file linked to the given GbsrGenotypeData object.

Usage

getGenotype(
object,
node = "raw",
parents = FALSE,
valid = TRUE,
chr = NULL,
phased = FALSE,
...

)

S4 method for signature 'GbsrGenotypeData'
getGenotype(object, node, parents, valid, chr, phased)

Arguments

object A GbsrGenotypeData object.
node Either of "raw", "filt", "cor", and "parents". See details.
parents A logical value or "only" whether to include data for parents or not or to get data

only for parents. Ignored if node = "parents.
valid A logical value. See details.
chr A integer vector of indexes indicating chromosomes to get read count data.
phased If set TRUE to phased, the function will return phased genotype data in a P x N

x M array where P, N, and M are the ploidy, number of samples, and number of
markers.

... Unused.

Details

When node = "raw, the raw genotype data stored in the "genotype/data" node will be returned,
while node = "filt make the function to return the filtered genotype data stored in the "anno-
tation/format/FGT/data" that can be generated via the setCallFilter() function. node = "cor
indicates to get the corrected genotype data stored in the "annotation/format/CGT/data" that can be
generated via the estGeno() function. The estimated parental genotypes, which also can be gen-
erated via the estGeno() function and stored in the "annotation/info/PGT" node, can be obtained
with node = "parents". If valid = TRUE, genotype calls for only valid marker and valid samples
will be obtained.

getHaplotype 33

Value

An integer matirix of genotype data which is represented by the number of reference alleles at each
marker of each sample.

See Also

setCallFilter() and estGeno()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

geno <- getGenotype(gds)

Close the connection to the GDS file.
closeGDS(gds)

getHaplotype Get haplotype call data.

Description

Haplotype calls are retrieved from the GDS file linked to the given GbsrGenotypeData object.

Usage

getHaplotype(object, parents = FALSE, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getHaplotype(object, parents, valid, chr)

Arguments

object A GbsrGenotypeData object.

parents A logical value or "only" to include data for parents or to get data only for
parents.

valid A logical value. See details.

chr A integer vector of indexes indicating chromosomes to get read count data.

... Unused.

Details

Haplotype call data can be obtained from the "estimated.haplotype" node of the GDS file which can
be generated via the estGeno() function. Thus, this function is valid only after having executed
estGeno(). If valid = TRUE, read counts for only valid marker and valid samples will be obtained.

34 getHaplotype

Value

An integer array of haplotype data. The array have 2 x M x N dimensions, where M is the number of
markers and N is the number of samples. Each integer values represent the origin of the haplotype.
For example, in the population with two inbred founders, values take either 1 or 2 indicating the
hapotype descent from founder 1 and 2. If two outbred founders, values take 1, 2, 3, or 4 indicating
the first and second haplotype in founder 1 and the first and second haplotype in founder 2.

See Also

estGeno()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Find the IDs of parental samples.
parents <- grep("Founder", getSamID(gds), value = TRUE)

Set the parents and flip allele information
if the reference sample (Founder1 in our case) has homozygous
alternative genotype at some markers of which alleles will
be swapped to make the reference sample have homozygous
reference genotype.
gds <- setParents(gds, parents = parents)

Initialize a scheme object stored in the slot of the GbsrGenotypeData.
We chose `crosstype = "pair"` because two inbred founders were mated
in our breeding scheme.
We also need to specify the mating matrix which has two rows and
one column with integers 1 and 2 indicating a sample (founder)
with the memberID 1 and a sample (founder) with the memberID 2
were mated.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Add information of the next cross conducted in our scheme.
We chose 'crosstype = "selfing"', which do not require a
mating matrix.
gds <- addScheme(gds, crosstype = "selfing")

Execute error correction by estimating genotype and haplotype of
founders and offspring.
gds <- estGeno(gds)

hap <- getHaplotype(gds)

Close the connection to the GDS file.
closeGDS(gds)

getInfo 35

getInfo Obtain information stored in the "annotation/info" node

Description

The "annotation/info" node stores annotation infromation of markers obtained via SNP calling tools
like bcftools and GATK.

Usage

getInfo(object, var, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getInfo(object, var, valid, chr)

Arguments

object A GbsrGenotypeData object.

var A string to indicate which annotation info should be retrieved.

valid A logical value. See details.

chr A index to specify chromosome to get information.

... Unused.

Details

If valid = TRUE, the information of the markers which are labeled TRUE in the "valid" column of
the "marker" slot will be returned. If you need the number of over all markers, set valid = FALSE.
validMar() tells you which markers are valid.

Value

A numeric vector of data stored in INFO node of the GDS file.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Get mapping qualities (MQ) of markers.
mq <- getInfo(gds, "MQ")

Close the connection to the GDS file.
closeGDS(gds)

36 getMAC

getMAC Obtain minor allele counts per SNP or per sample

Description

Obtain minor allele counts per SNP or per sample

Usage

getMAC(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMAC(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the minor allele counts per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getMAC(gds)

Close the connection to the GDS file.
closeGDS(gds)

getMAF 37

getMAF Obtain minor allele frequencies per SNP or per sample

Description

Obtain minor allele frequencies per SNP or per sample

Usage

getMAF(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMAF(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countGenotype() to calculate sumaary statisticsto be obtained via this func-
tion. If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample
slot will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the minor allele frequencies per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the genotype count information and store them in the
[marker] and [sample] slots of the [GbsrGenotypeData] object.
gds <- countGenotype(gds)

getMAF(gds)

Close the connection to the GDS file
closeGDS(gds)

38 getMarID

getMarID Obtain the marker IDs

Description

Obtain the marker IDs

Usage

getMarID(object, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getMarID(object, valid, chr)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

chr A index to specify chromosome to get information.

... Unused.

Details

If valid = TRUE, the IDs of markers which are labeled TRUE in the "valid" column of the "marker"
slot will be returned. If you need the number of over all markers, set valid = FALSE. validMar()
tells you which markers are valid.

Value

A integer vector of marker IDs.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

getMarID(gds)

Close the connection to the GDS file.
closeGDS(gds)

getMeanReadAlt 39

getMeanReadAlt Obtain mean values of total alternative read counts per SNP or per
sample

Description

Obtain mean values of total alternative read counts per SNP or per sample

Usage

getMeanReadAlt(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMeanReadAlt(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the mean values of alternative allele reads per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Calculate means, standard deviations, quantiles of read counts
per marker and per sample with or without standardization of
the counts and store them in the [marker] and [sample] slots
of the [GbsrGenotypeData] object.
gds <- countRead(gds)

getMeanReadAlt(gds)

Close the connection to the GDS file.
closeGDS(gds)

40 getMeanReadRef

getMeanReadRef Obtain mean values of total reference read counts per SNP or per
sample

Description

Obtain mean values of total reference read counts per SNP or per sample

Usage

getMeanReadRef(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMeanReadRef(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate summary statistics to be obtained via this function.
If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the mean values of reference allele reads per marker.

Examples

gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)
gds <- countRead(gds)
getMeanReadRef(gds)
closeGDS(gds) # Close the connection to the GDS file

getMedianReadAlt 41

getMedianReadAlt Obtain quantile values of total alternative read counts per SNP or per
sample

Description

Obtain quantile values of total alternative read counts per SNP or per sample

Usage

getMedianReadAlt(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMedianReadAlt(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the quantile values of alternative allele reads per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Calculate means, standard deviations, quantiles of read counts
per marker and per sample with or without standardization of
the counts and store them in the [marker] and [sample] slots
of the [GbsrGenotypeData] object.
gds <- countRead(gds)

getMedianReadAlt(gds)

Close the connection to the GDS file.
closeGDS(gds)

42 getMedianReadRef

getMedianReadRef Obtain quantile values of total reference read counts per SNP or per
sample

Description

Obtain quantile values of total reference read counts per SNP or per sample

Usage

getMedianReadRef(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getMedianReadRef(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the quantile values of alternative allele reads per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Calculate means, standard deviations, quantiles of read counts
per marker and per sample with or without standardization of
the counts and store them in the [marker] and [sample] slots
of the [GbsrGenotypeData] object.
gds <- countRead(gds)

getMedianReadRef(gds)

Close the connection to the GDS file.
closeGDS(gds)

getParents 43

getParents Get parental sample information

Description

This function returns sample IDs, member IDs and indexes of parental samples set via setParents().
Sample IDs are IDs given by user or obtained from the original VCF file. Member IDs are serial
numbers assigned by setParents().

Usage

getParents(object, bool = FALSE, verbose = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getParents(object, bool, verbose = TRUE)

Arguments

object A GbsrGenotypeData object.

bool If TRUE, the function returns a logical vector indicating which samples have
been set as parents.

verbose If FALSE, the function does not print a warning message even when parents
were not specified in the given GbsrGenotypeData object. The setting verbose
= FALSE is used in the other functions to call getParents() without evoking
unnecessary warnings to users.

... Unused.

Value

A data frame of parents information indicating sampleIDs, memberIDs and indexes of parental lines
assigned via setParents().

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Find the IDs of parental samples.
parents <- grep("Founder", getSamID(gds), value = TRUE)

Set the parents.
gds <- setParents(gds, parents = parents)

Get the information of parents.
getParents(gds)

Close the connection to the GDS file.
closeGDS(gds)

44 getPosition

getPloidy Get ploidy

Description

Get the ploidy of a given population in the input GbsrGenotypeData object.

Usage

getPloidy(object, ...)

S4 method for signature 'GbsrGenotypeData'
getPloidy(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Value

An integer value.

See Also

setPloidy()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

ploidy <- getPloidy(gds)
print(ploidy)

Close the connection to the GDS file.
closeGDS(gds)

getPosition Obtain marker positions

Description

This function returns physical positions of markers.

getRead 45

Usage

getPosition(object, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getPosition(object, valid, chr)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

chr A integer or string to specify chromosome to get information.

... Unused.

Details

If valid = TRUE, the positions of the markers which are labeled TRUE in the "valid" column of the
"marker" slot will be returned. If you need the positions of over all markers, set valid = FALSE.
validMar() tells you which markers are valid.

Value

An integer vector indicating the physical positions of markers.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

getPosition(gds)

Close the connection to the GDS file.
closeGDS(gds)

getRead Get read count data.

Description

Read counts for reference allele and alternative allele are retrieved from the GDS file linked to the
given GbsrGenotypeData object.

Usage

getRead(object, node = "raw", parents = FALSE, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
getRead(object, node, parents, valid, chr)

46 getReplicates

Arguments

object A GbsrGenotypeData object.

node Either of "raw" and "filt". See details.

parents A logical value or "only" whether to include data for parents or not or to get data
only for parents.

valid A logical value. See details.

chr An integer vector of indexes indicating chromosomes to get read count data.

... Unused.

Details

When node = "raw, the raw read counts stored in the "annotation/format/AD/data" node will be
returned, while node = "filt make the function to return the filtered read counts stored in the
"annotation/format/FAD/data" that can be generated via the setCallFilter() function. If valid
= TRUE, read counts for only valid marker and valid samples will be obtained.

Value

A named list with two elements "ref" and "alt" storing a matrix of reference allele read counts and
a matrix of alternative read counts for all markers in all samples.

See Also

setCallFilter()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

read <- getRead(gds)

Close the connection to the GDS file.
closeGDS(gds)

getReplicates Get identifiers to indicates which samples are replicates.

Description

Not implemented yet. This function assign identifiers that indicates which samples are replicates
those which should have the same genotypes at all markers.

Usage

getReplicates(object, parents = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getReplicates(object, parents)

getReplicates 47

Arguments

object A GbsrGenotypeData object.

parents A logical value to indicate whether to include replicate IDs for parental samples
in the output. If you specify parents = "only", this function returns replicate
IDs only for parental samples.

... Unused.

Details

The replicates of samples specified in setReplicates() will have the same genotypes at all mark-
ers in the estimated genotypes obtained via estGeno(). In the genotype estimation by estGeno(),
the Viterbi scores for each possible genotype (haplotype) at each marker for the replicates will be
replaced with the average score for the replicates.

Value

A GbsrGenotypeData object with genotype count information.

See Also

setReplicates()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

gds <- setParents(gds, parents = c("Founder1", "Founder2"))

When your data has 100 samples, two replicates for each offspring,
and the samples are ordered as the 1st replicate followed by the 2nd
replicate, you can specify replicates as below.
gds <- setReplicates(gds, replicates = rep(1:50, each = 2))

If you need to confirm the order of samples, run the following code.
id <- getSamID(gds)

Replicate IDs should be set also to parents. Therefore, please include

getReplicates(gds)

Close the connection to the GDS file.
closeGDS(gds)

48 getSamID

getSamID Obtain the sample IDs

Description

This function returns sample IDs.

Usage

getSamID(object, valid = TRUE, parents = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
getSamID(object, valid, parents)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

parents A logical value whether to include data for parents or not.

... Unused.

Details

If valid = TRUE, the IDs of samples which are labeled TRUE in the "valid" column of the "sample"
slot will be returned. If you need the number of over all samples, set valid = FALSE. validSam()
tells you which samples are valid.

Value

A character vector of sample IDs.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

getSamID(gds)

Close the connection to the GDS file.
closeGDS(gds)

getSDReadAlt 49

getSDReadAlt Obtain standard deviations of total alternative read counts per SNP or
per sample

Description

Obtain standard deviations of total alternative read counts per SNP or per sample

Usage

getSDReadAlt(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getSDReadAlt(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate sumaary statisticsto be obtained via this function. If
valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the standard deviations of alternative allele reads per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Calculate means, standard deviations, quantiles of read counts
per marker and per sample with or without standardization of
the counts and store them in the [marker] and [sample] slots
of the [GbsrGenotypeData] object.
gds <- countRead(gds)

getSDReadAlt(gds)

Close the connection to the GDS file.
closeGDS(gds)

50 getSDReadRef

getSDReadRef Obtain standard deviations of total reference read counts per SNP or
per sample

Description

Obtain standard deviations of total reference read counts per SNP or per sample

Usage

getSDReadRef(object, target = "marker", valid = TRUE, ...)

S4 method for signature 'GbsrGenotypeData'
getSDReadRef(object, target, valid)

Arguments

object A GbsrGenotypeData object.

target Either of "marker" and "sample".

valid A logical value. See details.

... Unused.

Details

You need to execute countRead() to calculate summary statistics to be obtained via this function.
If valid = TRUE, the chromosome information of markers which are labeled TRUE in the sample slot
will be returned. validMar() tells you which samples are valid.

Value

A numeric vector of the standard deviations of reference allele reads per marker.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Calculate means, standard deviations, quantiles of read counts
per marker and per sample with or without standardization of
the counts and store them in the [marker] and [sample] slots
of the [GbsrGenotypeData] object.
gds <- countRead(gds)

getSDReadRef(gds)

Close the connection to the GDS file.
closeGDS(gds)

histGBSR 51

histGBSR Draw histograms of specified statistics

Description

Draw histograms of specified statistics

Usage

histGBSR(
x,
stats = c("dp", "missing", "het"),
target = c("marker", "sample"),
binwidth = NULL,
color = c(Marker = "darkblue", Sample = "darkblue"),
fill = c(Marker = "skyblue", Sample = "skyblue")

)

Arguments

x A GbsrGenotypeData object.

stats A string to specify statistics to be drawn.

target Either or both of "marker" and "sample", e.g. target = "marker" to draw a
histogram only for SNPs.

binwidth An integer to specify bin width of the histogram. This value is passed to the
ggplot function.

color A named vector "Marker" and "Sample" to specify border color of bins in the
histograms.

fill A named vector "Marker" and "Sample" to specify fill color of bins in the his-
tograms.

Details

You can draw histograms of several summary statistics of genotype counts and read counts per
sample and per marker. The "stats" argument can take the following values:

missing Proportion of missing genotype calls.

het Proportion of heterozygote calls.

raf Reference allele frequency.

dp Total read counts.

ad_ref Reference allele read counts.

ad_alt Alternative allele read counts.

rrf Reference allele read frequency.

mean_ref Mean of reference allele read counts.

sd_ref Standard deviation of reference allele read counts.

median_ref Quantile of reference allele read counts.

mean_alt Mean of alternative allele read counts.

52 initScheme

sd_alt Standard deviation of alternative allele read counts.

median_alt Quantile of alternative allele read counts.

mq Mapping quality.

fs Phred-scaled p-value (strand bias)

qd Variant Quality by Depth

sor Symmetric Odds Ratio (strand bias)

mqranksum Alt vs. Ref read mapping qualities

readposranksum Alt vs. Ref read position bias

baseqranksum Alt Vs. Ref base qualities

To draw histograms for "missing", "het", "raf", you need to run countGenotype() first to obtain
statistics. Similary, "dp", "ad_ref", "ad_alt", "rrf" requires values obtained via countRead(). "mq",
"fs", "qd", "sor", "mqranksum", "readposranksum", and "baseqranksum" only work with target =
"marker", if your data contains those values supplied via SNP calling tools like GATK.

Value

A ggplot object.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize genotype count information to be used in `histGBSR()`
gds <- countGenotype(gds)

Draw histograms of missing rate, heterozygosity, and reference
allele frequency per SNP and per sample.
histGBSR(gds, stats = "missing")

Close the connection to the GDS file
closeGDS(gds)

initScheme Build a GbsrScheme object

Description

GBScleanR uses breeding scheme information to set the expected number of cross overs in a chro-
mosome which is a required parameter for the genotype error correction with the hidden Markov
model implemented in the estGeno() function. This function build the object storing type crosses
performed at each generation of breeding and population sizes.

https://gatk.broadinstitute.org/hc/en-us

initScheme 53

Usage

initScheme(object, mating, ...)

S4 method for signature 'GbsrGenotypeData'
initScheme(object, mating)

S4 method for signature 'GbsrScheme'
initScheme(object, mating, parents)

Arguments

object A GbsrGenotypeData object.

mating An integer matrix to indicate mating combinations. The each element should
match with IDs of parental samples which are 1 to N. see Details.

... Unused.

parents Indices of parental lines.

Details

A GbsrScheme object stores information of a population size, mating combinations and a type of
cross applied to each generation of the breeding process to generate the population which you are
going to subject to the estGeno() function. The first generation should be parents of the popula-
tion. It is supposed that setParents() has been already executed and parents are labeled in the
GbsrGenotypeData object. The number of parents are automatically recognized. The "crosstype"
of the first generation can be "pairing" or "random" with pop_size = N, where N is the number of
parents. You need to specify a matrix indicating combinations of mating, in which each column
shows a pair of parental samples. For example, if you have only two parents, the mating matrix
is mating = cbind(c(1:2)). The indices used in the matrix should match with the IDs labeled to
parental samples by setParents(). The created GbsrScheme object is set in the scheme slot of the
GbsrGenotypeData object.

Value

A GbsrGenotypeData object storing a GbsrScheme object in the "scheme" slot.

See Also

addScheme() and showScheme()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Biparental F2 population.
gds <- setParents(gds, parents = c("Founder1", "Founder2"))

setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Now the progenies of the cross above have member ID 3.
If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.

54 isOpenGDS

gds <- addScheme(gds, crosstype = "self")

Now you can execute `estGeno()` which requires a [GbsrScheme] object.

Close the connection to the GDS file
closeGDS(gds)

isOpenGDS Check if a GDS file has been opened or not.

Description

Check if a GDS file has been opened or not.

Usage

isOpenGDS(object, ...)

S4 method for signature 'GbsrGenotypeData'
isOpenGDS(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Value

TRUE if the GDS file linked to the input GbsrGenotypeData object has been opened, while FALSE if
closed.

Examples

Use a GDS file of example data.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")

Instantiation of [GbsrGenotypeData]
gds <- loadGDS(gds_fn)

Check connection to the GDS file
isOpenGDS(gds)

Close the connection to the GDS file
closeGDS(gds)

loadGDS 55

loadGDS Load a GDS file and construct a GbsrGenotypeData object.

Description

Load data stored in an input GDS file to R environment and create a GbsrGenotypeData instance.
GBScleanR handles only one class GbsrGenotypeData and conducts all data manipulation via class
methods for it.

Usage

loadGDS(x, load_filter = FALSE, ploidy = 2, verbose = TRUE)

Arguments

x A string of the path to an input GDS file or a GbsrGenotypeData object to reload.

load_filter A logical whether to load the filtering information made via setSamFilter()
and setMarFilter() and saved in the GDS file via closeGDS() with save_filter
= TRUE.

ploidy Set the ploidy of the population.

verbose if TRUE, show information.

Details

The first time to load a newly produced GDS file will take long time due to data reformatting
for quick access. The GbsrGenotypeData object returned from loadGDS() can be also handled as
SeqVarGDSClass-class of the SeqArray package.

Value

A GbsrGenotypeData object.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Reload data from the GDS file.
gds <- loadGDS(gds)

Close the connection to the GDS file.
closeGDS(gds)

56 makeScheme

makeScheme Automate a GbsrScheme object building.

Description

GBScleanR uses breeding scheme information to set the expected number of cross overs in a chro-
mosome which is a required parameter for the genotype error correction with the Hidden Markov
model implemented in the estGeno() function. This function automates the building of a Gb-
srScheme object.

Usage

makeScheme(object, generation, crosstype, ...)

S4 method for signature 'GbsrGenotypeData'
makeScheme(object, generation, crosstype)

Arguments

object A GbsrGenotypeData object.

generation An integer to indicate which generation of selfing or sibling-crossing your pop-
ulation is.

crosstype A string to indicate the type of cross conducted with a given generation.

... Unused.

Details

A scheme object is just a data.frame indicating a population size and a type of cross applied to
each generation of the breeding process to generate the population which you are going to sub-
ject to the estGeno() function. The crosstype specified to makeScheme() can take "selfing" and
"sibling". When your population has 2^n parents specified by setParents(), makeScheme()
assumes those parents were crossed in the "funnel" design in which 2^n parents are crossed to
obtain $2^n/2$ F1 hybrids followed by successive intercrossings (pairings) of the hybrids to com-
bine the genomes of all parents in one family of siblings. The makeScheme() function assumes that
the parents that were assigned an odd number member ID (N) in setParents() had been crossed
with the parent that were assigned an even number (N+1). For example, if you set parents as shown
below. The makeScheme() function prepare a scheme information that indicates the intercrossings
of "p1 x p2", "p3 x p4", "p5 x p6", and "p7 x p8" followed by crossing of "p1xp2_F1 x p3xp4_F1"
and "p5xp6_F1 x p7xp8_F1" and then crossing of the two 4-way crossed liens to produce 8-way
crossed hybrid lines. If, for example, generation = 5 indicating an F5 generation was specified
to makeScheme(), the function adds 4 successive selfing or sibling crossings in the scheme. The
created GbsrScheme object will be set in the scheme slot of the GbsrGenotypeData object.

Value

A GbsrGenotypeData object storing a GbsrScheme object in the "scheme" slot.

See Also

initScheme(), addScheme(), and showScheme()

nmar 57

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Biparental F2 population.
gds <- setParents(gds, parents = c("Founder1", "Founder2"))

gds <- makeScheme(gds, generation = 2, crosstype = "self")

##
Now you can execute `estGeno()` which requires a [GbsrScheme] object.

Close the connection to the GDS file
closeGDS(gds)

nmar Return the number of SNPs.

Description

This function returns the number of SNPs recorded in the GDS file connected to the given Gb-
srGenotypeData object.

Usage

nmar(object, valid = TRUE, chr = NULL, ...)

S4 method for signature 'GbsrGenotypeData'
nmar(object, valid, chr)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

chr A index to spefcify chromosome to get information.

... Unused.

Details

If valid = TRUE, the number of markers which are labeled TRUE in the "valid" column of the
"marker" slot will be returned. If you need the number of over all markers, set valid = FALSE.
validMar() tells you which markers are valid.

Value

An integer value to indicate the number of SNP markers.

See Also

validMar()

58 nsam

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

nmar(gds)

Close the connection to the GDS file.
closeGDS(gds)

nsam Return the number of samples.

Description

This function returns the number of samples recorded in the GDS file connected to the given Gb-
srGenotypeData object.

Usage

nsam(object, valid = TRUE, parents = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
nsam(object, valid, parents)

Arguments

object A GbsrGenotypeData object.

valid A logical value. See details.

parents A logical value whether to include to parental samples or not.

... Unused.

Details

If valid = TRUE, the number of the samples which are labeled TRUE in the "valid" column of the
"sample" slot will be returned. If you need the number of over all samples, set valid = FALSE.
validSam() tells you which samples are valid.

Value

An integer value to indicate the number of samples.

See Also

validSam()

pairsGBSR 59

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

nsam(gds)

Close the connection to the GDS file.
closeGDS(gds)

pairsGBSR Draw a scatter plot of a pair of specified statistics

Description

Draw a scatter plot of a pair of specified statistics

Usage

pairsGBSR(
x,
stats1 = "dp",
stats2 = "missing",
target = "marker",
size = 0.5,
alpha = 0.8,
color = c(Marker = "darkblue", Sample = "darkblue"),
fill = c(Marker = "skyblue", Sample = "skyblue"),
smooth = FALSE

)

Arguments

x A GbsrGenotypeData object.

stats1 A string to specify statistics to be drawn.

stats2 A string to specify statistics to be drawn.

target Either or both of "marker" and "sample", e.g. target = "marker" to draw a
histogram only for SNPs.

size A numeric value to specify the dot size of a scatter plot.

alpha A numeric value [0-1] to specify the transparency of dots in a scatter plot.

color A named vector "Marker" and "Sample" to specify border color of bins in the
histograms.

fill A named vector "Marker" and "Sample" to specify fill color of bins in the his-
tograms.stats = "geno only requires "Ref", "Het" and "Alt", while others uses
the value named "Marker".

smooth A logical value to indicate whether draw a smooth line for data points. See also
ggplot2::stat_smooth().

60 pairsGBSR

Details

You can draw a scatter plot of per-marker and/or per-sample summary statistics specified at stats1
and stats2. The "stats1" and "stats2" arguments can take the following values:

missing Proportion of missing genotype calls.
het Proportion of heterozygote calls.
raf Reference allele frequency.
dp Total read counts.
ad_ref Reference allele read counts.
ad_alt Alternative allele read counts.
rrf Reference allele read frequency.
mean_ref Mean of reference allele read counts.
sd_ref Standard deviation of reference allele read counts.
median_ref Quantile of reference allele read counts.
mean_alt Mean of alternative allele read counts.
sd_alt Standard deviation of alternative allele read counts.
median_alt Quantile of alternative allele read counts.
mq Mapping quality.
fs Phred-scaled p-value (strand bias)
qd Variant Quality by Depth
sor Symmetric Odds Ratio (strand bias)
mqranksum Alt vs. Ref read mapping qualities
readposranksum Alt vs. Ref read position bias
baseqranksum Alt Vs. Ref base qualities

To draw scatter plots for "missing", "het", "raf", you need to run countGenotype() first to obtain
statistics. Similary, "dp", "ad_ref", "ad_alt", "rrf" requires values obtained via countRead(). "mq",
"fs", "qd", "sor", "mqranksum", "readposranksum", and "baseqranksum" only work with target =
"marker", if your data contains those values supplied via SNP calling tools like GATK.

Value

A ggplot object.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize genotype count information to be used in `pairsGBSR()`
gds <- countGenotype(gds)

Draw scatter plots of missing rate vs heterozygosity.
pairsGBSR(gds, stats1 = "missing", stats2 = "het")

Close the connection to the GDS file
closeGDS(gds)

https://gatk.broadinstitute.org/hc/en-us

plotDosage 61

plotDosage Draw line plots of allele dosage per marker per sample.

Description

This function counts a reference allele dosage per marker per sample and draw line plots of them in
facets for each chromosome for each sample.

Usage

plotDosage(
x,
coord = NULL,
chr = NULL,
ind = 1,
node = "raw",
showratio = TRUE,
dot_fill = c("green", "darkblue"),
size = 0.8,
alpha = 0.8,
line_color = "magenta"

)

Arguments

x A GbsrGenotypeData object.

coord A vector with two integer specifying the number of rows and columns to draw
faceted line plots for chromosomes.

chr A vector of indexes to specify chromosomes to be drawn.

ind An index to specify samples to be drawn.

node Either one of "raw" or "filt" to output raw read data, or filtered read data, respec-
tively.

showratio If TRUE, draw dots indicating read ratio.

dot_fill A vector of two strings to indicate the dot colors in the plot. The first and second
elements of the vector are set as the colors for the lowest and highest values in
the gradient coloring of the dots indicating total read counts par marker.

size A positive number to indicate the dot size in a plot.

alpha A positive number in 0-1 to indicate the dot opacity in a plot.

line_color A string to indicate the line color in the plot.

Value

A ggplot object.

62 plotGBSR

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

plotDosage(gds, ind = 1)

Close the connection to the GDS file
closeGDS(gds)

plotGBSR Draw line plots of specified statistics

Description

Draw line plots of specified statistics

Usage

plotGBSR(
x,
stats = c("dp", "missing", "het"),
coord = NULL,
lwd = 0.5,
binwidth = NULL,
color = c(Marker = "darkblue", Ref = "darkgreen", Het = "magenta", Alt = "blue")

)

Arguments

x A GbsrGenotypeData object.

stats A string to specify statistics to be drawn.

coord A vector with two integer specifying the number of rows and columns to draw
faceted line plots for chromosomes.

lwd A numeric value to specify the line width in plots.

binwidth An integer to specify bin width of the histogram. This argument only work with
stats = "marker" and is passed to the ggplot function.

color A strings vector named "Marker", "Ref", "Het", "Alt" to specify line colors.
stats = "geno only requires "Ref", "Het" and "Alt", while others uses the
value named "Marker".

Details

You can draw line plots of several summary statistics of genotype counts and read counts per sample
and per marker. The "stats" argument can take the following values:

marker Marker density.

geno Proportion of missing genotype calls.

missing Proportion of missing genotype calls.

plotGBSR 63

het Proportion of heterozygote calls.

raf Reference allele frequency.

dp Total read counts.

ad_ref Reference allele read counts.

ad_alt Alternative allele read counts.

rrf Reference allele read frequency.

mean_ref Mean of reference allele read counts.

sd_ref Standard deviation of reference allele read counts.

median_ref Quantile of reference allele read counts.

mean_alt Mean of alternative allele read counts.

sd_alt Standard deviation of alternative allele read counts.

median_alt Quantile of alternative allele read counts.

mq Mapping quality.

fs Phred-scaled p-value (strand bias)

qd Variant Quality by Depth

sor Symmetric Odds Ratio (strand bias)

mqranksum Alt vs. Ref read mapping qualities

readposranksum Alt vs. Ref read position bias

baseqranksum Alt Vs. Ref base qualities

To draw line plots for "missing", "het", "raf", you need to run countGenotype() first to obtain
statistics. Similary, "dp", "ad_ref", "ad_alt", "rrf" requires values obtained via countRead(). "mq",
"fs", "qd", "sor", "mqranksum", "readposranksum", #’ and "baseqranksum" only work with target
= "marker", if your data contains those values supplied via SNP calling tools like GATK.

Value

A ggplot object.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize genotype count information to be used in `plotGBSR()`
gds <- countGenotype(gds)

Draw line plots of missing rate, heterozygosity, proportion of genotype
calls per SNP.
plotGBSR(gds, stats = "missing")

Close the connection to the GDS file
closeGDS(gds)

https://gatk.broadinstitute.org/hc/en-us

64 plotReadRatio

plotReadRatio Draw line plots of proportion of reference allele read counts per
marker per sample.

Description

This function calculate a proportion of reference allele read counts per marker per sample and draw
line plots of them in facets for each chromosome for each sample.

Usage

plotReadRatio(
x,
coord = NULL,
chr = NULL,
ind = 1,
node = "raw",
dot_fill = c("green", "darkblue"),
size = 0.8,
alpha = 0.8

)

Arguments

x A GbsrGenotypeData object.

coord A vector with two integer specifying the number of rows and columns to draw
faceted line plots for chromosomes.

chr A vector of indexes to specify chromosomes to be drawn.

ind A string of sample id or an index to specify the sample to be drawn.

node Either one of "raw" or "filt" to output raw read data, or filtered read data, respec-
tively.

dot_fill A vector of two strings to indicate the dot colors in the plot. The first and second
elements of the vector are set as the colors for the lowest and highest values in
the gradient coloring of the dots indicating total read counts par marker.

size A positive number to indicate the dot size in the plot.

alpha A positive number in 0-1 to indicate the dot opacity in the plot.

Value

A ggplot object.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

plotReadRatio(gds, ind = 1)

Close the connection to the GDS file

reopenGDS 65

closeGDS(gds)

reopenGDS Reopen the connection to the GDS file.

Description

Reopen the connection to the GDS file.

Usage

reopenGDS(object, ...)

S4 method for signature 'GbsrGenotypeData'
reopenGDS(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Details

The GbsrGenotypeData object stores the file path of the GDS file even after closing the connection
the file. This function open again the connection to the GDS file at the file path stored in the
GbsrGenotypeData object. If the GbsrGenotypeData object witch has an open connection to the
GDS file, this function will reopen the connection. The data stored in the marker and sample slots
will not be changed. Thus, you can open a connection with the GDS file with keeping information
of filtering and summary statistics.

Value

A GbsrGenotypeData object.

Examples

Use a GDS file of example data.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")

Instantiation of [GbsrGenotypeData]
gds <- loadGDS(gds_fn)

Close the connection to the GDS file
closeGDS(gds)

gds <- reopenGDS(gds)

Close the connection to the GDS file
closeGDS(gds)

66 resetCallFilter

resetCallFilter Set the origina; data to be used in GBScleanR’s functions

Description

Set the "genotype" node and the "data" node as primary nodes for genotype data and read count
data. The data stored in the primary nodes are used in the functions of GBScleanR.

Usage

resetCallFilter(object, ...)

S4 method for signature 'GbsrGenotypeData'
resetCallFilter(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Details

A GbsrGenotypeData object storing information of the primary node of genotype data and read
count data. All of the functions implemented in GBScleanR check the primary nodes and use data
stored in those nodes. setCallFilter() create new nodes storing filtered genotype calls and read
counts in a GDS file and change the primary nodes to "filt.genotype" and "filt.data" for genotype
and read count data, respectively. resetCallFilter() set back the nodes to the original, those are
"genotype" and "data" for genotype and read count data, respectively.

Value

A GbsrGenotypeData object.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Filter out set zero to read counts and
missing to genotype calls of which meet the criteria.
gds <- setCallFilter(gds, dp_count = c(5, Inf))

Now any functions of [GBScleanR] reference the genotype data
stored in the "filt.genotype" node of the GDS file.

If you need to set the "genotype" node, where store the raw genotype data
as genotype to be referenced by the functions of GBScleanR,
run the following.

resetFilter 67

gds <- resetCallFilter(gds)

Reopening the connection to the GDS file also set the raw genotype again.
gds <- loadGDS(gds)

Close the connection to the GDS file
closeGDS(gds)

resetFilter Reset all filters made by setSamFilter(), setMarFilter(), and
setCallFilter().

Description

Return all data intact.

Usage

resetFilter(object, ...)

S4 method for signature 'GbsrGenotypeData'
resetFilter(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Value

A GbsrGenotypeData object after removing all filters.

A GbsrGenotypeData object after removing all filters on markers.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

`setCallFilter()` do not require summarized information of
genotype counts and read counts.
gds <- setCallFilter(gds, dp_count = c(5, Inf))

`setSamFilter()` and `setMarFilter()` needs information of
the genotype count summary and the read count summary.
gds <- countGenotype(gds)
gds <- countRead(gds)

gds <- setSamFilter(gds,

68 resetMarFilter

id = getSamID(gds)[1:10],
missing = 0.2,
dp = c(5, Inf))

gds <- setMarFilter(gds,
id = getMarID(gds)[1:100],
missing = 0.2,
dp = c(5, Inf))

gds <- setInfoFilter(gds, mq = 40, qd = 20)

Reset all filters applied above.
gds <- resetFilter(gds)

Close the connection to the GDS file.
closeGDS(gds)

resetMarFilter Reset the filter made by setMarFilter()

Description

Remove "invalid" labels put on markers and make all markers valid.

Usage

resetMarFilter(object, ...)

S4 method for signature 'GbsrGenotypeData'
resetMarFilter(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Value

A GbsrGenotypeData object after removing all filters on markers.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Check the number of markers.
nmar(gds)

Summarize the information needed for filtering.
gds <- countGenotype(gds)
gds <- countRead(gds)

resetSamFilter 69

filter out some markers meeting the criteria.
gds <- setMarFilter(gds,

id = getMarID(gds)[1:100],
missing = 0.2,
dp = c(5, Inf))

Check the number of the retained markers.
nmar(gds)

Reset all filters applied above.
gds <- resetMarFilter(gds)

Check the number of the markers again.
nmar(gds)

Close the connection to the GDS file.
closeGDS(gds)

resetSamFilter Reset the filter made by setSamFilter()

Description

Remove "invalid" labels put on samples and make all samples valid.

Usage

resetSamFilter(object, ...)

S4 method for signature 'GbsrGenotypeData'
resetSamFilter(object)

Arguments

object A GbsrGenotypeData object.

... Unused.

Value

A GbsrGenotypeData object after removing all filters on samples.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Summarize the information needed for filtering.
gds <- countGenotype(gds)

70 setCallFilter

gds <- countRead(gds)

gds <- setSamFilter(gds,
id = getSamID(gds)[1:10],
missing = 0.2,
dp = c(5, Inf))

Reset all filters applied above.
gds <- resetSamFilter(gds)

Close the connection to the GDS file
closeGDS(gds)

setCallFilter Filter out each genotype call meeting criteria

Description

Perform filtering of each genotype call, neither markers nor samples. Each genotype call is sup-
ported by its read counts for the reference allele and the alternative allele of a marker of a sample.
setCallFilter() set missing to the genotype calls which are not reliable enough and set zero to
reference and alternative read counts of the genotype calls.

Usage

setCallFilter(
object,
dp_count = c(0, Inf),
ref_count = c(0, Inf),
alt_count = c(0, Inf),
dp_qtile = c(0, 1),
ref_qtile = c(0, 1),
alt_qtile = c(0, 1),
...

)

S4 method for signature 'GbsrGenotypeData'
setCallFilter(
object,
dp_count,
ref_count,
alt_count,
dp_qtile,
ref_qtile,
alt_qtile

)

Arguments

object A GbsrGenotypeData object.

setCallFilter 71

dp_count A numeric vector with length two specifying lower and upper limit of total read
counts (reference reads + alternative reads).

ref_count A numeric vector with length two specifying lower and upper limit of reference
read counts.

alt_count A numeric vector with length two specifying lower and upper limit of alternative
read counts.

dp_qtile A numeric vector with length two specifying lower and upper limit of quantile
of total read counts in each sample.

ref_qtile A numeric vector with length two specifying lower and upper limit of quantile
of reference read counts in each sample.

alt_qtile A numeric vector with length two specifying lower and upper limit of quantile
of alternative read counts in each sample.

... Unused.

Details

dp_qtile, ref_qtile, and alt_qtile use quantile values of read counts of each sample to decide
the lower and upper limit of read counts. This function generate two new nodes in the GDS file
linked with the given GbsrGenotypeData object. The filtered read counts and genotype calls will
be stored in the data node in the "FAD" folder and the data node in the "FGT" folder, while the data
node in the "CFT" stores call fitering informatin. To reset the filter applied by setCallFilter(), run
resetCallFilter().

Value

A GbsrGenotypeData object with filters on genotype calls.

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Filter out genotype calls supported by less than 5 reads.
gds <- setCallFilter(gds, dp_count = c(5, Inf))

Filter out genotype calls supported by reads less than
the 20 percentile of read counts per marker in each sample.
gds <- setCallFilter(gds, dp_qtile = c(0.2, 1))

Reset the filter
gds <- resetCallFilter(gds)

Close the connection to the GDS file.
closeGDS(gds)

72 setFixedParameter

setFixedParameter Set fixed allele read biases and mismapping rate

Description

Set fixed allele read biases and mismapping rates of markers

Usage

setFixedParameter(object, bias = NULL, mismap = NULL, parent_geno = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
setFixedParameter(object, bias, mismap, parent_geno)

Arguments

object A GbsrGenotypeData object.

bias A numeric vector of fixed allele read biases to be assigned to valid markers. The
length of bias vector should match the number of valid markers.

mismap A numeric matrix of fixed reference and alternative read mismapping rates to
be assigned to valid markers. The number of rows of the given matrix should
match the number of valid markers and should have two columns that are for
reference and alternative read mismapping rates, respectively.

parent_geno A logical value indicating whether to use fixed parental genotypes in the genoype
estimation by estGeno(). This mode requires the estimated genotypes for
parental samples that were estimated by estGeno() and stored in the GDS file
linked to the input GbsrGenotypeData object.

... Unused.

Details

If you have already executed genotype estimation and want to reuse the marker-wise allele read
biases and mismapping rates estimated in the completed run of estGeno(), you can use them in
the next genotype estimation run. For example, if you want to estimate genotypes with different
argument settings of setGeno(), it is worth to set fixed parameters and run estGeno() with setting
optim = FALSE to skip time-consuming iterative parameter optimization steps but use the estimated
parameters from the first run to incorporate the marker-wise error parameters. Since the bias set by
setFixedParameter() function is the reference allele read bias, the values 0 and 1 mean that the
marker only gives alternative and reference allele reads, respectively. The values in the bias vector
are assigned to the valid markers. Similarly, the values in the mismap matrix are assigned to the
valid markers in the order they appear in the rows.

Value

A GbsrGenotypeData object after adding dominant marker information

setInfoFilter 73

Examples

Create a GDS file from a sample VCF file.
vcf_fn <- system.file("extdata", "sample.vcf", package = "GBScleanR")
gds_fn <- tempfile("sample", fileext = ".gds")
gbsrVCF2GDS(vcf_fn = vcf_fn, out_fn = gds_fn, force = TRUE)

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds <- loadGDS(gds_fn)

Not run.
Run estGeno() and reuse the estimated parameters in the second run.
gds <- makeScheme(gds, generation = 2, crosstype = "self")
gds <- estGeno(gds)
fixed_param <- getFixedParameter(gds)
gds <- setFixedParameter(gds,
bias = fixed_param$bias,
mismap = fixed_param$mismap)
gds <- estGeno(gds, optim = FALSE, call_threshold = 0.5)

You can also set arbitrary values.
bias <- sample(seq(0, 1, 0.01), nmar(gds), replace = TRUE)
mismap <- cbind(sample(seq(0, 0.2, 0.01), nmar(gds), replace = TRUE),

sample(seq(0, 0.2, 0.01), nmar(gds), replace = TRUE))
gds <- setFixedParameter(gds, bias = bias, mismap = mismap)

Close the connection to the GDS file
closeGDS(gds)

setInfoFilter Filter out markers based on marker quality metrics

Description

A VCF file usually has marker quality metrics in the INFO filed and those are stored in a GDS file
created via GBScleanR. This function filter out markers based on those marker quality metrics.

Usage

setInfoFilter(
object,
mq = 0,
fs = Inf,
qd = 0,
sor = Inf,
mqranksum = c(-Inf, Inf),
readposranksum = c(-Inf, Inf),
baseqranksum = c(-Inf, Inf),
...

)

S4 method for signature 'GbsrGenotypeData'
setInfoFilter(object, mq, fs, qd, sor, mqranksum, readposranksum, baseqranksum)

74 setMarFilter

Arguments

object A GbsrGenotypeData object.

mq A numeric value to specify minimum mapping quality (shown as MQ in the
VCF format).

fs A numeric value to specify maximum Phred-scaled p-value (strand bias) (shown
as FS in the VCF format).

qd A numeric value to specify minimum Variant Quality by Depth (shown as QD
in the VCF format).

sor A numeric value to specify maximum Symmetric Odds Ratio (strand bias) (shown
as SOR in the VCF format).

mqranksum A numeric values to specify the lower and upper limit of Alt vs. Ref read map-
ping qualities (shown as MQRankSum in the VCF format).

readposranksum A numeric values to specify the lower and upper limit of Alt vs. Ref read posi-
tion bias (shown as ReadPosRankSum in the VCF format).

baseqranksum A numeric values to specify the lower and upper limit of Alt Vs. Ref base
qualities (shown as BaseQRankSum in the VCF format).

... Unused.

Details

Detailed explanation of each metric can be found in GATK’s web site.

Value

A GbsrGenotypeData object with filters on markers.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

gds <- setInfoFilter(gds, mq = 40, qd = 20)

Close the connection to the GDS file.
closeGDS(gds)

setMarFilter Filter out markers

Description

Search markers which do not meet the criteria and label them as "invalid".

https://gatk.broadinstitute.org/hc/en-us

setMarFilter 75

Usage

setMarFilter(
object,
id = NA_integer_,
missing = 1,
het = c(0, 1),
mac = 0,
maf = 0,
ad_ref = c(0, Inf),
ad_alt = c(0, Inf),
dp = c(0, Inf),
mean_ref = c(0, Inf),
mean_alt = c(0, Inf),
sd_ref = Inf,
sd_alt = Inf,
...

)

S4 method for signature 'GbsrGenotypeData'
setMarFilter(
object,
id,
missing,
het,
mac,
maf,
ad_ref,
ad_alt,
dp,
mean_ref,
mean_alt,
sd_ref,
sd_alt

)

Arguments

object A GbsrGenotypeData object.

id A vector of integers matching with snp ID which can be retrieve by getMarID().
The markers with the specified IDs will be filtered out.

missing A numeric value [0-1] to specify the maximum missing genotype call rate per
marker

het A numeric vector with length two [0-1] to specify the minimum and maximum
heterozygous genotype call rate per marker

mac A integer value to specify the minimum minor allele count per marker

maf A numeric value to specify the minimum minor allele frequency per marker.

ad_ref A numeric vector with length two specifying lower and upper limit of reference
read counts per marker.

ad_alt A numeric vector with length two specifying lower and upper limit of alternative
read counts per marker.

76 setParents

dp A numeric vector with length two specifying lower and upper limit of total read
counts per marker.

mean_ref A numeric vector with length two specifying lower and upper limit of mean of
reference read counts per marker.

mean_alt A numeric vector with length two specifying lower and upper limit of mean of
alternative read counts per marker.

sd_ref A numeric value specifying the upper limit of standard deviation of reference
read counts per marker.

sd_alt A numeric value specifying the upper limit of standard deviation of alternative
read counts per marker.

... Unused.

Details

For mean_ref, mean_alt, sd_ref, and sd_alt, this function calculate mean and standard deviation
of reads obtained for samples at each SNP marker. If a mean read counts of a marker was smaller
than the specified lower limit or larger than the upper limit, this function labels the marker as
"invalid". In the case of sd_ref and sd_alt, standard deviations of read counts of each marker are
checked and the markers having a larger standard deviation will be labeled as "invalid". To check
valid and invalid markers, run validMar().

Value

A GbsrGenotypeData object with filters on markers.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the information needed for filtering.
gds <- countGenotype(gds)
gds <- countRead(gds)

gds <- setMarFilter(gds,
id = getMarID(gds)[1:100],
missing = 0.2,
dp = c(5, Inf))

Close the connection to the GDS file.
closeGDS(gds)

setParents Set labels to samples which should be recognized as parents of the
population to be subjected to error correction.

Description

Specify two or more samples in the dataset as parents of the population. Markers will be filtered
out up on your specification.

setParents 77

Usage

setParents(object, parents, nonmiss = FALSE, mono = FALSE, bi = FALSE, ...)

S4 method for signature 'GbsrGenotypeData'
setParents(object, parents, nonmiss, mono, bi)

Arguments

object A GbsrGenotypeData object.

parents A vector of strings with at least length two. The specified strings should match
with the samples ID available via getSamID().

nonmiss A logical value whether to filter out markers which are missing in parents.

mono A logical value whether to filter out markers which are not monomorphic in
parents.

bi A logical value whether to filter out marekrs which are not biallelic between
parents.

... Unused.

Details

The clean function of GBScleanR uses read count information of samples and their parents sepa-
rately to estimate most probable genotype calls of them. Therefore, you must specify proper sam-
ples as parents via this function. If you would like to remove SNP markers which are not biallelic
and/or not monomorphic in each parent, set mono = TRUE and bi = TRUE. The replicates of parental
samples specified to the repliate argument of setParents() will have the same genotypes at
all markers in the estimated genotypes obtained via estGeno(). In the genotype estimation by
estGeno(), the Viterbi scores for each possible genotype at each marker for the replicates will be
replaced with the average score for the replicates.

Value

A GbsrGenotypeData object with parents information.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Find the IDs of parental samples.
parents <- grep("Founder", getSamID(gds), value = TRUE)

Set the parents and flip allele information
if the reference sample (Founder1 in our case) has homozygous
alternative genotype at some markers of which alleles will
be swapped to make the reference sample have homozygous
reference genotype.
gds <- setParents(gds, parents = parents)

Initialize a scheme object stored in the slot of the GbsrGenotypeData.
We chose `crosstype = "pair"` because two inbred founders were mated
in our breeding scheme.
We also need to specify the mating matrix which has two rows and

78 setPloidy

one column with integers 1 and 2 indicating a sample (founder)
with the memberID 1 and a sample (founder) with the memberID 2
were mated.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Add information of the next cross conducted in our scheme.
We chose 'crosstype = "selfing"', which do not require a
mating matrix.
gds <- addScheme(gds, crosstype = "selfing")

Execute error correction by estimating genotype and haplotype of
founders and offspring.
gds <- estGeno(gds)

Close the connection to the GDS file.
closeGDS(gds)

setPloidy Set ploidy

Description

Set the ploidy of a given population in the input GbsrGenotypeData object.

Usage

setPloidy(object, ploidy = 2, ...)

S4 method for signature 'GbsrGenotypeData'
setPloidy(object, ploidy = 2)

Arguments

object A GbsrGenotypeData object.

ploidy A integer value to specify the ploidy of the given population.

... Unused.

Details

The genotype estimation by estGeno() would be performed with the assumption of the ploidy
specified through this function or the ploidy argument of loadGDS(). When an odd number was
specified as ploidy, the ploidy of intermediate generations would be treated as ploidy + 1 to
properly list up possible descendent haplotype patterns in the process by estGeno().

Value

A GbsrGenotypeData object with filters on markers.

See Also

getPloidy()

setReplicates 79

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

gds <- setPloidy(gds, ploidy = 4)

Close the connection to the GDS file.
closeGDS(gds)

setReplicates Set identifiers to indicates which samples are replicates.

Description

Not implemented yet. This function assign identifiers that indicates which samples are replicates
those which should have the same genotypes at all markers.

Usage

setReplicates(object, replicates, ...)

S4 method for signature 'GbsrGenotypeData'
setReplicates(object, replicates)

Arguments

object A GbsrGenotypeData object.

replicates A vector of integers, numbers, or characters to indicate grouping of samples as
replicates.

... Unused.

Details

The replicates of samples specified in setReplicates() will have the same genotypes at all mark-
ers in the estimated genotypes obtained via estGeno(). In the genotype estimation by estGeno(),
the Viterbi scores for each possible genotype (haplotype) at each marker for the replicates will be
replaced with the average score for the replicates.

Value

A GbsrGenotypeData object with genotype count information.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

gds <- setParents(gds, parents = c("Founder1", "Founder2"))

80 setSamFilter

When your data has 100 samples, two replicates for each offspring,
and the samples are ordered as the 1st replicate followed by the 2nd
replicate, you can specify replicates as below.
gds <- setReplicates(gds, replicates = rep(1:50, each = 2))

If you need to confirm the order of samples, run the following code.
id <- getSamID(gds)

Replicate IDs should be set also to parents. Therefore, please include

Close the connection to the GDS file.
closeGDS(gds)

setSamFilter Filter out samples

Description

Search samples which do not meet the criteria and label them as "invalid".

Usage

setSamFilter(
object,
id = NA_character_,
missing = 1,
het = c(0, 1),
mac = 0,
maf = 0,
ad_ref = c(0, Inf),
ad_alt = c(0, Inf),
dp = c(0, Inf),
mean_ref = c(0, Inf),
mean_alt = c(0, Inf),
sd_ref = Inf,
sd_alt = Inf,
...

)

S4 method for signature 'GbsrGenotypeData'
setSamFilter(
object,
id,
missing,
het,
mac,
maf,
ad_ref,
ad_alt,
dp,
mean_ref,

setSamFilter 81

mean_alt,
sd_ref,
sd_alt

)

Arguments

object A GbsrGenotypeData object.

id A vector of strings matching with sample ID which can be retrieve by getSamID().
The samples with the specified IDs will be filtered out.

missing A numeric value [0-1] to specify the maximum missing genotype call rate per
sample.

het A vector of two numeric values [0-1] to specify the minimum and maximum
heterozygous genotype call rate per sample.

mac A integer value to specify the minimum minor allele count per sample.

maf A numeric value to specify the minimum minor allele frequency per sample.

ad_ref A numeric vector with length two specifying lower and upper limit of reference
read counts per sample.

ad_alt A numeric vector with length two specifying lower and upper limit of alternative
read counts per sample.

dp A numeric vector with length two specifying lower and upper limit of total read
counts per sample.

mean_ref A numeric vector with length two specifying lower and upper limit of mean of
reference read counts per sample.

mean_alt A numeric vector with length two specifying lower and upper limit of mean of
alternative read counts per sample.

sd_ref A numeric value specifying the upper limit of standard deviation of reference
read counts per sample.

sd_alt A numeric value specifying the upper limit of standard deviation of alternative
read counts per sample.

... Unused.

Details

For mean_ref, mean_alt, sd_ref, and sd_alt, this function calculate mean and standard deviation
of reads obtained at SNP markers of each sample. If a mean read counts of a sample was smaller
than the specified lower limit or larger than the upper limit, this function labels the sample as
"invalid". In the case of sd_ref and sd_alt, standard deviations of read counts of each sample are
checked and the samples having a larger standard deviation will be labeled as "invalid". To check
valid and invalid samples, run validSam().

Value

A GbsrGenotypeData object with filters on samples.

82 showScheme

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize the information needed for filtering.
gds <- countGenotype(gds)
gds <- countRead(gds)

gds <- setSamFilter(gds,
id = getSamID(gds)[1:10],
missing = 0.2,
dp = c(5, Inf))

Close the connection to the GDS file.
closeGDS(gds)

showScheme Show the information stored in a GbsrScheme object

Description

Print the information of each generation in a GbsrScheme object in the scheme slot of a GbsrGeno-
typeData object. A GbsrScheme object stores information of a population size, mating combina-
tions and a type of cross applied to each generation of the breeding process to generate the popula-
tion which you are going to subject to the estGeno() function.

Usage

showScheme(object, ...)

S4 method for signature 'GbsrGenotypeData'
showScheme(object)

S4 method for signature 'GbsrScheme'
showScheme(object, parents_name, pedigree)

Arguments

object A GbsrGenotypeData object.

... Unused.

parents_name A vector of strings to indicate names of parental samples. This argument is used
internally by showScheme() for the gbsrGenotypeData object.

pedigree A integer vector indicating the member ID assignment to samples. This argu-
ment is used internally by showScheme() for the gbsrGenotypeData object.

Value

NULL. Print the scheme information on the R console.

thinMarker 83

See Also

initScheme() and addScheme()

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Biparental F2 population.
gds <- setParents(gds, parents = c("Founder1", "Founder2"))

setParents gave member ID 1 and 2 to Founder1 and Founder2, respectively.
gds <- initScheme(gds, mating = cbind(c(1:2)))

Now the progenies of the cross above have member ID 3.
If `crosstype = "selfing"` or `"sibling"`, you can omit a `mating` matrix.
gds <- addScheme(gds, crosstype = "self")

Now you can execute `estGeno()` which requires a [GbsrScheme] object.

Close the connection to the GDS file
closeGDS(gds)

thinMarker Remove markers potentially having redundant information.

Description

Markers within the length of the sequenced reads (usually ~ 150 bp, up to your sequencer) poten-
tially have redundant information and those will cause unexpected errors in error correction which
assumes independency of markers each other. This function only retains the first marker or the least
missing rate marker from the markers locating within the specified stretch.

Usage

thinMarker(object, range = 150, ...)

S4 method for signature 'GbsrGenotypeData'
thinMarker(object, range)

Arguments

object A GbsrGenotypeData object.

range A integer value to indicate the stretch to search markers.

... Unused.

84 validMar

Details

This function search valid markers from the first marker of each chromosome and compare its
physical position with a neighbor marker. If the distance between those markers are equal or less
then range, one of them which has a larger missing rate will be removed (labeled as invalid marker).
When the first marker was retained and the second marker was removed as invalid marker, next the
distance between the first marker and the third marker will be checked and this cycle is repeated
until reaching the end of each chromosome. Run validMar() to check the valid SNP markers.

Value

A GbsrGenotypeData object with filters on markers.

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

Summarize genotype count information to be used in thinMarker().
gds <- countGenotype(gds)
gds <- thinMarker(gds, range = 150)

closeGDS(gds) # Close the connection to the GDS file

validMar Return a logical vector indicating which are valid SNP markers.

Description

Return a logical vector indicating which are valid SNP markers.

Usage

validMar(object, chr = NULL, ...)

validMar(object) <- value

S4 method for signature 'GbsrGenotypeData'
validMar(object, chr)

S4 replacement method for signature 'GbsrGenotypeData'
validMar(object) <- value

Arguments

object A GbsrGenotypeData object.

chr A index to spefcify chromosome to get information.

... Unused.

value A logical vector indicating valid markers with the length matching with the num-
ber of markers.

validSam 85

Value

A logical vector of the same length with the number of total SNP markers

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

validMar(gds)

Close the connection to the GDS file.
closeGDS(gds)

validSam Return a logical vector indicating which are valid samples.

Description

Return a logical vector indicating which are valid samples.

Usage

validSam(object, parents = FALSE, ...)

validSam(object) <- value

S4 method for signature 'GbsrGenotypeData'
validSam(object, parents)

S4 replacement method for signature 'GbsrGenotypeData'
validSam(object) <- value

Arguments

object A GbsrGenotypeData object.

parents A logical value to indicate to set FALSE or TRUE to parental samples. If
you specify parents = "only", this function returns a logical vector indicating
TRUE for only parental samples.

... Unused.

value A logical vector indicating valid samples with the length matching with the num-
ber of samples

Value

A logical vector of the same length with the number of total samples.

86 validSam

Examples

Load data in the GDS file and instantiate a [GbsrGenotypeData] object.
gds_fn <- system.file("extdata", "sample.gds", package = "GBScleanR")
gds <- loadGDS(gds_fn)

validSam(gds)

Close the connection the GDS file.
closeGDS(gds)

Index

∗ internal
GBScleanR, 13

addScheme, 3
addScheme(), 4, 5, 53, 56, 83
addScheme,GbsrGenotypeData-method

(addScheme), 3
addScheme,GbsrScheme-method

(addScheme), 3
assignScheme, 5
assignScheme(), 5
assignScheme,GbsrGenotypeData-method

(assignScheme), 5
assignScheme,GbsrScheme-method

(assignScheme), 5

boxplotGBSR, 6

closeGDS, 8
closeGDS(), 55
closeGDS,GbsrGenotypeData-method

(closeGDS), 8
countGenotype, 9
countGenotype(), 7, 21–27, 36, 37, 52, 60, 63
countGenotype,GbsrGenotypeData-method

(countGenotype), 9
countRead, 10
countRead(), 7, 28–30, 39–42, 49, 50, 52, 60,

63
countRead,GbsrGenotypeData-method

(countRead), 10

data.frame, 17

estGeno, 11
estGeno(), 4, 5, 9, 12, 15, 17, 32–34, 47, 52,

53, 56, 72, 77–79
estGeno,GbsrGenotypeData-method

(estGeno), 11

GBScleanR, 3, 5, 13, 17, 52, 56, 66, 73, 77
GBScleanR-package (GBScleanR), 13
gbsrGDS2CSV, 14
gbsrGDS2CSV,GbsrGenotypeData-method

(gbsrGDS2CSV), 14

gbsrGDS2VCF, 15
gbsrGDS2VCF,GbsrGenotypeData-method

(gbsrGDS2VCF), 15
GbsrGenotypeData, 4, 5, 7–10, 12, 14, 16–18,

20–33, 35–51, 53–59, 61, 62, 64–72,
74–79, 81–85

GbsrGenotypeData
(GbsrGenotypeData-class), 17

GbsrGenotypeData-class, 17
GbsrScheme, 3–5, 17, 52, 53, 56, 82
GbsrScheme (GbsrScheme-class), 17
GbsrScheme-class, 17
gbsrVCF2GDS, 18
getAllele, 19
getAllele,GbsrGenotypeData-method

(getAllele), 19
getChromosome, 20
getChromosome,GbsrGenotypeData-method

(getChromosome), 20
getCountAlleleAlt, 21
getCountAlleleAlt,GbsrGenotypeData-method

(getCountAlleleAlt), 21
getCountAlleleMissing, 22
getCountAlleleMissing,GbsrGenotypeData-method

(getCountAlleleMissing), 22
getCountAlleleRef, 23
getCountAlleleRef(), 9
getCountAlleleRef,GbsrGenotypeData-method

(getCountAlleleRef), 23
getCountGenoAlt, 24
getCountGenoAlt,GbsrGenotypeData-method

(getCountGenoAlt), 24
getCountGenoHet, 25
getCountGenoHet,GbsrGenotypeData-method

(getCountGenoHet), 25
getCountGenoMissing, 26
getCountGenoMissing,GbsrGenotypeData-method

(getCountGenoMissing), 26
getCountGenoRef, 27
getCountGenoRef(), 9
getCountGenoRef,GbsrGenotypeData-method

(getCountGenoRef), 27
getCountRead, 28

87

88 INDEX

getCountRead,GbsrGenotypeData-method
(getCountRead), 28

getCountReadAlt, 29
getCountReadAlt(), 10
getCountReadAlt,GbsrGenotypeData-method

(getCountReadAlt), 29
getCountReadRef, 30
getCountReadRef(), 10
getCountReadRef,GbsrGenotypeData-method

(getCountReadRef), 30
getFixedParameter, 31
getFixedParameter,GbsrGenotypeData-method

(getFixedParameter), 31
getGenotype, 32
getGenotype,GbsrGenotypeData-method

(getGenotype), 32
getHaplotype, 33
getHaplotype,GbsrGenotypeData-method

(getHaplotype), 33
getInfo, 35
getInfo,GbsrGenotypeData-method

(getInfo), 35
getMAC, 36
getMAC,GbsrGenotypeData-method

(getMAC), 36
getMAF, 37
getMAF(), 9
getMAF,GbsrGenotypeData-method

(getMAF), 37
getMarID, 38
getMarID,GbsrGenotypeData-method

(getMarID), 38
getMeanReadAlt, 39
getMeanReadAlt,GbsrGenotypeData-method

(getMeanReadAlt), 39
getMeanReadRef, 40
getMeanReadRef(), 10
getMeanReadRef,GbsrGenotypeData-method

(getMeanReadRef), 40
getMedianReadAlt, 41
getMedianReadAlt(), 10
getMedianReadAlt,GbsrGenotypeData-method

(getMedianReadAlt), 41
getMedianReadRef, 42
getMedianReadRef,GbsrGenotypeData-method

(getMedianReadRef), 42
getParents, 43
getParents,GbsrGenotypeData-method

(getParents), 43
getPloidy, 44
getPloidy(), 78
getPloidy,GbsrGenotypeData-method

(getPloidy), 44
getPosition, 44
getPosition,GbsrGenotypeData-method

(getPosition), 44
getRead, 45
getRead,GbsrGenotypeData-method

(getRead), 45
getReplicates, 46
getReplicates,GbsrGenotypeData-method

(getReplicates), 46
getSamID, 48
getSamID(), 77
getSamID,GbsrGenotypeData-method

(getSamID), 48
getSDReadAlt, 49
getSDReadAlt,GbsrGenotypeData-method

(getSDReadAlt), 49
getSDReadRef, 50
getSDReadRef,GbsrGenotypeData-method

(getSDReadRef), 50
ggplot2::stat_smooth(), 59

histGBSR, 51

initScheme, 52
initScheme(), 4, 12, 56, 83
initScheme,GbsrGenotypeData-method

(initScheme), 52
initScheme,GbsrScheme-method

(initScheme), 52
isOpenGDS, 54
isOpenGDS,GbsrGenotypeData-method

(isOpenGDS), 54

loadGDS, 55
loadGDS(), 8, 16–18, 55, 78

makeScheme, 56
makeScheme(), 56
makeScheme,GbsrGenotypeData-method

(makeScheme), 56

nmar, 57
nmar,GbsrGenotypeData-method (nmar), 57
nsam, 58
nsam,GbsrGenotypeData-method (nsam), 58

pairsGBSR, 59
plotDosage, 61
plotGBSR, 62
plotReadRatio, 64

reopenGDS, 65
reopenGDS(), 16

INDEX 89

reopenGDS,GbsrGenotypeData-method
(reopenGDS), 65

resetCallFilter, 66
resetCallFilter(), 66, 71
resetCallFilter,GbsrGenotypeData-method

(resetCallFilter), 66
resetFilter, 67
resetFilter,GbsrGenotypeData-method

(resetFilter), 67
resetMarFilter, 68
resetMarFilter,GbsrGenotypeData-method

(resetMarFilter), 68
resetSamFilter, 69
resetSamFilter,GbsrGenotypeData-method

(resetSamFilter), 69

sample, 9, 10, 21–30, 36, 37, 39–42, 49, 50
seqVCF2GDS, 19
setCallFilter, 70
setCallFilter(), 9, 10, 12, 32, 33, 46, 66, 67
setCallFilter,GbsrGenotypeData-method

(setCallFilter), 70
setFixedParameter, 72
setFixedParameter(), 31, 72
setFixedParameter,GbsrGenotypeData-method

(setFixedParameter), 72
setInfoFilter, 73
setInfoFilter,GbsrGenotypeData-method

(setInfoFilter), 73
setMarFilter, 74
setMarFilter(), 8, 55, 67, 68
setMarFilter,GbsrGenotypeData-method

(setMarFilter), 74
setParents, 76
setParents(), 12, 15, 43, 53, 56, 77
setParents,GbsrGenotypeData-method

(setParents), 76
setPloidy, 78
setPloidy(), 44
setPloidy,GbsrGenotypeData-method

(setPloidy), 78
setReplicates, 79
setReplicates(), 47, 79
setReplicates,GbsrGenotypeData-method

(setReplicates), 79
setSamFilter, 80
setSamFilter(), 8, 55, 67, 69
setSamFilter,GbsrGenotypeData-method

(setSamFilter), 80
showScheme, 82
showScheme(), 4, 5, 53, 56
showScheme,GbsrGenotypeData-method

(showScheme), 82

showScheme,GbsrScheme-method
(showScheme), 82

thinMarker, 83
thinMarker,GbsrGenotypeData-method

(thinMarker), 83

validMar, 84
validMar(), 20–31, 35–42, 45, 49, 50, 57, 76,

84
validMar,GbsrGenotypeData-method

(validMar), 84
validMar<- (validMar), 84
validMar<-,GbsrGenotypeData-method

(validMar), 84
validSam, 85
validSam(), 48, 58, 81
validSam,GbsrGenotypeData-method

(validSam), 85
validSam<- (validSam), 85
validSam<-,GbsrGenotypeData-method

(validSam), 85

	addScheme
	assignScheme
	boxplotGBSR
	closeGDS
	countGenotype
	countRead
	estGeno
	GBScleanR
	gbsrGDS2CSV
	gbsrGDS2VCF
	GbsrGenotypeData-class
	GbsrScheme-class
	gbsrVCF2GDS
	getAllele
	getChromosome
	getCountAlleleAlt
	getCountAlleleMissing
	getCountAlleleRef
	getCountGenoAlt
	getCountGenoHet
	getCountGenoMissing
	getCountGenoRef
	getCountRead
	getCountReadAlt
	getCountReadRef
	getFixedParameter
	getGenotype
	getHaplotype
	getInfo
	getMAC
	getMAF
	getMarID
	getMeanReadAlt
	getMeanReadRef
	getMedianReadAlt
	getMedianReadRef
	getParents
	getPloidy
	getPosition
	getRead
	getReplicates
	getSamID
	getSDReadAlt
	getSDReadRef
	histGBSR
	initScheme
	isOpenGDS
	loadGDS
	makeScheme
	nmar
	nsam
	pairsGBSR
	plotDosage
	plotGBSR
	plotReadRatio
	reopenGDS
	resetCallFilter
	resetFilter
	resetMarFilter
	resetSamFilter
	setCallFilter
	setFixedParameter
	setInfoFilter
	setMarFilter
	setParents
	setPloidy
	setReplicates
	setSamFilter
	showScheme
	thinMarker
	validMar
	validSam
	Index

