Package ‘atena’

November 4, 2025
Type Package
Title Analysis of Transposable Elements
Version 1.16.0

Description Quantify expression of transposable elements (TEs) from RNA-seq
data through different methods, including ERVmap, TEtranscripts and
Telescope. A common interface is provided to use each of these methods,
which consists of building a parameter object, calling the quantification
function with this object and getting a SummarizedExperiment object as
output container of the quantified expression profiles. The implementation
allows one to quantify TEs and gene transcripts in an integrated manner.

License Artistic-2.0
Encoding UTF-8
Depends R (>=4.3.0), SummarizedExperiment

Imports methods, stats, Matrix, BiocGenerics, MatrixGenerics,
BiocParallel, S4Vectors, IRanges, Seqinfo, GenomicFeatures,
GenomicRanges, GenomicAlignments, Rsamtools, GenomeInfoDb,
SQUAREM, sparseMatrixStats, AnnotationHub, matrixStats, cli

Suggests covr, BiocStyle, knitr, rmarkdown, RUnit,
TxDb.Dmelanogaster. UCSC.dm6.ensGene, RColorBrewer

biocViews Transcription, Transcriptomics, RNASeq, Sequencing,
Preprocessing, Software, GeneExpression, Coverage,
DifferentialExpression, FunctionalGenomics

VignetteBuilder knitr
URL https://github.com/rcastelo/atena

BugReports https://github.com/rcastelo/atena/issues
RoxygenNote 7.3.2

Collate 'AllGenerics.R' 'AllClasses.R' 'ERVmap.R' "TEtranscripts.R'
"Telescope.R' 'annotations.R' 'atena.R' 'atenaMethod.R’
'overlappingModes.R' 'qtex.R' 'utils.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/atena
git_branch RELEASE_3_22

git_last commit 93211ad

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

https://github.com/rcastelo/atena
https://github.com/rcastelo/atena/issues

atena-package

Date/Publication 2025-11-04

Author Beatriz Calvo-Serra [aut],
Robert Castelo [aut, cre]

Maintainer Robert Castelo <robert.castelo@upf.edu>

Contents
atena-package L. 2
annotaTEs e 3
annotateTEsGetters L e 5
atenaParam-class 6
ERVmapParam-class e 10
OneCodeToFindThemAll, 14
ovUnion e 15
gtex,ERVmapParam-method o o 17
QuantifyParam-classo 19
rmskatenaparser L e 21
rmskbasicparser L. e e e e e e e 22
rmskidentity L. e e e e 23
TelescopeParam-class L 23
TEtranscriptsParam-class L 27

Index 31

atena-package atena: analysis of transposable elements in R and Bioconductor
Description

The atena package provides a complete re-implementation in R of three existing methods for the
quantification of transposable element (TE) expression in order to facilitate its integration into Bio-
conductor workflows for the analysis of RNA-seq data. The three methods are TEtranscripts (Jin et
al. (2015)), ERVmap (Tokuyama et al. (2018)) and Telescope (Bendall et al.(2019)).

Details

The main functions are:

TEtranscriptsParam - build parameter objects of the class TEtranscriptsParam-class for
the TEtranscripts expression quantification method

ERVmapParam - build parameter objects of the class ERVmapParam-class for the ERVmap
expression quantification method

TelescopeParam - build parameter objects of the class TelescopeParam-class for the Tele-
scope expression quantification method

gtex - call the TE expression quantification method using a previously built parameter object

For detailed information on usage, see the package vignette, by typing vignette(”atena").

All questions and bug reports should be posted to the Bioconductor Support Site:

https://support.bioconductor.org

The code of the development version of the package is available at the GitHub repository:

https://github.com/functionalgenomics/atena

https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1073/pnas.1814589115
https://doi.org/10.1371/journal.pcbi.1006453
https://support.bioconductor.org
https://github.com/functionalgenomics/atena

annotaTEs 3

Author(s)
Maintainer: Robert Castelo <robert.castelo@upf.edu>

Authors:

e Beatriz Calvo-Serra <beatriz.calvo@upf.edu>

References

Jin Y et al. TEtranscripts: a package for including transposable elements in differential expression
analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593-3599. DOI: https://doi.org/
10.1093/bioinformatics/btv422

Tokuyama M et al. ERVmap analysis reveals genome-wide transcription of human endogenous
retroviruses. PNAS. 2018;115(50):12565-12572. DOI: https://doi.org/10.1073/pnas.1814589115

Bendall et al. Telescope: characterization of the retrotranscriptome by accurate estimation of trans-
posable element expression. PLOS Comp. Biol. 2019;15(9):e1006453. DOI: https://doi.org/
10.1371/journal .pcbi. 1006453

See Also
Useful links:

e https://github.com/rcastelo/atena
* Report bugs at https://github.com/rcastelo/atena/issues

annotaTEs Get RepeatMasker UCSC annotations

Description

The annotaTEs() function fetches RepeatMasker UCSC transposable element (TE) annotations
using AnnotationHub and parses them.

Usage

annotaTEs(
genome = "hg38",
parsefun = rmskidentity,
verbose = TRUE,

AHid = NULL,
)
Arguments
genome The genome version of the desired RepeatMasker annotations (e.g. "hg38").
parsefun A function to parse the annotations:

* Function rmskidentity returns RepeatMasker annotations as present in
AnnotationHub, without processing them.

https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1073/pnas.1814589115
https://doi.org/10.1371/journal.pcbi.1006453
https://doi.org/10.1371/journal.pcbi.1006453
https://github.com/rcastelo/atena
https://github.com/rcastelo/atena/issues

annotaTEs

Function rmskbasicparser parses annotations by removing low complex-
ity regions, simple repeats, satellites, rRNA, scRNA, snRNA, srpRNA and
tRNA. Also removes TEs with a strand different than "+" or "-". Modifies
"repFamily" and "repClass" columns when a "?" is present or when they
are defined as "Unknown" or "Other". Finally, assigns a unique id to each
TE instance by adding the suffix "_dup" plus a number at the end of the
"repName".

Function rmskatenaparser parses RepeatMasker annotations reconstruct-
ing fragmented TEs by assembling together fragments from the same TE
that are close enough. For LTR class TEs, it tries to reconstruct full-length
and partial TEs following the LTR - internal region - LTR structure. Input
is a GRanges object and output is a GRangesList object.

Function OneCodeToFindThemAll parses annotations following the One
code to find them all’ method by (Bailly-Bechet et al. 2014). Input is a
GRanges object and output is a GRangesList object.

User-defined function. Input and output should be GRanges objects.

verbose (Default TRUE) Logical value indicating whether to report progress.

AHid AnnotationHub unique identifier, of the form AH12345, of an object with TE
annotations. This is an optional argument to specify a concrete AnnotationHub
resource, for instance when more there is more than one RepeatMasker annota-
tion available for a specific genome version. If AHid is not specified, the latest
RepeatMasker annotation is be used.

Arguments passed to parsefun.

Details

Given a specific genome version, the annotaTEs() function fetches RepeatMasker annotations
from UCSC Genome Browser using the AnnotationHub package. Since RepeatMasker not only
provides TE annotations but also low complexity DNA sequences and other types of repeats, a
specific parsefun can be set to parse these annotations (e.g. rmskbasicparser or a user-defined
function). If no parsing is required, parsefun can be set to rmskidentity.

Value

A [‘GRanges‘][GenomicRanges::GRanges-class] object with transposable element annotations.

See Also

AnnotationHub

Examples

rmskid <- annotaTEs(genome="hgl19", parsefun=rmskidentity)

rmskid

https://doi.org/10.1186/1759-8753-5-13

annotate TEsGetters 5

annotateTEsGetters Getter functions of TE classes from parsed RepeatMasker annotations.

Description

Getter functions of TE classes from parsed RepeatMasker annotations.

Usage

getLTRs(
annot,
relLength = 0.9,
fullLength = TRUE,
partial = FALSE,
soloLTR = FALSE,
otherLTR = FALSE,
returnMask = FALSE

)
getLINEs(annot, rellLength = 0.9, returnMask = FALSE)
getSINEs(annot, rellLength = 0.9, returnMask = FALSE)

getDNAtransposons(annot, rellength = 0.9, returnMask = FALSE)

Arguments

annot A [‘GRanges ‘][GenomicRanges::GRanges-class] or [‘GRangesList‘][GenomicRanges::GRangesList
class] object obtained with the function ‘annotaTES()‘, using either [‘OneCodeToFind-
ThemAll‘] or [‘rmskatenaparser‘] as RepeatMasker parser functions. Alterna-
tively, if ‘annot* is a [‘QuantifyParam‘] or a [‘SummarizedExperiment ‘][SummarizedExperiment::Su
class] object produced by the ‘qtex()* function, this function will attempt to ex-
tract the corresponding annotations from inside those objects.

relLength (Default 0.9) Numeric value that can take values between O to 1. Sets the mini-
mum relative length required for features. Elements with a lower relative length
than rellLength will be filtered. The relative length used is the one obtained
by OneCodeToFindThemAll() or rmskatenaparser(). (length of the recon-
structed TE / length of the reference).

fulllLength (Default TRUE) Logical value on whether reconstructed full-length LTR TEs
(elements with structure LTR - internal region - LTR) should be selected.

partial (Default FALSE) Logical value on whether partially reconstructed LTR TEs
should be selected (structure LTR - internal region or internal region - LTR).

soloLTR (Default FALSE) Logical value on whether solo LTRs should be selected. Note
that only fragments unambiguously identified as LTRs thanks to the identifica-
tion of their equivalent internal region are considered as LTRs.

otherLTR (Default FALSE) Logical value on whether other TEs from the LTR class, not in-
cluded in any of the previous three categories, should be selected. These include
TEs from LTR class that cannot be unambiguously identified as LTR o internal
region, and thus cannot be reconstructed into partial or full-length elements; as
well as solo internal regions.

6 atenaParam-class

returnMask (Default FALSE) Logical value indicating whether a subset of the input anno-
tations should be returned (default) or a logical mask of the same length as the
input annotations where TRUE values indicate what annotations belong to the TE
class we want to obtain with the getter function.

Details

Retrieves annotations from the TE class corresponding to the getter function, using RepeatMasker
annotations after parsing them with the OneCodeToFindThemAll() or rmskatenaparser() func-
tion. The rellLength parameter can be used to filter out elements with a lower relative length.
Further parameters can be used to fine-tune the type of elements to be reported.

Value

A [‘GRangesList‘][GenomicRanges::GRangesList-class] object with annotations from class corre-
sponding to the getter function (LTRs, LINEs, SINEs or DNA transposons).

Examples

rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE)

rmskatLTR <- getLTRs(rmskat, rellLength=0.95, fulllength=TRUE,
partial=TRUE)

rmskatLTR

rmskat_line <- getLINEs(rmskat, rellLength=0.95)

rmskat_sine <- getSINEs(rmskat, rellength=0.95)

rmskat_DNAtrans <- getDNAtransposons(rmskat, rellength=0.95)

atenaParam-class atena parameter class

Description

This is a class for storing parameters to quantify TE (and gene) expression using the atena method.
It is a subclass of the [‘QuantifyParam‘].

Build an object of the class atenaParam.

Usage
atenaParam(
bfl,
teFeatures,
aggregateby = character(0),
ovMode = "ovUnion",

geneFeatures = NULL,
singleEnd = TRUE,
strandMode = 1L,

atenaParam-class

ignoreStrand = FALSE,

fragments
pi_prior =

TRUE,
oL,

theta_prior = oL,

em_epsilon
maxIter =

1e-07,
100L,
reassign_mode

= "exclude”,

conf_prob = 0.9,
verbose = TRUE

)

S4 method for signature 'atenaParam'

show(object)

Arguments

bfl

teFeatures

aggregateby

ovMode

geneFeatures

singleEnd

strandMode

ignoreStrand

A BamFile or BamFilelList object, or a character string vector of BAM file-
names.

A GRanges or GRangesList object. Elements in this object should have names,
which are used as a grouping factor for genomic ranges forming a common lo-
cus. This grouping is performed previous to TE expression quantification, unlike
the aggregation of quantifications performed when the aggregateby parameter
is specified, which is performed after individual TE instances are quantified.

Character vector with column names from the annotation to be used to aggregate
quantifications. By default, this is an empty vector, which means that the names
of the input GRanges or GRangesList object given in the teFeatures parameter
are used to aggregate quantifications.

Character vector indicating the overlapping mode. Available options are: "ovU-
nion" (default) and "ovIntersectionStrict”, which implement the corresponding
methods from HTSeq (https://htseq.readthedocs.io/en/release_0.11.
1/count.html). Ambiguous alignments (alignments overlapping > 1 feature)
are not counted.

(Default NULL) A GRanges or GRangesList object with the gene annotated
features to be quantified. Unique reads are first tallied with respect to these gene
features whereas multi-mapping reads are preferentially assigned to TEs. Ele-
ments should have names indicating the gene name/id. In case that geneFeatures
is a GRanges and contains a metadata column named type, only the elements
with type = exon are considered for the analysis. Then, exon counts are sum-
marized to the gene level. If NULL, gene expression is not quantified.

(Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

(Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is
a per-object switch on GAlignmentPairs objects that controls the behavior of
the strand getter. See GALlignmentPairs class for further detail. If singleEnd =
TRUE, then strandMode is ignored.

(Default FALSE) A logical which defines if the strand should be taken into con-
sideration when computing the overlap between reads and annotated features.
When ignoreStrand = FALSE, an aligned read is considered to be overlapping
an annotated feature as long as they have a non-empty intersecting genomic
range on the same strand, while when ignoreStrand = TRUE the strand is not
considered.

https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://htseq.readthedocs.io/en/release_0.11.1/count.html

8 atenaParam-class

fragments (Default TRUE) A logical; applied to paired-end data only. When fragments=FALSE,
the read-counting method only counts ‘mated pairs’ from opposite strands (non-
ambiguous properly paired reads), while when fragments=TRUE same-strand
pairs, singletons, reads with unmapped pairs and other ambiguous or not prop-
erly paired fragments are also counted (see "Pairing criteria" in readGAlignments()).
For further details see summarizeOverlaps().

pi_prior (Default 0) A positive numeric object indicating the prior on pi. The same prior
can be specified for all features setting pi_prior as a scalar, or each feature
can have a specific prior by setting pi_prior as a vector with names() corre-
sponding to all feature names. Setting a pi prior is equivalent to adding n unique
reads.

theta_prior (Default 0) A positive numeric object indicating the prior on Q. The same prior
can be specified for all features setting theta_prior as a scalar, or each fea-
ture can have a specific prior by setting theta_prior as a vector with names ()
corresponding to all feature names. Equivalent to adding n non-unique reads.

em_epsilon (Default 1e-7) A numeric scalar indicating the EM Algorithm Epsilon cutoff.

maxIter A positive integer scalar storing the maximum number of iterations of the EM
SQUAREM algorithm (Du and Varadhan, 2020). Default is 100 and this value
is passed to the maxiter parameter of the squarem() function.

reassign_mode (Default ’exclude’) Character vector indicating reassignment mode after EM
step. Available methods are ’exclude’ (reads with more than one best assign-
ment are excluded from the final counts), ’choose’ (when reads have more than
one best assignment, one of them is randomly chosen), ’average’ (the read
count is divided evenly among the best assignments) and ’conf” (only assign-
ments that exceed a certain threshold -defined by conf_prob parameter- are
accepted, then the read count is proportionally divided among the assignments
above conf_prob).

conf_prob (Default 0.9) Minimum probability for high confidence assignment.
verbose (Default TRUE) Logical value indicating whether to report progress.
object A atenaParam object.

Details

This is the constructor function for objects of the class atenaParam-class. This type of object is
the input to the function qtex() for quantifying expression of transposable elements, which will
call the atena method with this type of object. The atena method uses a multiple ’__no_feature’ ap-
proach in which as many °’__no_feature’ features as different overlapping patterns of multimapping
reads in the overlapping matrix are used to represent alignments mapping outside annotations.

Value

A [‘atenaParam‘] object.

Slots

singleEnd (Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end (FALSE).

strandMode (Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is a per-
object switch on GAlignmentPairs objects that controls the behavior of the strand getter. See
GAlignmentPairs class for further detail. If singleEnd = TRUE, then strandMode is ignored.

atenaParam-class 9

ignoreStrand (Default FALSE) A logical which defines if the strand should be taken into consid-
eration when computing the overlap between reads and annotated features. When ignoreStrand
= FALSE, an aligned read is considered to be overlapping an annotated feature as long as they
have a non-empty intersecting genomic range on the same strand, while when ignoreStrand
= TRUE the strand is not considered.

fragments (Default TRUE) A logical; applied to paired-end data only. When fragments=FALSE,
the read-counting method only counts ‘mated pairs’ from opposite strands (non-ambiguous
properly paired reads), while when fragments=TRUE same-strand pairs, singletons, reads with
unmapped pairs and other ambiguous or not properly paired fragments are also counted (see
"Pairing criteria" in readGAlignments()). For further details see summarizeOverlaps().

pi_prior (Default 0) A positive numeric object indicating the prior on pi. The same prior can be
specified for all features setting pi_prior as a scalar, or each feature can have a specific prior
by setting pi_prior as a vector with names() corresponding to all feature names. Setting a
pi prior is equivalent to adding n unique reads.

theta_prior (Default 0) A positive numeric object indicating the prior on Q. The same prior can
be specified for all features setting theta_prior as a scalar, or each feature can have a specific
prior by setting theta_prior as a vector with names() corresponding to all feature names.
Equivalent to adding n non-unique reads.

em_epsilon (Default 1e-7) A numeric scalar indicating the EM Algorithm Epsilon cutoff.

maxIter A positive integer scalar storing the maximum number of iterations of the EM SQUAREM
algorithm (Du and Varadhan, 2020). Default is 100 and this value is passed to the maxiter
parameter of the squarem() function.

reassign_mode (Default ’exclude’) Character vector indicating reassignment mode after EM step.
Available methods are ’exclude’ (reads with more than one best assignment are excluded
from the final counts), ’choose’ (when reads have more than one best assignment, one of
them is randomly chosen), *average’ (the read count is divided evenly among the best assign-
ments) and ’conf’ (only assignments that exceed a certain threshold -defined by conf_prob
parameter- are accepted, then the read count is proportionally divided among the assignments
above conf_prob).

conf_prob (Default 0.9) Minimum probability for high confidence assignment.

Examples

bamfiles <- list.files(system.file("extdata"”, package="atena"),
pattern="x.bam”, full.names=TRUE)
Not run:
use the following two instructions to fetch annotations, they are here
commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)
rmskLTR <- getLTRs(rmskat, rellength=0.8,
fulllLength=TRUE,
partial=TRUE,
otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80@flenpartoth.rds”,
package="atena"))

10 ERVmapParam-class

build a parameter object for the atena method

atpar <- atenaParam(bfl=bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE)

atpar

ERVmapParam-class ERVmap parameter class

Description

This is a class for storing parameters provided to the ERVmap algorithm. It is a subclass of the
[‘QuantifyParam‘] class.

Build an object of the class ERVmapParam

Usage
ERVmapParam(
bfl,
teFeatures,
aggregateby = character(0),
ovMode = "ovUnion",

geneFeatures = NULL,

singleEnd = TRUE,

ignoreStrand = TRUE,

strandMode = 1L,

fragments = !singleEnd,
maxMismatchRate = 0.02,
suboptimalAlignmentTag = "auto”,
suboptimalAlignmentCutoff = 5,
geneCountMode = "all”,

verbose = TRUE

)
S4 method for signature 'ERVmapParam'
show(object)
Arguments
bfl A BamFile or BamFilelList object, or a character string vector of BAM file-
names.
teFeatures A GRanges or GRangesList object with the transposable element (TE) anno-

tated features to be quantified. Elements in this object should have names, which
are used as a grouping factor for genomic ranges forming a common locus, un-
less other metadata column names are specified in the aggregateby parameter.

ERVmapParam-class

aggregateby

ovMode

geneFeatures

singleEnd

ignoreStrand

strandMode

fragments

maxMismatchRate

11

Character vector with column names in the annotation to be used to aggregate
quantifications. By default, this is an empty vector, which means that the names
of the input GRanges or GRangesList object given in the teFeatures parameter
are used to aggregate quantifications.

Character vector indicating the overlapping mode. Available options are: "ovU-
nion" (default) and "ovIntersectionStrict", which implement the corresponding
methods from HTSeq (https://htseq.readthedocs.io/en/release_0.11.
1/count.html). Ambiguous alignments (alignments overlapping > 1 feature)
are addressed as in the original ERVmap algorithm.

(Default NULL) A GRanges or GRangesList object with the gene annotated
features to be quantified. Overlaps with unique reads are first tallied with respect
to these gene features. Elements should have names indicating the gene name/id.
In case that geneFeatures is a GRanges and contains a metadata column named
type, only the elements with type = exon are considered for the analysis. Then,
exon counts are summarized to the gene level. If NULL, gene expression is not
quantified.

(Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

(Default TRUE) A logical which defines if the strand should be taken into con-
sideration when computing the overlap between reads and annotated features.
When ignore_strand = FALSE, an aligned read is considered to be overlapping
an annotated feature as long as they have a non-empty intersecting genomic
range on the same strand, while when ignoreStrand = TRUE the strand is not
considered.

(Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is
a per-object switch on GAlignmentPairs objects that controls the behavior of
the strand getter. See GALlignmentPairs class for further detail. If singleEnd =
TRUE, then strandMode is ignored.

(Default not singleEnd) A logical; applied to paired-end data only. When
fragments=TRUE, the read-counting method in the original ERVmap algorithm
is applied: each mate of a paired-end read is counted (including ambiguous
and not properly paired reads). When fragments=FALSE, if the two mates of
a paired-end read map to the same element, they are counted as a single hit
and singletons, reads with unmapped pairs and other ambiguous or not properly
paired fragments are not counted (see "Pairing criteria" in readGAlignments()).

(Default 0.02) Numeric value storing the maximum mismatch rate employed by
the ERVmap algorithm to discard aligned reads whose rate of sum of hard and
soft clipping or whose rate of the edit distance over the genome reference to the
length of the read is above this threshold.

suboptimalAlignmentTag

(Default "auto") Character string storing the tag name in the BAM files that
stores the suboptimal alignment score used in the third filter of ERVmap; see
Tokuyama et al. (2018). The default, suboptimalAlignmentTag="auto", first
extracts the name of the read mapper software from one or more BAM files. If
BAM files were generated by BWA, the suboptimal alignment scores are ob-
tained from a tag called XS. For other read mappers, the suboptimal alignment
score is considered to be missing since, except from BWA, no other aligner
provides a tag with suboptimal alignment scores. In this case, the available
secondary alignments are used to implement an analogous approach to that of

https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://doi.org/10.1073/pnas.1814589115

12 ERVmapParam-class

the third ERVmap filter. When suboptimalAlignmentTag="none", it also per-
forms the latter approach even when the tag XS is available. When this parameter
is different from "auto"” and "none”, a tag with the given name is used to extract
the suboptimal alignment score.

suboptimalAlignmentCutoff
(Default 5) Numeric value storing the cutoff above which the difference be-
tween the alignment score and the suboptimal alignment score is considered
sufficiently large to retain the alignment. When this value is set to NA, the filter-
ing step based on suboptimal alignment scores is skipped.

geneCountMode (Default "all") Character string indicating if the ERVmap read filters applied to
quantify TEs expression should also be applied when quantifying gene expres-
sion ("ervmap") or not ("all"), in which case all primary alignments mapping
to genes are counted.

verbose (Default TRUE) Logical value indicating whether to report progress.
object A ERVmapParam object.
Details

This is the constructor function for objects of the class ERVmapParam-class. This type of ob-
ject is the input to the function qtex() for quantifying expression of transposable elements using
the ERVmap method Tokuyama et al. (2018). The ERVmap algorithm processes reads following
conservative filtering criteria to provide reliable raw count data for each TE.

Value

A ERVmapParam object.

Slots

readMapper The name of the software used to align reads, obtained from the BAM file header.

singleEnd (Default FALSE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

strandMode (Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is a
per-object switch on GAlignmentPairs objects that controls the behavior of the strand getter.
See GAlignmentPairs class for further detail. If singleEnd = TRUE, then strandMode #’ is
ignored.

ignoreStrand (Default TRUE) A logical which defines if the strand should be taken into con-
sideration when computing the overlap between reads and TEs in the annotations. When
ignore_strand = FALSE, only those reads which overlap the TE and are on the same strand
are counted. On the contrary, when ignore_strand = TRUE, any read overlapping an element
in teFeatures is counted regardless of the strand.

fragments (Default not singleEnd) A logical; applied to paired-end data only. When fragments=TRUE,
the read-counting method in the original ERVmap algorithm is applied: each mate of a paired-
end read is counted (including ambiguous and not properly paired reads). When fragments=FALSE,
if the two mates of a paired-end read map to the same element, they are counted as a single
hit and singletons, reads with unmapped pairs and other ambiguous or not properly paired
fragments are not counted (see "Pairing criteria" in readGAlignments()).

maxMismatchRate (Default 0.02) Numeric value storing the maximum mismatch rate employed by
the ERVmap algorithm to discard aligned reads whose rate of sum of hard and soft clipping, or
of the edit distance over the genome reference, to the length of the read is above this threshold.

https://doi.org/10.1073/pnas.1814589115

ERVmapParam-class 13

suboptimalAlignmentTag (Default "auto") Character string storing the tag name in the BAM files
that stores the suboptimal alignment score used in the third filter of ERVmap; see Tokuyama
et al. (2018). The default, suboptimalAlignmentTag="auto", assumes that either the BAM
files were generated by BWA and include a tag called XS that stores the suboptimal alignment
score or, if the XS tag is not available, then it uses the available secondary alignments to imple-
ment an analogous approach to that of the third ERVmap filter. When suboptimalAlignmentTag="none",
it also performs the latter approach even when the tag XS is available. When this parameter is
different from "auto” and "none”, a tag with the given name is used to extract the suboptimal
alignment score. The absence of that tag will prompt an error.

suboptimalAlignmentCutoff (Default 5) Numeric value storing the cutoff above which the dif-
ference between the alignment score and the suboptimal alignment score is considered suffi-
ciently large to retain the alignment. When this value is set to NA, then the filtering step based
on suboptimal alignment scores is skipped.

geneCountMode (Default "all") Character string indicating if the ERVmap read filters applied to
quantify TEs expression should also be applied when quantifying gene expression ("ervmap")
or not ("all"), in which case all primary alignments mapping to genes are counted.

References

Tokuyama M et al. ERVmap analysis reveals genome-wide transcription of human endogenous
retroviruses. PNAS. 2018;115(50):12565-12572. DOI: https://doi.org/10.1073/pnas.1814589115

Tokuyama M et al. ERVmap analysis reveals genome-wide transcription of human endogenous
retroviruses. PNAS. 2018;115(50):12565-12572. DOI: https://doi.org/10.1073/pnas.1814589115

Examples

bamfiles <- list.files(system.file("extdata”, package="atena"),
pattern="x.bam", full.names=TRUE)
Not run:
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)
rmskLTR <- getLTRs(rmskat, rellength=0.8,
fullLength=TRUE,
partial=TRUE,
otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80@flenpartoth.rds”,
package="atena"))

build a parameter object for ERVmap

empar <- ERVmapParam(bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE,
suboptimalAlignmentCutoff=NA)

empar

https://doi.org/10.1073/pnas.1814589115
https://doi.org/10.1073/pnas.1814589115

14

OneCodeToFindThemAll

OneCodeToFindThemAll OneCodeloFindThemAll parser of RepeatMasker annotations

Description

OneCodeToFindThemAll parser of RepeatMasker annotations

Usage

OneCodeToFindThemAll(

gr,

dictionary = NULL,
fuzzy = FALSE,
strict = FALSE,

insert = -1,

BPPARAM = SerialParam(progressbar = TRUE)

Arguments

gr

dictionary

fuzzy

strict

insert

BPPARAM

Details

A [‘GRanges‘][GenomicRanges::GRanges-class] object with RepeatMasker an-
notations from AnnotationHub

(Default NULL) When NULL, a dictionary is built based on names of repeats.
If not, a data.frame with equivalences LTR - internal regions created by the user,
where first column should be the name of the internal region and the second col-
umn should be the LTR(s). When more than one LTR, these should be separated
by ":".

(Default FALSE) A logical; if TRUE, the search for equivalences between inter-
nal parts and LTRs to reconstruct LTR class transposable elements is less strin-
gent, allowing more matches between corresponding subparts. This option can
increase the proportion of false positives (incorrectly reconstructed LTR class
TEs).

(Default FALSE) A logical; if TRUE, the 80-80 rule is applied, i.e. only copies
with more than 80 and more than 80 bp long are reported.

(Default -1) An integer. When insert < 0, two fragments are assembled if
the distance separating their furthest extremities is less than twice the reference
length of the element. When insert > 0, fragments are assembled if the distance
between their closest extremities is equal or less than insert. When insert =
0, two fragments are assembled if they are in contact next to each other.

See ?bplapply in the BiocParallel package. Can be used to run calculations in
parallel.

Implementation of One code to find them all (Bailly-Bechet et al. 2014). Parses RepeatMasker
annotations from UCSC by assembling together fragments from the same transposable elemenet
(TE) that are close enough (determined by the insert parameter). For TEs from the LTR class,
the parser tries to reconstruct full-length, when possible, or partial TEs following the LTR - internal
region - LTR structure. Equivalences between internal regions and flanking LTRs can be set by the
user with the dictionary parameter or can be obtained by the parser. In this last case, the fuzzy
parameter determines the level of stringency when searching for LTR - internal region equivalences.

https://doi.org/10.1186/1759-8753-5-13

ovUnion 15

Value

A [‘GRangesList‘][GenomicRanges::GRangesList-class] object.

References

Bailly-Bechet et al. "One code to find them all": a perl tool to conveniently parse RepeatMasker
output files. Mobile DNA. 2014;5(1):1-15. DOI: https://doi.org/10.1186/1759-8753-5-13

Examples

Not run:
rmskoc <- annotaTEs(genome="dm6", parsefun=0neCodeToFindThemAll,
fuzzy=FALSE, strict=FALSE)

End(Not run)

ovUnion Pre-defined overlapping mode functions

Description

The following functions control the way in which overlaps between aligned reads and annotated
features are resolved when an aligned read overlaps more than one feature on the same locus:

Usage

ovUnion(reads, features, ignoreStrand, inter.feature = TRUE)

ovIntersectionStrict(reads, features, ignoreStrand, inter.feature = TRUE)

Arguments
reads A GAlignments, GAlignmentList or a GAlignmentPairs object.
features A GRanges object with annotated features.

ignoreStrand (Default FALSE) A logical which defines if the strand should be taken into con-
sideration when computing the overlap between reads and annotated features.
When ignoreStrand = FALSE, an aligned read will be considered to be overlap-
ping an annotated feature as long as they have a non-empty intersecting genomic
ranges on the same strand, while when ignoreStrand = TRUE the strand will not
be considered.

inter.feature When TRUE, ambiguous alignments (alignments overlapping > 1 features) are
removed and not counted. When inter.feature is set to FALSE, these am-
biguous overlaps are taken into account and addressed differently depending on
the TE quantification.

https://doi.org/10.1186/1759-8753-5-13

16 ovUnion

Details

e ovUnion(): (default)
e ovIntersectionStrict():

» User supplied: a function taking the same parameters as the previous three functions and
returning a Hits object.

They take the following parameters:

These functions are given to the mode parameter of the qtex() function and are similar to the
functions Union() and IntersectionStrict() from the GenomicAlignments package, with the
difference that instead of returning counts of reads overlapping annotated features, they return the
actual overlaps, because the counting is deferred to other algorithms that follow some specific
strategy when a read maps to more than one feature. For this same reason, these functions lack
the inter.feature argument found in the corresponding functions from the GenomicAlignments
package.

Value

A Hits object; see the Hits-class manual page.

Examples

bamfiles <- list.files(system.file("extdata"”, package="atena"),
pattern="x.bam", full.names=TRUE)
Not run:
use the following two instructions to fetch annotations, they are here
commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)
rmskLTR <- getLTRs(rmskat, rellLength=0.8, fulllLength=TRUE, partial=TRUE,
otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80@flenpartoth.rds”,
package="atena"))

build a parameter object for Telescope

tspar <- TelescopeParam(bfl=bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE)

quantify expression using the 'ovIntersectionStrict()' mode function
tsquant <- gtex(tspar, mode=ovIntersectionStrict)

qtex,ERVmapParam-method

gtex, ERVmapParam-method
Quantify transposable element expression

Description

The gtex () method quantifies transposable element expression.

Usage

S4 method for signature 'ERVmapParam'
gtex(

X,

phenodata = NULL,

mode = ovUnion,

yieldSize = 1000000L,

verbose = 1,

BPPARAM = SerialParam(progressbar = ifelse(verbose == 1, TRUE, FALSE))
)
S4 method for signature 'TEtranscriptsParam'
gtex(

X)

phenodata = NULL,

mode = ovUnion,

yieldSize = 1000000L,

BPPARAM = SerialParam(progressbar = TRUE)

)

S4 method for signature 'TelescopeParam'
gtex(

X,

phenodata = NULL,

mode = ovUnion,

yieldSize = 1000000L,

auxiliaryFeatures = FALSE,

BPPARAM = SerialParam(progressbar = TRUE)

)

S4 method for signature 'atenaParam'
gtex(

X,

phenodata = NULL,

mode = ovUnion,

yieldSize = 1000000L,

auxiliaryFeatures = FALSE,

BPPARAM = SerialParam(progressbar = TRUE)

18 qtex, ERVmapParam-method

Arguments

X An QuantifyParam object of one of the following subclasses:

* ATEtranscriptsParamobject built using the constructor function TEtranscriptsParam().
This object will trigger qtex() to use the quantification algorithm by Jin et
al. (2015).

* A ERVmapParam object built using the constructor function ERVmapParam().
This object will trigger qtex () to use the quantification algorithm by Tokuyama
et al. (2018).

* A TelescopeParam object built using the constructor function TelescopeParam().
This object will trigger qtex() to use the quantification algorithm by Ben-
dall et al. (2019).

* An atenaParam object built using the constructor function atenaParam().
This object will trigger qtex () to use a quantification algorithm specifically
developed in this package.

phenodata A data. frame or DataFrame object storing phenotypic data to include in the re-
sulting [‘SummarizedExperiment‘][SummarizedExperiment::SummarizedExperiment-
class] object. If phenodata is set, its row names will become the column names
of the resulting [‘SummarizedExperiment‘][SummarizedExperiment::SummarizedExperiment-
class] object.

mode One of the pre-defined overlapping methods such as ovUnion(), ovIntersectionStrict
or a user-supplied overlapping function. For a user-supplied overlapping func-
tion, the input parameters must match those of the pre-defined methods and the
function must return a Hits object with subject hits matching the annotated fea-
tures. This parameter is analogous to the mode parameter of the summarizeOverlaps()
function from the GenomicAlignments package.

yieldSize Field inherited from BamFile. The method for signature ERVmapParam() reads
the BAM file by chunks. yieldSize represents the number of records (chunk
size) to yield each time the file is read.

verbose (Default 1). When verbose > 1, detailed information on the quantification steps
is provided. Warnings are always present regardless of the value of verbose.

BPPARAM An object of a [‘BiocParallelParam ‘][BiocParallel::BiocParalle]Param-class] sub-
class to configure the parallel execution of the code. By default, [‘BiocParallelParam‘][BiocParallel::S
class] object is used, which does not use any parallelization, with the flag progress=TRUE
to show progress through the calculations.
auxiliaryFeatures
(Default FALSE). It only applies when ‘x‘ is a [‘TelescopeParam‘] or an [‘atena-
Param‘] object. When TRUE, auxiliary features created during expression quan-
tification are also returned in the [‘SummarizedExperiment‘] [‘SummarizedExperiment‘][Summarize
class] object.

Details

Giving some AtenaParam object sub-class as input, the qtex () method quantifies the expression of
transposable elements (TEs). The particular algorithm to perform the quantification will be selected
depending on the specific sub-class of input AtenaParam object, see argument x above.

Value

A [‘SummarizedExperiment‘][SummarizedExperiment::SummarizedExperiment-class] object.

QuantifyParam-class 19

References

Jin Y et al. TEtranscripts: a package for including transposable elements in differential expression
analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593-3599. DOI: https://doi.org/
10.1093/bioinformatics/btv422

Tokuyama M et al. ERVmap analysis reveals genome-wide transcription of human endogenous
retroviruses. PNAS, 115(50):12565-12572,2018. https://doi.org/10.1073/pnas.1814589115

Bendall ML et al. Telescope: characterization of the retrotranscriptome by accurate estimation
of transposable element expression. PLOS Computational Biology, 15:¢1006453, 2019. https:
//doi.org/10.1371/journal.pchi.1006453

See Also

TEtranscriptsParam ERVmapParam TelescopeParam

Examples

bamfiles <- list.files(system.file("extdata”, package="atena"),
pattern="x_bam", full.names=TRUE)
Not run:
use the following two instructions to fetch annotations, they are here
commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)

rmskLTR <- getLTRs(rmskat, rellLength=0.8,

fullLength=TRUE,

partial=TRUE,

otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80@flenpartoth.rds”,
package="atena"))

build a parameter object for Telescope

tspar <- TelescopeParam(bfl=bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE)

quantify expression

gts <- qgtex(tspar)

QuantifyParam-class QuantifyParam parameter class

Description

This is a virtual class from which other classes are derived for storing parameters provided to quan-
tification methods of transposable elements from RNA-seq data.

https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1073/pnas.1814589115
https://doi.org/10.1371/journal.pcbi.1006453
https://doi.org/10.1371/journal.pcbi.1006453

20 QuantifyParam-class

Usage

S4 method for signature 'QuantifyParam'
path(object)

S4 method for signature 'QuantifyParam'

features(x)
Arguments
object A [‘QuantifyParam‘] object.
X A [*QuantifyParam‘] object.
Value

path(): Filesystem paths to the BAM files in the input parameter object.

features(): The GenomicRanges or GenomicRangesList object with the features in the input
parameter object.

Slots

bfl A [‘BamFileList‘][Rsamtools::BamFileList-class] object.
features A [‘GRanges‘][GenomicRanges::GRanges-class] object.

aggregateby Character vector with column names in the annotation to be used to aggregate quan-
tifications.

ovMode Character vector indicating the overlapping mode. Available options are: "ovUnion" (de-
fault) and "ovIntersectionStrict", which implement the corresponding methods from HTSeq
(https://htseq.readthedocs.io/en/release_0.11.1/count.html). In the TEtranscripts,
ERVmap and Telescope methods ambiguous alignments (alignments overlapping > 1 feature)
are addressed differently depending on the method. In the atena method, those overlaps are
not counted.

See Also

ERVmapParam-class TelescopeParam-class TEtranscriptsParam-class atenaParam-class

Examples

bamfiles <- list.files(system.file("extdata"”, package="atena"),
pattern="x.bam”, full.names=TRUE)
Not run:
use the following two instructions to fetch annotations, they are here
commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)
rmskLTR <- getLTRs(rmskat, rellength=0.8,
fulllLength=TRUE,
partial=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION
YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

https://htseq.readthedocs.io/en/release_0.11.1/count.html

rmskatenaparser 21

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80flenpartoth.rds”,
package="atena"))

build a parameter object for TEtranscripts
ttpar <- TEtranscriptsParam(bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE)
just check that the parameter object belongs to the expected classes
is(ttpar, "QuantifyParam")
is(ttpar, "TEtranscriptsParam”)

rmskatenaparser atena annotation parser of RepeatMasker annotations

Description

atena annotation parser of RepeatMasker annotations

Usage

rmskatenaparser(gr, strict = FALSE, insert = 1000)

Arguments
gr A [‘GRanges‘][GenomicRanges::GRanges-class] object with RepeatMasker an-
notations from AnnotationHub
strict (Default FALSE) A logical; if TRUE, the 80-80 rule is applied, i.e. only copies
with more than 80 and more than 80 bp long are reported.
insert (Default 1000L) An integer > 0. Fragments are assembled together if the dis-
tance between their closest extremities is equal or less than insert. When
insert = 0, two fragments are assembled if they are in contact next to each
other.
Details

atena annotation parser of RepeatMasker annotations. Parses RepeatMasker annotations from UCSC
by assembling together fragments from the same transposable element (TE) that are close enough
(determined by the insert parameter). For TEs from the LTR class, the parser tries to recon-
struct full-length, when possible, or partial TEs following the LTR - internal region - LTR structure.
Equivalences between LTR and internal regions are found by, first, identifying LTR regions (those
with the "LTR" substring in their name) and internal regions (those with a suffix such as "-int", "-I",
etc.). Then, LTR are assigned to internal regions for which the comparison of the two names are
has a higher number of equal consecutive characters.

Value

A [‘GRangesList‘][GenomicRanges::GRangesList-class] object.

22 rmskbasicparser

Examples

rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE)
rmskat

rmskbasicparser Parser of RepeatMasker annotations

Description

Parser of RepeatMasker annotations

Usage
rmskbasicparser(gr)
Arguments
gr A [‘GRanges‘][GenomicRanges::GRanges-class] object with RepeatMasker an-
notations from AnnotationHub
Details

Parses annotations by removing low complexity regions, simple repeats, satellites, rRNA, scRNA,
snRNA, srpRNA and tRNA. Also removes TEs with a strand different than "+" or "-". Modifies
"repFamily" and "repClass" columns when a "?" is present or when they are defined as "Unknown"
or "Other". Finally, assigns a unique id to each TE instance by adding the suffix "_dup" plus a
number at the end of the "repName".

Value

A [‘GRanges ‘][GenomicRanges::GRanges-class] object.

Examples

rmskba <- annotaTEs(genome="dm6", parsefun=rmskbasicparser)
rmskba

rmskidentity 23

rmskidentity Identity function for parsefun

Description

Identity function for parsefun

Usage

rmskidentity(gr)

Arguments

gr A [‘GRanges ‘][GenomicRanges::GRanges-class] object.

Details
Identity function: returns the [‘GRanges][GenomicRanges::GRanges-class] object without any
modification.

Value

A [‘GRanges ‘][GenomicRanges::GRanges-class] object.

Examples

rmskid <- annotaTEs(genome="dm6", parsefun=rmskidentity)
rmskid

TelescopeParam-class Telescope parameter class

Description

This is a class for storing parameters provided to the Telescope algorithm.

Build an object of the class TelescopeParam.

Usage

TelescopeParam(
bfl,
teFeatures,
aggregateby = character(0),
ovMode = "ovUnion”,
geneFeatures = NULL,
singleEnd = TRUE,
strandMode = 1L,
ignoreStrand = FALSE,
fragments = FALSE,

24

minOverlFract
pi_prior = 0L
theta_prior =
em_epsilon =
maxIter = 100
reassign_mode
conf_prob = 0@
verbose = TRU

)

S4 method fo
show(object)

Arguments

bfl

teFeatures

aggregateby

ovMode

geneFeatures

singleEnd

strandMode

ignoreStrand

TelescopeParam-class

=0.2,

oL,

1e-07,

L,

= "exclude”,
.9,

E

r signature 'TelescopeParam'

A BamFile or BamFilelList object, or a character string vector of BAM file-
names.

A GRanges or GRangesList object. Elements in this object should have names,
which are used as a grouping factor for genomic ranges forming a common locus
(equivalent to "locus" column in Telescope). This grouping is performed previ-
ous to TE expression quantification, unlike the aggregation of quantifications
performed when the aggregateby parameter is specified, which is performed
after individual TE instances are quantified.

Character vector with column names from the annotation to be used to aggregate
quantifications. By default, this is an empty vector, which means that the names
of the input GRanges or GRangesList object given in the teFeatures parameter
are used to aggregate quantifications.

Character vector indicating the overlapping mode. Available options are: "ovU-
nion" (default) and "ovIntersectionStrict”, which implement the corresponding
methods from HTSeq (https://htseq.readthedocs.io/en/release_0.11.
1/count.html). Ambiguous alignments (alignments overlapping > 1 feature)
are addressed as in the original Telescope method: the overlap with the longest
overlapping length is kept.

(Default NULL) A GRanges or GRangesList object with the gene annotated
features to be quantified. The TEtranscripts approach for gene expression quan-
tification is used, in which overlaps with multi-mapping reads are preferentially
assigned to TEs. Elements should have names indicating the gene name/id. In
case that geneFeatures is a GRanges and contains a metadata column named
type, only the elements with type = exon are considered for the analysis. Then,
exon counts are summarized to the gene level. If NULL, gene expression is not
quantified.

(Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

(Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is
a per-object switch on GAlignmentPairs objects that controls the behavior of
the strand getter. See GAlignmentPairs class for further detail. If singleEnd =
TRUE, then strandMode is ignored.

(Default FALSE) A logical which defines if the strand should be taken into con-
sideration when computing the overlap between reads and annotated features.
When ignoreStrand = FALSE, an aligned read is considered to be overlapping
an annotated feature as long as they have a non-empty intersecting genomic

https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://htseq.readthedocs.io/en/release_0.11.1/count.html

TelescopeParam-class

fragments

minOverlFract

pi_prior
theta_prior
em_epsilon

maxIter

reassign_mode

conf_prob
verbose

object

Details

25

range on the same strand, while when ignoreStrand = TRUE the strand is not
considered.

(Default FALSE) A logical; applied to paired-end data only. When fragments=FALSE,
the read-counting method only counts ‘mated pairs’ from opposite strands (non-
ambiguous properly paired reads), while when fragments=TRUE same-strand
pairs, singletons, reads with unmapped pairs and other ambiguous or not prop-

erly paired fragments are also counted (see "Pairing criteria" in readGAlignments()).
fragments=TRUE is equivalent to the original Telescope algorithm. For further
details see summarizeOverlaps().

(Default 0.2) A numeric scalar. minOverlFract is multiplied by the read length
and the resulting value is used to discard alignments for which the overlapping
length (number of base pairs the alignment and the feature overlap) is lower.
When no minimum overlap is required, set minOverlFract = 0.

(Default 0) A positive integer scalar indicating the prior on pi. This is equivalent
to adding n unique reads.

(Default 0) A positive integer scalar storing the prior on Q. Equivalent to adding
n non-unique reads.

(Default 1e-7) A numeric scalar indicating the EM Algorithm Epsilon cutoff.

A positive integer scalar storing the maximum number of iterations of the EM
SQUAREM algorithm (Du and Varadhan, 2020). Default is 100 and this value
is passed to the maxiter parameter of the squarem() function.

(Default ’exclude’) Character vector indicating reassignment mode after EM
step. Available methods are ’exclude’ (reads with more than one best assign-
ment are excluded from the final counts), ’choose’ (when reads have more than
one best assignment, one of them is randomly chosen), ’average’ (the read
count is divided evenly among the best assignments) and ’conf’ (only assign-
ments that exceed a certain threshold -defined by conf_prob parameter- are
accepted, then the read count is proportionally divided among the assignments
above conf_prob).

(Default 0.9) Minimum probability for high confidence assignment.
(Default TRUE) Logical value indicating whether to report progress.

A TelescopeParam object.

This is the constructor function for objects of the class TelescopeParam-class. This type of object
is the input to the function qtex() for quantifying expression of transposable elements, which will
call the Telescope algorithm Bendall et al. (2019) with this type of object.

Value

A TelescopeParam object.

Slots

singleEnd (Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end (FALSE).

strandMode (Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is a per-
object switch on GAlignmentPairs objects that controls the behavior of the strand getter. See
GAlignmentPairs class for further detail. If singleEnd = TRUE, then strandMode is ignored.

https://doi.org/10.1371/journal.pcbi.1006453

26

TelescopeParam-class

ignoreStrand (Default FALSE) A logical which defines if the strand should be taken into consid-
eration when computing the overlap between reads and annotated features. When ignoreStrand
= FALSE, an aligned read is considered to be overlapping an annotated feature as long as they
have a non-empty intersecting genomic range on the same strand, while when ignoreStrand
= TRUE the strand is not considered.

fragments (Default FALSE) A logical; applied to paired-end data only. When fragments=FALSE,
the read-counting method only counts ‘mated pairs’ from opposite strands (non-ambiguous
properly paired reads), while when fragments=TRUE same-strand pairs, singletons, reads with
unmapped pairs and other ambiguous or not properly paired fragments are also counted (see
"Pairing criteria" in readGAlignments()). fragments=TRUE is equivalent to the original Tele-
scope algorithm. For further details see summarizeOverlaps().

minOverlFract (Default 0.2) A numeric scalar. minOverlFract is multiplied by the read length
and the resulting value is used to discard alignments for which the overlapping length (number
of base pairs the alignment and the feature overlap) is lower. When no minimum overlap is
required, set minOverlFract = @.

pi_prior (Default 0) A positive integer scalar indicating the prior on pi. This is equivalent to
adding n unique reads.

theta_prior (Default 0) A positive integer scalar storing the prior on Q. Equivalent to adding n
non-unique reads.

em_epsilon (Default le-7) A numeric scalar indicating the EM Algorithm Epsilon cutoff.

maxIter A positive integer scalar storing the maximum number of iterations of the EM SQUAREM
algorithm (Du and Varadhan, 2020). Default is 100 and this value is passed to the maxiter
parameter of the squarem() function.

reassign_mode (Default ’exclude’) Character vector indicating reassignment mode after EM step.
Available methods are ’exclude’ (reads with more than one best assignment are excluded
from the final counts), ’choose’ (when reads have more than one best assignment, one of
them is randomly chosen), average’ (the read count is divided evenly among the best assign-
ments) and ’conf’ (only assignments that exceed a certain threshold -defined by conf_prob
parameter- are accepted, then the read count is proportionally divided among the assignments
above conf_prob).

conf_prob (Default 0.9) Minimum probability for high confidence assignment.

References

Bendall et al. Telescope: characterization of the retrotranscriptome by accurate estimation of trans-
posable element expression. PLOS Comp. Biol. 2019;15(9):e1006453. DOI: https://doi.org/
10.1371/journal.pcbi. 1006453

Bendall et al. Telescope: characterization of the retrotranscriptome by accurate estimation of trans-
posable element expression. PLOS Comp. Biol. 2019;15(9):e1006453. DOI: https://doi.org/
10.1371/journal.pcbi. 1006453

Examples

bamfiles <- list.files(system.file("extdata"”, package="atena"),
pattern="%.bam", full.names=TRUE)

Not run:
use the following two instructions to fetch annotations, they are here
commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,

strict=FALSE, insert=500)

https://doi.org/10.1371/journal.pcbi.1006453
https://doi.org/10.1371/journal.pcbi.1006453
https://doi.org/10.1371/journal.pcbi.1006453
https://doi.org/10.1371/journal.pcbi.1006453

TEtranscriptsParam-class 27

rmskLTR <- getLTRs(rmskat, rellength=0.8,
fulllLength=TRUE,
partial=TRUE,
otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80@flenpartoth.rds”,
package="atena"))

build a parameter object for Telescope
tspar <- TelescopeParam(bfl=bamfiles,
teFeatures=rmskLTR,
singleEnd=TRUE,
ignoreStrand=TRUE)
tspar

TEtranscriptsParam-class
TEtranscripts parameter class

Description

This is a class for storing parameters provided to the TEtranscripts algorithm. It is a subclass of the
[‘QuantifyParam‘].

Build an object of the class TEtranscriptsParam

Usage

TEtranscriptsParam(
bfl,
teFeatures,
aggregateby = character(0),
ovMode = "ovUnion",
geneFeatures = NULL,
singleEnd = TRUE,
ignoreStrand = FALSE,
strandMode = 1L,
fragments = TRUE,
tolerance = 1e-04,
maxIter = 100L,
verbose = TRUE

S4 method for signature 'TEtranscriptsParam'
show(object)

Arguments

bfl

teFeatures

aggregateby

ovMode

geneFeatures

singleEnd

ignoreStrand

strandMode

fragments

tolerance

maxIter

verbose

object

TEtranscriptsParam-class

a character string vector of BAM file names.

A GRanges or GRangesList object with the TE annotated features to be quanti-
fied. Elements in this object should have names, which are used as a grouping
factor for genomic ranges forming a common locus, unless other metadata col-
umn names are specified in the aggregateby parameter.

Character vector with column names from the annotation to be used to aggregate
quantifications. By default, this is an empty vector, which means that the names
of the input GRanges or GRangesList object given in the teFeatures parameter
are used to aggregate quantifications.

Character vector indicating the overlapping mode. Available options are: "ovU-
nion" (default) and "ovIntersectionStrict”, which implement the corresponding
methods from HTSeq (https://htseq.readthedocs.io/en/release_0.11.
1/count.html). Ambiguous alignments (alignments overlapping > 1 feature)
are addressed as in the original TEtranscripts method.

(Default NULL) A GRanges or GRangesList object with the gene annotated
features to be quantified. Following the TEtranscripts algorithm, overlaps with
unique reads are first tallied with respect to these gene features. Elements
should have names indicating the gene name/id. In case that geneFeatures is a
GRanges and contains a metadata column named type, only the elements with
type = exon are considered for the analysis. Then, exon counts are summarized
to the gene level. If NULL, gene expression is not quantified.

(Default TRUE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

(Default FALSE) Logical value that defines if the strand should be taken into
consideration when computing the overlap between reads and annotated fea-
tures. When ignoreStrand = FALSE, an aligned read is considered to be over-
lapping an annotated feature as long as they have a non-empty intersecting ge-
nomic range on the same strand, while when ignoreStrand = TRUE the strand
is not considered.

(Default 1) Numeric vector which can take values 0, 1 or 2. The strand mode is
a per-object switch on GAlignmentPairs objects that controls the behavior of
the strand getter. See GAlignmentPairs class for further detail. If singleEnd =
TRUE, then strandMode is ignored.

(Default TRUE) Logical value applied to paired-end data only. In both cases
(fragments=FALSE and fragments=TRUE), the read-counting method discards
not properly paired reads. Moreover, when fragments=FALSE, only non-ambiguous
properly paired reads are counted. When fragments=TRUE, ambiguous reads
are also counted (see "Pairing criteria" in readGAlignments()). fragments=TRUE
is equivalent to the behavior of the TEtranscripts algorithm. For further details
see summarizeOverlaps().

A positive numeric scalar storing the minimum tolerance above which the SQUAREM

algorithm (Du and Varadhan, 2020) keeps iterating. Default is 1e-4 and this
value is passed to the tol parameter of the squarem() function.

A positive integer scalar storing the maximum number of iterations of the SQUAREM

algorithm (Du and Varadhan, 2020). Default is 100 and this value is passed to
the maxiter parameter of the squarem() function.

(Default TRUE) Logical value indicating whether to report progress.
A TEtranscriptsParam object.

https://htseq.readthedocs.io/en/release_0.11.1/count.html
https://htseq.readthedocs.io/en/release_0.11.1/count.html

TEtranscriptsParam-class 29

Details

This is the constructor function for objects of the class TEtranscriptsParam-class. This type of
object is the input to the function qtex () for quantifying expression of transposable elements using
the TEtranscripts method Jin et al. (2015). The TEtranscripts algorithm quantifies TE expression
by using an EM algorithm to optimally distribute ambiguously mapped reads.

Value

A TEtranscriptsParam object.

Slots

singleknd (Default FALSE) Logical value indicating if reads are single (TRUE) or paired-end
(FALSE).

ignoreStrand (Default FALSE) A logical which defines if the strand should be taken into consid-
eration when computing the overlap between reads and annotated features. When ignoreStrand
= FALSE, an aligned read will be considered to be overlapping an annotated feature as long as
they have a non-empty intersecting genomic ranges on the same strand, while when ignoreStrand
= TRUE the strand will not be considered.

strandMode (Default 1) Numeric vector which can take values O, 1 or 2. The strand mode is a per-
object switch on GALlignmentPairs objects that controls the behavior of the strand getter. See
GAlignmentPairs class for further detail. If singleEnd = TRUE, then use either strandMode
= NULL or do not specify the strandMode parameter.

fragments (Default TRUE) A logical; applied to paired-end data only. In both cases (fragments=FALSE

and fragments=TRUE), the read-counting method discards not properly paired reads. More-
over, when fragments=FALSE, only non-ambiguous properly paired reads are counted. When

fragments=TRUE, ambiguous reads are also counted (see "Pairing criteria" in readGAlignments()).

fragments=TRUE is equivalent to the behavior of the TEtranscripts algorithm. For further de-
tails see summarizeOverlaps().

tolerance A positive numeric scalar storing the minimum tolerance above which the SQUAREM
algorithm (Du and Varadhan, 2020) keeps iterating. Default is 1e-4 and this value is passed
to the tol parameter of the squarem() function.

maxIter A positive integer scalar storing the maximum number of iterations of the SQUAREM
algorithm (Du and Varadhan, 2020). Default is 100 and this value is passed to the maxiter
parameter of the squarem() function.

References

Jin Y et al. TEtranscripts: a package for including transposable elements in differential expression
analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593-3599. DOI: https://doi.org/
10.1093/bioinformatics/btv422

Jin Y et al. TEtranscripts: a package for including transposable elements in differential expression
analysis of RNA-seq datasets. Bioinformatics. 2015;31(22):3593-3599. DOI: https://doi.org/
10.1093/bioinformatics/btv422

Examples

bamfiles <- list.files(system.file("extdata"”, package="atena"),
pattern="x.bam”, full.names=TRUE)

Not run:

use the following two instructions to fetch annotations, they are here

https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422
https://doi.org/10.1093/bioinformatics/btv422

30

TEtranscriptsParam-class

commented out to enable running this example quickly when building and
checking the package
rmskat <- annotaTEs(genome="dm6", parsefun=rmskatenaparser,
strict=FALSE, insert=500)

rmskLTR <- getLTRs(rmskat, rellLength=0.8,

fullLength=TRUE,

partial=TRUE,

otherLTR=TRUE)

End(Not run)

DO NOT TYPE THIS INSTRUCTION, WHICH JUST LOADS A PRE-COMPUTED ANNOTATION

YOU SHOULD USE THE INSTRUCTIONS ABOVE TO FETCH ANNOTATIONS

rmskLTR <- readRDS(system.file("extdata”, "rmskatLTRrlen80flenpartoth.rds”,
package="atena"))

library(TxDb.Dmelanogaster.UCSC.dm6.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
txdb_genes <- genes(txdb)

build a parameter object for TEtranscripts

ttpar <- TEtranscriptsParam(bamfiles,
teFeatures=rmskLTR,
geneFeatures=txdb_genes,
singleEnd=TRUE,
ignoreStrand=TRUE,
aggregateby="repName")

ttpar

Index

* package
atena-package, 2

annotaTEs, 3
annotateTEsGetters, 5
AnnotationHub, 3, 4, 14, 21, 22
atena (atena-package), 2
atena-package, 2
atenaParam, 8, 18

atenaParam (atenaParam-class), 6
atenaParam-class, 6

BamFile, /8
bplapply, 14

ERVmapParam, 2, 12, 18, 19
ERVmapParam (ERVmapParam-class), 10
ERVmapParam-class, 10

features,QuantifyParam-method
(QuantifyParam-class), 19

GAlignmentPairs, 7, 8, 11, 12, 24, 25, 28, 29

getDNAtransposons (annotateTEsGetters),
5

getLINEs (annotateTEsGetters), 5

getLTRs (annotateTEsGetters), 5

getSINEs (annotateTEsGetters), 5

Hits, 16, 18
IntersectionStrict, /16

OneCodeToFindThemAll, 14
ovIntersectionStrict (ovUnion), 15
ovUnion, 15

path,QuantifyParam-method
(QuantifyParam-class), 19

qtex, 2,8, 12, 16, 25, 29

gtex (gtex,ERVmapParam-method), 17

gtex,AtenaParam-method
(qtex,ERVmapParam-method), 17

gtex,atenaParam-method
(qtex,ERVmapParam-method), 17

31

qtex,ERVmapParam-method, 17
qtex,TelescopeParam-method
(gtex,ERVmapParam-method), 17
qgtex,TEtranscriptsParam-method
(gtex,ERVmapParam-method), 17
QuantifyParam-class, 19

readGAlignments, 8, 9, 11, 12, 25, 26, 28, 29
rmskatenaparser, 21

rmskbasicparser, 22

rmskidentity, 23

show, atenaParam-method
(atenaParam-class), 6

show, ERVmapParam-method
(ERVmapParam-class), 10

show, TelescopeParam-method
(TelescopeParam-class), 23

show, TEtranscriptsParam-method
(TEtranscriptsParam-class), 27

squarem, 8, 9, 25, 26, 28, 29

summarizeOverlaps, 8, 9, 18, 25, 26, 28, 29

TelescopeParam, 2, 18, 19, 25

TelescopeParam (TelescopeParam-class),
23

TelescopeParam-class, 23

TEtranscriptsParam, 2, 18, 19, 28, 29

TEtranscriptsParam
(TEtranscriptsParam-class), 27

TEtranscriptsParam-class, 27

Union, 16

	atena-package
	annotaTEs
	annotateTEsGetters
	atenaParam-class
	ERVmapParam-class
	OneCodeToFindThemAll
	ovUnion
	qtex,ERVmapParam-method
	QuantifyParam-class
	rmskatenaparser
	rmskbasicparser
	rmskidentity
	TelescopeParam-class
	TEtranscriptsParam-class
	Index

