To install and load NBAMSeq
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.
The workflow of NBAMSeq contains three main steps:
Step 1: Data input using NBAMSeqDataSet;
Step 2: Differential expression (DE) analysis using NBAMSeq function;
Step 3: Pulling out DE results using results function.
Here we illustrate each of these steps respectively.
Users are expected to provide three parts of input, i.e. countData, colData, and design.
countData is a matrix of gene counts generated by RNASeq experiments.
## An example of countData
n = 50  ## n stands for number of genes
m = 20   ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1       1       1      58       6       1      13      19      24     119
gene2       2      11     340       1       9       5      38       1       1
gene3      12     468      87     131       1     117       1      35     143
gene4      94      92     360      26     211       8      86     103      96
gene5      17       6      56      64       2     149      20      52      44
gene6     270      12     568       3      67     355       1     638      14
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1       28       26       23        2      349      715       39       10
gene2       96        4        1       15     2044       12       12       11
gene3       82       27      197       20       92      232        1        2
gene4       71        1        1       14      188       61        2        6
gene5        1       72       16        1      320       44      328       27
gene6       45      144       48       12       54      311       10      340
      sample18 sample19 sample20
gene1       31      106        1
gene2      605      103        1
gene3      114      504      211
gene4       17       72       35
gene5      236      270       80
gene6        5       39       48colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.
## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
    var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)           pheno         var1       var2       var3 var4
sample1 62.82958 -0.002689273  1.1028230 -0.5829673    2
sample2 31.49372  0.720175326 -1.2430242  1.4324246    1
sample3 67.70154 -1.567042786 -1.1320492  2.1795871    1
sample4 41.96112  0.228503135  0.6246155  1.7791785    2
sample5 70.28506  0.263011699 -0.2869808 -0.5193010    1
sample6 67.82051  0.468280501 -1.1003113  1.2394489    1design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:
Several notes should be made regarding the design formula:
multiple nonlinear covariates are supported, e.g. design = ~ s(pheno) + s(var1) + var2 + var3 + var4;
the nonlinear covariate cannot be a discrete variable, e.g.  design = ~ s(pheno) + var1 + var2 + var3 + s(var4) as var4 is a factor, and it makes no sense to model a factor as nonlinear;
at least one nonlinear covariate should be provided in design. If all covariates are assumed to have linear effect on gene count, use DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) or BBSeq (Zhou, Xia, and Wright 2011) instead. e.g.  design = ~ pheno + var1 + var2 + var3 + var4 is not supported in NBAMSeq;
design matrix is not supported.
We then construct the NBAMSeqDataSet using countData, colData, and design:
class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4Differential expression analysis can be performed by NBAMSeq function:
Several other arguments in NBAMSeq function are available for users to customize the analysis.
gamma argument can be used to control the smoothness of the nonlinear function. Higher gamma means the nonlinear function will be more smooth. See the gamma argument of gam function in mgcv (Wood and Wood 2015) for details. Default gamma is 2.5;
fitlin is either TRUE or FALSE indicating whether linear model should be fitted after fitting the nonlinear model;
parallel is either TRUE or FALSE indicating whether parallel should be used. e.g. Run NBAMSeq with parallel = TRUE:
Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 7 columns
       baseMean       edf       stat    pvalue      padj       AIC       BIC
      <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   63.9746   1.00010 0.01399226 0.9062297  0.999542   204.059   211.029
gene2  108.9646   1.92708 7.31311011 0.0641778  0.299406   204.930   212.823
gene3  103.7318   1.00006 1.57761563 0.2091141  0.522785   238.768   245.739
gene4   54.6856   1.00005 0.00583657 0.9393898  0.999542   217.921   224.891
gene5   72.9503   1.00013 0.86075784 0.3536502  0.631518   229.346   236.317
gene6   97.3324   1.00006 4.44178133 0.0350795  0.219247   234.244   241.215For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   63.9746 -1.937815  0.624070 -3.105123  0.001902  0.047550   204.059
gene2  108.9646 -0.425864  0.732087 -0.581712  0.560760  0.728552   204.930
gene3  103.7318 -0.455470  0.614833 -0.740803  0.458813  0.674724   238.768
gene4   54.6856 -0.529048  0.534135 -0.990476  0.321942  0.643883   217.921
gene5   72.9503  0.385699  0.601583  0.641141  0.521431  0.722594   229.346
gene6   97.3324 -0.448010  0.539852 -0.829876  0.406609  0.655821   234.244
            BIC
      <numeric>
gene1   211.029
gene2   212.823
gene3   245.739
gene4   224.891
gene5   236.317
gene6   241.215For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.
DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   63.9746  1.674764  1.076788  1.555333  0.119867  0.428095   204.059
gene2  108.9646 -0.297797  1.296448 -0.229702  0.818323  0.888279   204.930
gene3  103.7318 -0.772162  1.052827 -0.733417  0.463304  0.827329   238.768
gene4   54.6856 -0.226854  0.922367 -0.245948  0.805723  0.888279   217.921
gene5   72.9503 -0.166247  1.030680 -0.161298  0.871858  0.889652   229.346
gene6   97.3324  0.941004  0.928985  1.012938  0.311090  0.723309   234.244
            BIC
      <numeric>
gene1   211.029
gene2   212.823
gene3   245.739
gene4   224.891
gene5   236.317
gene6   241.215We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.
## assuming we are interested in the nonlinear relationship between gene10's 
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.
## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]  
sf = getsf(gsd)  ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf) 
head(res1)DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric> <numeric> <numeric> <numeric>
gene37  130.4533   1.00011  12.65184 0.000375455 0.0187727   210.763   217.734
gene47   62.5616   1.00008   9.30229 0.002289977 0.0572494   205.593   212.564
gene19   26.9169   1.00007   7.19651 0.007308364 0.1123068   164.448   171.418
gene14  183.2612   1.00018   6.48856 0.010863211 0.1123068   243.540   250.510
gene39  139.8912   1.00006   6.39845 0.011426225 0.1123068   231.067   238.038
gene48   59.3266   1.00012   6.10646 0.013476818 0.1123068   201.557   208.527library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
    geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
    annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1, 
    label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
    ggtitle(setTitle)+
    theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))R version 4.5.1 Patched (2025-08-23 r88802)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS
Matrix products: default
BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     
other attached packages:
 [1] ggplot2_4.0.0               BiocParallel_1.44.0        
 [3] NBAMSeq_1.26.0              SummarizedExperiment_1.40.0
 [5] Biobase_2.70.0              GenomicRanges_1.62.0       
 [7] Seqinfo_1.0.0               IRanges_2.44.0             
 [9] S4Vectors_0.48.0            BiocGenerics_0.56.0        
[11] generics_0.1.4              MatrixGenerics_1.22.0      
[13] matrixStats_1.5.0          
loaded via a namespace (and not attached):
 [1] KEGGREST_1.50.0      gtable_0.3.6         xfun_0.53           
 [4] bslib_0.9.0          lattice_0.22-7       vctrs_0.6.5         
 [7] tools_4.5.1          parallel_4.5.1       tibble_3.3.0        
[10] AnnotationDbi_1.72.0 RSQLite_2.4.3        blob_1.2.4          
[13] pkgconfig_2.0.3      Matrix_1.7-4         RColorBrewer_1.1-3  
[16] S7_0.2.0             lifecycle_1.0.4      compiler_4.5.1      
[19] farver_2.1.2         Biostrings_2.78.0    DESeq2_1.50.0       
[22] codetools_0.2-20     htmltools_0.5.8.1    sass_0.4.10         
[25] yaml_2.3.10          crayon_1.5.3         pillar_1.11.1       
[28] jquerylib_0.1.4      DelayedArray_0.36.0  cachem_1.1.0        
[31] abind_1.4-8          nlme_3.1-168         genefilter_1.92.0   
[34] tidyselect_1.2.1     locfit_1.5-9.12      digest_0.6.37       
[37] dplyr_1.1.4          labeling_0.4.3       splines_4.5.1       
[40] fastmap_1.2.0        grid_4.5.1           cli_3.6.5           
[43] SparseArray_1.10.0   magrittr_2.0.4       S4Arrays_1.10.0     
[46] survival_3.8-3       dichromat_2.0-0.1    XML_3.99-0.19       
[49] withr_3.0.2          scales_1.4.0         bit64_4.6.0-1       
[52] rmarkdown_2.30       XVector_0.50.0       httr_1.4.7          
[55] bit_4.6.0            png_0.1-8            memoise_2.0.1       
[58] evaluate_1.0.5       knitr_1.50           mgcv_1.9-3          
[61] rlang_1.1.6          Rcpp_1.1.0           xtable_1.8-4        
[64] glue_1.8.0           DBI_1.2.3            annotate_1.88.0     
[67] jsonlite_2.0.0       R6_2.6.1            Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.
Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.
Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.
Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.
Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.