
Package ‘HDF5Array’
January 29, 2026

Title HDF5 datasets as array-like objects in R

Description The HDF5Array package is an HDF5 backend for DelayedArray objects.
It implements the HDF5Array, H5SparseMatrix, H5ADMatrix, and
TENxMatrix classes, 4 convenient and memory-efficient array-like
containers for representing and manipulating either: (1) a conventional
(a.k.a. dense) HDF5 dataset, (2) an HDF5 sparse matrix (stored in
CSR/CSC/Yale format), (3) the central matrix of an h5ad file (or any
matrix in the /layers group), or (4) a 10x Genomics sparse matrix.
All these containers are DelayedArray extensions and thus support all
operations (delayed or block-processed) supported by DelayedArray
objects.

biocViews Infrastructure, DataRepresentation, DataImport, Sequencing,
RNASeq, Coverage, Annotation, GenomeAnnotation, SingleCell,
ImmunoOncology

URL https://bioconductor.org/packages/HDF5Array

BugReports https://github.com/Bioconductor/HDF5Array/issues

Version 1.39.0

License Artistic-2.0

Encoding UTF-8

Depends R (>= 3.4), methods, SparseArray (>= 1.7.5), DelayedArray (>=
0.33.5), h5mread (>= 0.99.4)

Imports utils, stats, tools, Matrix, BiocGenerics (>= 0.51.2),
S4Vectors, IRanges, S4Arrays (>= 1.1.1), rhdf5

Suggests BiocParallel, GenomicRanges, SummarizedExperiment (>=
1.15.1), h5vcData, ExperimentHub, TENxBrainData, zellkonverter,
GenomicFeatures, SingleCellExperiment, DelayedMatrixStats,
genefilter, RSpectra, RUnit, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

Collate utils.R h5utils.R HDF5ArraySeed-class.R HDF5Array-class.R
ReshapedHDF5ArraySeed-class.R ReshapedHDF5Array-class.R
dump-management.R writeHDF5Array.R
saveHDF5SummarizedExperiment.R H5SparseMatrixSeed-class.R

1

https://bioconductor.org/packages/HDF5Array
https://github.com/Bioconductor/HDF5Array/issues

2 H5ADMatrix-class

H5SparseMatrix-class.R H5ADMatrixSeed-class.R
H5ADMatrix-class.R TENxMatrixSeed-class.R TENxMatrix-class.R
writeTENxMatrix.R zzz.R

git_url https://git.bioconductor.org/packages/HDF5Array

git_branch devel

git_last_commit 538f969

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-01-28

Author Hervé Pagès [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>)

Maintainer Hervé Pagès <hpages.on.github@gmail.com>

Contents
H5ADMatrix-class . 2
H5ADMatrixSeed-class . 4
H5SparseMatrix-class . 5
H5SparseMatrixSeed-class . 7
HDF5-dump-management . 10
HDF5Array-class . 13
HDF5Array-internals . 17
HDF5ArraySeed-class . 17
ReshapedHDF5Array-class . 20
ReshapedHDF5ArraySeed-class . 21
saveHDF5SummarizedExperiment . 22
TENxMatrix-class . 27
TENxMatrixSeed-class . 31
writeHDF5Array . 33
writeTENxMatrix . 36

Index 38

H5ADMatrix-class h5ad central matrices (or matrices in the /layers group) as Delayed-
Matrix objects

Description

h5ad files are HDF5 files used for on-disk representation of AnnData Python objects. At the very
minimum, they contain a central data matrix, named X, of shape #observations x #variables, and
possibly additional data matrices (stored in the HDF5 group /layers) that share the shape and
dimnames of X. See https://anndata.readthedocs.io/ for more information.

The H5ADMatrix class is a DelayedMatrix subclass for representing and operating on the central
matrix of an h5ad file, or any matrix in its /layers group.

All the operations available for DelayedMatrix objects work on H5ADMatrix objects.

https://orcid.org/0009-0002-8272-4522
https://anndata.readthedocs.io/

H5ADMatrix-class 3

Usage

Constructor function:
H5ADMatrix(filepath, layer=NULL)

Arguments

filepath The path (as a single string) to the h5ad file.

layer NULL (the default) or the name of a matrix in the /layers group. By default (i.e.
when layer is not specified) H5ADMatrix() returns the central matrix (X).

Value

H5ADMatrix() returns an H5ADMatrix object of shape #variables x #observations. Note that in
Python and HDF5 the shape of this matrix is considered to be #observations x #variables, but in R
it is transposed. This follows the widely adopted convention of transposing HDF5 matrices when
they get loaded into R.

References

https://anndata.readthedocs.io/ for AnnData Python objects and the h5ad format.

See Also

• HDF5Array objects for representing conventional (a.k.a. dense) HDF5 datasets as DelayedAr-
ray objects.

• H5SparseMatrix objects for representing HDF5 sparse matrices as DelayedMatrix objects.

• DelayedMatrix objects in the DelayedArray package.

• The H5ADMatrixSeed helper class.

• readH5AD and writeH5AD in the zellkonverter package for importing/exporting an h5ad file
as/from a SingleCellExperiment object.

• SparseArray objects in the SparseArray package.

Examples

library(zellkonverter)
h5ad_file <- system.file("extdata", "krumsiek11.h5ad",

package="zellkonverter")
X <- H5ADMatrix(h5ad_file)
X

class(X) # H5ADMatrix
is(X, "DelayedMatrix") # TRUE

class(seed(X)) # Dense_H5ADMatrixSeed

dim(X)
path(X)
is_sparse(X) # FALSE

https://anndata.readthedocs.io/

4 H5ADMatrixSeed-class

Use coercion to load the full dataset into memory:
as.matrix(X) # as ordinary array (usually not recommended)

Not run:
Works only if H5ADMatrix object is sparse!
as(X, "dgCMatrix") # as dgCMatrix
as(X, "SparseArray") # as SparseArray object (most efficient)
SparseArray(X) # equivalent to 'as(X, "SparseArray")'

End(Not run)

H5ADMatrixSeed-class H5ADMatrixSeed objects

Description

H5ADMatrixSeed is a low-level helper class used to represent a pointer to the central matrix stored
of an h5ad file, or to one of the matrices in the /layers group.

It is a virtual class with three concrete subclasses: Dense_H5ADMatrixSeed, CSC_H5ADMatrixSeed,
and CSR_H5ADMatrixSeed:

• The Dense_H5ADMatrixSeed class is used when the matrix is stored as a conventional HDF5
dataset in the h5ad file. It is a direct entension of the HDF5ArraySeed class.

• The CSC_H5ADMatrixSeed or CSR_H5ADMatrixSeed classes is used when the matrix is
stored in the Compressed Sparse Column or Compressed Sparse Row format in the h5ad file.
CSC_H5ADMatrixSeed is a direct entension of CSC_H5SparseMatrixSeed, and CSR_H5ADMatrixSeed
a direct entension of CSR_H5SparseMatrixSeed.

Note that an H5ADMatrixSeed derivative is not intended to be used directly. Most end users will
typically create and manipulate a higher-level H5ADMatrix object instead. See ?H5ADMatrix for
more information.

Usage

Constructor function:
H5ADMatrixSeed(filepath, layer=NULL)

Arguments

filepath, layer See ?H5ADMatrix for a description of these arguments.

Details

Dense_H5ADMatrixSeed objects support the same limited set of methods as HDF5ArraySeed ob-
jects, and CSC_H5ADMatrixSeed and CSR_H5ADMatrixSeed objects support the same limited
set of methods as H5SparseMatrixSeed objects. See ?HDF5ArraySeed and ?H5SparseMatrixSeed
for the details.

H5SparseMatrix-class 5

Value

H5ADMatrixSeed() returns an H5ADMatrixSeed derivative (Dense_H5ADMatrixSeed or CSC_H5ADMatrixSeed
or CSR_H5ADMatrixSeed) of shape #variables x #observations.

H5ADMatrixSeed vs H5ADMatrix objects

In order to have access to the full set of operations that are available for DelayedMatrix objects,
an H5ADMatrixSeed derivative first needs to be wrapped in a DelayedMatrix object, typically by
calling the DelayedArray() constructor on it.

This is what the H5ADMatrix() constructor function does.

Note that the result of this wrapping is an H5ADMatrix object, which is just an H5ADMatrixSeed
derivative wrapped in a DelayedMatrix object.

References

https://anndata.readthedocs.io/ for AnnData Python objects and the h5ad format.

See Also

• H5ADMatrix objects.

• HDF5ArraySeed and H5SparseMatrixSeed objects.

• readH5AD and writeH5AD in the zellkonverter package for importing/exporting an h5ad file
as/from a SingleCellExperiment object.

Examples

library(zellkonverter)
h5ad_file <- system.file("extdata", "krumsiek11.h5ad",

package="zellkonverter")
seed <- H5ADMatrixSeed(h5ad_file)
seed
path(seed)
dim(seed)
is_sparse(seed)

DelayedArray(seed)
stopifnot(class(DelayedArray(seed)) == "H5ADMatrix")

H5SparseMatrix-class HDF5 sparse matrices as DelayedMatrix objects

Description

The H5SparseMatrix class is a DelayedMatrix subclass for representing and operating on an HDF5
sparse matrix stored in CSR/CSC/Yale format.

All the operations available for DelayedMatrix objects work on H5SparseMatrix objects.

https://anndata.readthedocs.io/

6 H5SparseMatrix-class

Usage

Constructor function:
H5SparseMatrix(filepath, group)

Arguments

filepath The path (as a single string) to the HDF5 file (.h5 or .h5ad) where the sparse
matrix is located.

group The name of the group in the HDF5 file where the sparse matrix is stored.

Value

An H5SparseMatrix object.

See Also

• HDF5Array objects for representing conventional (a.k.a. dense) HDF5 datasets as DelayedAr-
ray objects.

• H5ADMatrix objects for representing h5ad central matrices (or matrices in the /layers group)
as DelayedMatrix objects.

• TENxMatrix objects for representing 10x Genomics datasets as DelayedMatrix objects.

• DelayedMatrix objects in the DelayedArray package.

• The H5SparseMatrixSeed helper class.

• h5ls to list the content of an HDF5 file (.h5 or .h5ad).

• SparseArray objects in the SparseArray package.

Examples

library(zellkonverter)
h5ad_file <- system.file("extdata", "example_anndata.h5ad",

package="zellkonverter")
rhdf5::h5ls(h5ad_file)

M <- H5SparseMatrix(h5ad_file, "/obsp/connectivities")
M

class(M) # H5SparseMatrix
is(M, "DelayedMatrix") # TRUE

seed(M)
class(seed(M)) # CSC_H5SparseMatrixSeed

dim(M)
path(M)
is_sparse(M) # TRUE

Use coercion to load the full dataset into memory:
as.matrix(M) # as ordinary array (usually not recommended)

H5SparseMatrixSeed-class 7

as(M, "dgCMatrix") # as dgCMatrix
as(M, "SparseArray") # as SparseArray object (most efficient)
SparseArray(M) # equivalent to 'as(M, "SparseArray")'

H5SparseMatrixSeed-class

H5SparseMatrixSeed objects

Description

H5SparseMatrixSeed is a low-level helper class for representing a pointer to a sparse matrix stored
in an HDF5 file and compressed using the CSC or CSR layout.

It is a virtual class with two concrete subclasses: CSC_H5SparseMatrixSeed for the Compressed
Sparse Column layout, and CSR_H5SparseMatrixSeed for the Compressed Sparse Row layout. The
former is used by 10x Genomics (e.g. "1.3 Million Brain Cell Dataset"). h5ad files can use one or
the other layout to store a sparse matrix.

Note that an H5SparseMatrixSeed derivative is not intended to be used directly. Most end users will
typically create and manipulate a higher-level H5SparseMatrix object instead. See ?H5SparseMatrix
for more information.

Usage

--- Constructor function ---

H5SparseMatrixSeed(filepath, group, subdata=NULL,
dim=NULL, sparse.layout=NULL)

--- Accessors --------------

S4 method for signature 'H5SparseMatrixSeed'
path(object)

S4 method for signature 'H5SparseMatrixSeed'
dim(x)

S4 method for signature 'H5SparseMatrixSeed'
dimnames(x)

S4 method for signature 'CSC_H5SparseMatrixSeed'
chunkdim(x)
S4 method for signature 'CSR_H5SparseMatrixSeed'
chunkdim(x)

--- Data extraction --------

S4 method for signature 'H5SparseMatrixSeed'

8 H5SparseMatrixSeed-class

extract_array(x, index)

S4 method for signature 'CSC_H5SparseMatrixSeed'
extract_sparse_array(x, index)
S4 method for signature 'CSR_H5SparseMatrixSeed'
extract_sparse_array(x, index)

S4 method for signature 'CSC_H5SparseMatrixSeed'
extractNonzeroDataByCol(x, j)
S4 method for signature 'CSR_H5SparseMatrixSeed'
extractNonzeroDataByRow(x, i)

--- Other methods ----------

S4 method for signature 'H5SparseMatrixSeed'
is_sparse(x)

S4 method for signature 'H5SparseMatrixSeed'
nzcount(x)

Arguments

filepath, group See ?H5SparseMatrix for a description of these arguments.
subdata Experimental. Don’t use!
dim, sparse.layout

The H5SparseMatrixSeed() constructor should be able to automatically detect
the dimensions and layout of the sparse matrix stored in the HDF5 file, so the
user shouldn’t need to specify these arguments.
See Details section below for some rare situations where the user might need to
specify them.

object, x An H5SparseMatrixSeed derivative.
index See ?extract_array in the S4Arrays package.
j An integer vector containing valid column indices.
i An integer vector containing valid row indices.

Details

*** Layout in R vs physical layout ***

The implementation of CSC_H5SparseMatrixSeed and CSR_H5SparseMatrixSeed objects follows
the usual convention of transposing the matrix stored in the HDF5 file when loading it into R. This
means that a CSC_H5SparseMatrixSeed object represents a sparse matrix stored physically in the
CSR layout (Compressed Sparse Row) at the HDF5 level, and a CSR_H5SparseMatrixSeed object
represents a sparse matrix stored physically in the CSC layout (Compressed Sparse Column) at the
HDF5 level.

*** Automatic detection of the dimensions and layout ***

The H5SparseMatrixSeed() constructor should be able to automatically detect the dimensions and
layout of the sparse matrix stored in the HDF5 file. However, in some rare situations, the user might

H5SparseMatrixSeed-class 9

want to bypass the detection mechanism, or they might be dealing with a sparse matrix stored in an
HDF5 group that doesn’t provide this information (e.g. the group only contains the data, indices,
and indptr components). In which case, they can supply the dim and sparse.layout arguments:

• dim must be an integer vector of length 2.

• sparse.layout must be "CSC" or "CSR".

Note that both values must describe the dimensions and layout of the R object that will be returned,
that is, after transposition from the physical layout used at the HDF5 level. Also be aware that the
supplied values will take precedence over whatever the HDF5 file says, which means that bad things
will happen if they don’t reflect the actual dimensions and layout of the sparse matrix. Use these
arguments only if you know what you are doing!

*** H5SparseMatrixSeed object vs H5SparseMatrix object ***

Note that H5SparseMatrixSeed derivatives support a very limited set of methods:

• path(): Returns the path to the HDF5 file where the sparse matrix is located.

• dim(), dimnames().

• extract_array(), is_sparse(), extract_sparse_array(), chunkdim(): These gener-
ics are defined and documented in other packages e.g. in S4Arrays for extract_array()
and is_sparse(), in SparseArray for extract_sparse_array(), and in DelayedArray for
chunkdim().

• nzcount(): Returns the number of nonzero values in the object.

• extractNonzeroDataByCol(): Works on CSC_H5SparseMatrixSeed objects only. Returns
a NumericList or IntegerList object parallel to j, that is, with one list element per column
index in j. The row indices of the values are not returned. Furthermore, the values within a
given list element can be returned in **any order**. In particular, do NOT assume that they
are ordered by ascending row index.

• extractNonzeroDataByRow(): Works on CSR_H5SparseMatrixSeed objects only. Returns
a NumericList or IntegerList object parallel to i, that is, with one list element per row index
in i. The column indices of the values are not returned. Furthermore, the values within a
given list element can be returned in **any order**. In particular, do NOT assume that they
are ordered by ascending column index.

In order to have access to the full set of operations that are available for DelayedMatrix objects, an
H5SparseMatrixSeed derivative would first need to be wrapped in a DelayedMatrix object, typically
by calling the DelayedArray() constructor on it.

Value

H5SparseMatrixSeed() returns an H5SparseMatrixSeed derivative (CSC_H5SparseMatrixSeed or
CSR_H5SparseMatrixSeed object).

References

https://en.wikipedia.org/wiki/Sparse_matrix for a description of the CSR/CSC/Yale for-
mat (section "Compressed sparse row (CSR, CRS or Yale format)").

https://en.wikipedia.org/wiki/Sparse_matrix

10 HDF5-dump-management

See Also

• H5SparseMatrix objects.

• h5ls to list the content of an HDF5 file (.h5 or .h5ad).

Examples

showClass("H5SparseMatrixSeed")

HDF5-dump-management HDF5 dump management

Description

A set of utilities to control the location and physical properties of automatically created HDF5
datasets.

Usage

setHDF5DumpDir(dir)
setHDF5DumpFile(filepath)
setHDF5DumpName(name)
setHDF5DumpChunkLength(length=1000000L)
setHDF5DumpChunkShape(shape="scale")
setHDF5DumpCompressionLevel(level=6L)

getHDF5DumpDir()
getHDF5DumpFile()
getHDF5DumpName(for.use=FALSE)
getHDF5DumpChunkLength()
getHDF5DumpChunkShape()
getHDF5DumpCompressionLevel()

lsHDF5DumpFile()

showHDF5DumpLog()

For developers:
getHDF5DumpChunkDim(dim)
appendDatasetCreationToHDF5DumpLog(filepath, name, dim, type,

chunkdim, level)

Arguments

dir The path (as a single string) to the current HDF5 dump directory, that is, to
the (new or existing) directory where HDF5 dump files with automatic names
will be created. This is ignored if the user specified an HDF5 dump file with
setHDF5DumpFile. If dir is missing, then the HDF5 dump directory is set back

HDF5-dump-management 11

to its default value i.e. to some directory under tempdir() (call getHDF5DumpDir()
to get the exact path).

filepath For setHDF5DumpFile: The path (as a single string) to the current HDF5 dump
file, that is, to the (new or existing) HDF5 file where the next automatic HDF5
datasets will be written. If filepath is missing, then a new file with an au-
tomatic name will be created (in getHDF5DumpDir()) and used for each new
dataset.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

name For setHDF5DumpName: The name of the next automatic HDF5 dataset to be
written to the current HDF5 dump file.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

length The maximum length of the physical chunks of the next automatic HDF5 dataset
to be written to the current HDF5 dump file.

shape A string specifying the shape of the physical chunks of the next automatic HDF5
dataset to be written to the current HDF5 dump file. See makeCappedVolumeBox
in the DelayedArray package for a description of the supported shapes.

level For setHDF5DumpCompressionLevel: The compression level to use for writing
automatic HDF5 datasets to disk. See the level argument in ?rhdf5::h5createDataset
(in the rhdf5 package) for more information about this.
For appendDatasetCreationToHDF5DumpLog: See the Note TO DEVELOP-
ERS below.

for.use Whether the returned dataset name is for use by the caller or not. See below for
the details.

dim The dimensions of the HDF5 dataset to be written to disk, that is, an integer
vector of length one or more giving the maximal indices in each dimension. See
the dims argument in ?rhdf5::h5createDataset (in the rhdf5 package) for
more information about this.

type The type (a.k.a. storage mode) of the data to be written to disk. Can be obtained
with type() on an array-like object (which is equivalent to storage.mode() or
typeof() on an ordinary array). This is typically what an application writing
datasets to the HDF5 dump should pass to the storage.mode argument of its
call to rhdf5::h5createDataset. See the Note TO DEVELOPERS below for
more information.

chunkdim The dimensions of the chunks.

Details

Calling getHDF5DumpFile() and getHDF5DumpName() with no argument should be informative
only i.e. it’s a mean for the user to know where the next automatic HDF5 dataset will be written.
Since a given file/name combination can be used only once, the user should be careful to not use that
combination to explicitely create an HDF5 dataset because that would get in the way of the creation
of the next automatic HDF5 dataset. See the Note TO DEVELOPERS below if you actually need
to use this file/name combination.

lsHDF5DumpFile() is a just convenience wrapper for h5ls(getHDF5DumpFile()).

12 HDF5-dump-management

Value

getHDF5DumpDir returns the absolute path to the directory where HDF5 dump files with automatic
names will be created. Only meaningful if the user did NOT specify an HDF5 dump file with
setHDF5DumpFile.

getHDF5DumpFile returns the absolute path to the HDF5 file where the next automatic HDF5
dataset will be written.

getHDF5DumpName returns the name of the next automatic HDF5 dataset.

getHDF5DumpCompressionLevel returns the compression level currently used for writing auto-
matic HDF5 datasets to disk.

showHDF5DumpLog returns the dump log in an invisible data frame.

getHDF5DumpChunkDim returns the dimensions of the physical chunks that will be used to write the
dataset to disk.

Note

TO DEVELOPERS:

If your application needs to write its own dataset to the HDF5 dump then it should:

1. Get a file/dataset name combination by calling getHDF5DumpFile() and getHDF5DumpName(for.use=TRUE).

2. [OPTIONAL] Call getHDF5DumpChunkDim(dim) to get reasonable chunk dimensions to use
for writing the dataset to disk. Or choose your own chunk dimensions.

3. Add an entry to the dump log by calling appendDatasetCreationToHDF5DumpLog. Typically,
this should be done right after creating the dataset (e.g. with rhdf5::h5createDataset) and
before starting to write the dataset to disk. The values passed to appendDatasetCreationToHDF5DumpLog
via the filepath, name, dim, type, chunkdim, and level arguments should be those that were
passed to rhdf5::h5createDataset via the file, dataset, dims, storage.mode, chunk,
and level arguments, respectively. Note that appendDatasetCreationToHDF5DumpLog uses
a lock mechanism so is safe to use in the context of parallel execution.

This is actually what the coercion method to HDF5Array does internally.

See Also

• writeHDF5Array for writing an array-like object to an HDF5 file.

• HDF5Array objects.

• The h5ls function on which lsHDF5DumpFile is based.

• makeCappedVolumeBox in the DelayedArray package.

• type in the DelayedArray package.

Examples

getHDF5DumpDir()
getHDF5DumpFile()

Use setHDF5DumpFile() to change the current HDF5 dump file.
If the specified file exists, then it must be in HDF5 format or

HDF5Array-class 13

an error will be raised. If it doesn't exist, then it will be
created.
#setHDF5DumpFile("path/to/some/HDF5/file")

lsHDF5DumpFile()

a <- array(1:600, c(150, 4))
A <- as(a, "HDF5Array")
lsHDF5DumpFile()
A

b <- array(runif(6000), c(4, 2, 150))
B <- as(b, "HDF5Array")
lsHDF5DumpFile()
B

C <- (log(2 * A + 0.88) - 5)^3 * t(B[, 1,])
as(C, "HDF5Array") # realize C on disk
lsHDF5DumpFile()

Matrix multiplication is not delayed: the output matrix is realized
block by block. The current "realization backend" controls where
realization happens e.g. in memory if set to NULL or in an HDF5 file
if set to "HDF5Array". See '?realize' in the DelayedArray package for
more information about "realization backends".
setAutoRealizationBackend("HDF5Array")
m <- matrix(runif(20), nrow=4)
P <- C %*% m
lsHDF5DumpFile()

See all the HDF5 datasets created in the current session so far:
showHDF5DumpLog()

Wrap the call in suppressMessages() if you are only interested in the
data frame version of the dump log:
dump_log <- suppressMessages(showHDF5DumpLog())
dump_log

HDF5Array-class HDF5 datasets as DelayedArray objects

Description

The HDF5Array class is a DelayedArray subclass for representing and operating on a conventional
(a.k.a. dense) HDF5 dataset.

All the operations available for DelayedArray objects work on HDF5Array objects.

Usage

Constructor function:
HDF5Array(filepath, name, as.sparse=FALSE, type=NA)

14 HDF5Array-class

Arguments

filepath The path (as a single string or H5File object) to the HDF5 file (.h5 or .h5ad)
where the dataset is located.
Note that you must create and use an H5File object if the HDF5 file to access is
stored in an Amazon S3 bucket. See ?H5File for how to do this.
Also please note that H5File objects must NOT be used in the context of parallel
evaluation at the moment.

name The name of the dataset in the HDF5 file.

as.sparse Whether the HDF5 dataset should be flagged as sparse or not, that is, whether
it should be considered sparse (and treated as such) or not. Note that HDF5
doesn’t natively support sparse storage at the moment so HDF5 datasets cannot
be stored in a sparse format, only in a dense one. However a dataset stored in
a dense format can still contain a lot of zeros. Using as.sparse=TRUE on such
dataset will enable some optimizations that can lead to a lower memory footprint
(and possibly better performance) when operating on the HDF5Array.
IMPORTANT NOTE: If the dataset is in the 10x Genomics format (i.e. if it uses
the HDF5-based sparse matrix representation from 10x Genomics), you should
use the TENxMatrix() constructor instead of the HDF5Array() constructor.

type By default the type of the returned object is inferred from the H5 datatype of the
HDF5 dataset. This can be overridden by specifying the type argument. The
specified type must be an R atomic type (e.g. "integer") or "list".

Value

An HDF5Array (or HDF5Matrix) object. (Note that HDF5Matrix extends HDF5Array.)

Note

The "1.3 Million Brain Cell Dataset" and other datasets published by 10x Genomics use an HDF5-
based sparse matrix representation instead of the conventional (a.k.a. dense) HDF5 representation.

If your dataset uses the conventional (a.k.a. dense) HDF5 representation, use the HDF5Array()
constructor documented here.

But if your dataset uses the HDF5 sparse matrix representation from 10x Genomics, use the TENxMatrix()
constructor instead.

See Also

• H5File objects.

• H5SparseMatrix objects for representing HDF5 sparse matrices as DelayedMatrix objects.

• H5ADMatrix objects for representing h5ad central matrices (or matrices in the /layers group)
as DelayedMatrix objects.

• TENxMatrix objects for representing 10x Genomics datasets as DelayedMatrix objects.

• ReshapedHDF5Array objects for representing HDF5 datasets as DelayedArray objects with a
user-supplied upfront virtual reshaping.

• DelayedArray objects in the DelayedArray package.

HDF5Array-class 15

• writeHDF5Array for writing an array-like object to an HDF5 file.

• HDF5-dump-management for controlling the location and physical properties of automatically
created HDF5 datasets.

• saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDF5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

• The HDF5ArraySeed helper class.

• h5ls to list the content of an HDF5 file (.h5 or .h5ad).

Examples

A. CONSTRUCTION

With a local file:
toy_h5 <- system.file("extdata", "toy.h5", package="HDF5Array")
h5ls(toy_h5)

HDF5Array(toy_h5, "M2")
HDF5Array(toy_h5, "M2", type="integer")
HDF5Array(toy_h5, "M2", type="complex")

With a file stored in an Amazon S3 bucket:
if (Sys.info()[["sysname"]] != "Darwin") {

public_S3_url <-
"https://rhdf5-public.s3.eu-central-1.amazonaws.com/rhdf5ex_t_float_3d.h5"
h5file <- H5File(public_S3_url, s3=TRUE)
h5ls(h5file)

HDF5Array(h5file, "a1")
}

B. BASIC MANIPULATION

library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",

package="h5vcData")
h5ls(tally_file)

Pick up "Coverages" dataset for Human chromosome 16:
name <- "/ExampleStudy/16/Coverages"
cvg <- HDF5Array(tally_file, name)
cvg

is(cvg, "DelayedArray") # TRUE
seed(cvg)
path(cvg)
chunkdim(cvg)

16 HDF5Array-class

The data in the dataset looks sparse. In this case it is recommended
to set 'as.sparse' to TRUE when constructing the HDF5Array object.
This will make block processing (used in operations like sum()) more
memory efficient and likely faster:
cvg0 <- HDF5Array(tally_file, name, as.sparse=TRUE)
is_sparse(cvg0) # TRUE

Note that we can also flag the HDF5Array object as sparse after
creation:
is_sparse(cvg) <- TRUE
cvg # same as 'cvg0'

dim/dimnames:

dim(cvg0)

dimnames(cvg0)
dimnames(cvg0) <- list(paste0("s", 1:6), c("+", "-"), NULL)
dimnames(cvg0)

C. SLICING (A.K.A. SUBSETTING)

cvg1 <- cvg0[, , 29000001:29000007]
cvg1

dim(cvg1)
as.array(cvg1)
stopifnot(identical(dim(as.array(cvg1)), dim(cvg1)))
stopifnot(identical(dimnames(as.array(cvg1)), dimnames(cvg1)))

cvg2 <- cvg0[, "+", 29000001:29000007]
cvg2
as.matrix(cvg2)

D. SummarizedExperiment OBJECTS WITH DELAYED ASSAYS

DelayedArray objects can be used inside a SummarizedExperiment object
to hold the assay data and to delay operations on them.

library(SummarizedExperiment)

pcvg <- cvg0[, 1,] # coverage on plus strand
mcvg <- cvg0[, 2,] # coverage on minus strand

nrow(pcvg) # nb of samples
ncol(pcvg) # length of Human chromosome 16

The convention for a SummarizedExperiment object is to have 1 column

HDF5Array-internals 17

per sample so first we need to transpose 'pcvg' and 'mcvg':
pcvg <- t(pcvg)
mcvg <- t(mcvg)
se <- SummarizedExperiment(list(pcvg=pcvg, mcvg=mcvg))
se
stopifnot(validObject(se, complete=TRUE))

A GPos object can be used to represent the genomic positions along
the dataset:
gpos <- GPos(GRanges("16", IRanges(1, nrow(se))))
gpos
rowRanges(se) <- gpos
se
stopifnot(validObject(se))
assays(se)$pcvg
assays(se)$mcvg

HDF5Array-internals HDF5Array internals

Description

Internal utilities defined in the HDF5Array package. These functions are not intended to be used
directly.

HDF5ArraySeed-class HDF5ArraySeed objects

Description

HDF5ArraySeed is a low-level helper class for representing a pointer to an HDF5 dataset.

Note that an HDF5ArraySeed object is not intended to be used directly. Most end users will typ-
ically create and manipulate a higher-level HDF5Array object instead. See ?HDF5Array for more
information.

Usage

--- Constructor function ---

HDF5ArraySeed(filepath, name, as.sparse=FALSE, type=NA)

--- Accessors --------------

S4 method for signature 'HDF5ArraySeed'
path(object)

18 HDF5ArraySeed-class

S4 replacement method for signature 'HDF5ArraySeed'
path(object) <- value

S4 method for signature 'HDF5ArraySeed'
dim(x)

S4 method for signature 'HDF5ArraySeed'
dimnames(x)

S4 method for signature 'HDF5ArraySeed'
type(x)

S4 method for signature 'HDF5ArraySeed'
is_sparse(x)

S4 replacement method for signature 'HDF5ArraySeed'
is_sparse(x) <- value

S4 method for signature 'HDF5ArraySeed'
chunkdim(x)

--- Data extraction --------

S4 method for signature 'HDF5ArraySeed'
extract_array(x, index)

S4 method for signature 'HDF5ArraySeed'
extract_sparse_array(x, index)

Arguments

filepath, name, as.sparse, type
See ?HDF5Array for a description of these arguments.

object, x An HDF5ArraySeed object or derivative.

value For the path() setter: The new path (as a single string) to the HDF5 file where
the dataset is located.
For the is_sparse() setter: TRUE or FALSE.

index See ?extract_array in the S4Arrays package.

Details

The HDF5ArraySeed class has one direct subclass: Dense_H5ADMatrixSeed. See ?Dense_H5ADMatrixSeed
for more information.

Note that the implementation of HDF5ArraySeed objects follows the widely adopted convention of
transposing HDF5 matrices when they get loaded into R.

Finally note that an HDF5ArraySeed object supports a very limited set of methods:

• path(): Returns the path to the HDF5 file where the dataset is located.

HDF5ArraySeed-class 19

• dim(), dimnames().
• type(), extract_array(), is_sparse(), extract_sparse_array(), chunkdim(): These

generics are defined and documented in other packages e.g. in S4Arrays for extract_array()
and is_sparse(), in SparseArray for extract_sparse_array(), and in DelayedArray for
chunkdim().

Value

HDF5ArraySeed() returns an HDF5ArraySeed object.

HDF5ArraySeed vs HDF5Array objects

In order to have access to the full set of operations that are available for DelayedArray objects, an
HDF5ArraySeed object first needs to be wrapped in a DelayedArray object, typically by calling the
DelayedArray() constructor on it.

This is what the HDF5Array() constructor function does.

Note that the result of this wrapping is an HDF5Array object, which is just an HDF5ArraySeed
object wrapped in a DelayedArray object.

See Also

• HDF5Array objects.
• type, extract_array, and is_sparse, in the the S4Arrays package.
• extract_sparse_array in the SparseArray package.
• chunkdim in the DelayedArray package.
• h5ls to list the content of an HDF5 file.

Examples

library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",

package="h5vcData")
h5ls(tally_file)

name <- "/ExampleStudy/16/Coverages" # name of the dataset of interest
seed1 <- HDF5ArraySeed(tally_file, name)
seed1
path(seed1)
dim(seed1)
chunkdim(seed1)

seed2 <- HDF5ArraySeed(tally_file, name, as.sparse=TRUE)
seed2

Alternatively:
is_sparse(seed1) <- TRUE
seed1 # same as 'seed2'

DelayedArray(seed1)
stopifnot(class(DelayedArray(seed1)) == "HDF5Array")

20 ReshapedHDF5Array-class

ReshapedHDF5Array-class

Virtually reshaped HDF5 datasets as DelayedArray objects

Description

The ReshapedHDF5Array class is a DelayedArray subclass for representing an HDF5 dataset with
a user-supplied upfront virtual reshaping.

All the operations available for DelayedArray objects work on ReshapedHDF5Array objects.

Usage

Constructor function:
ReshapedHDF5Array(filepath, name, dim, type=NA)

Arguments

filepath, name, type
See ?HDF5Array for a description of these arguments.

dim A vector of dimensions that describes the virtual reshaping i.e. the reshaping that
is virtually applied upfront to the HDF5 dataset when the ReshapedHDF5Array
object gets constructed.
Note that the HDF5 dataset is treated as read-only so is not effectively reshaped,
that is, the dataset dimensions encoded in the HDF5 file are not mmodified.
Also please note that arbitrary reshapings are not supported. Only reshapings
that reduce the number of dimensions by collapsing a group of consecutive di-
mensions into a single dimension are supported. For example, reshaping a 10
x 3 x 5 x 1000 array as a 10 x 15 x 1000 array or as a 150 x 1000 matrix is
supported.

Value

A ReshapedHDF5Array (or ReshapedHDF5Matrix) object. (Note that ReshapedHDF5Matrix ex-
tends ReshapedHDF5Array.)

See Also

• HDF5Array objects for representing HDF5 datasets as DelayedArray objects without upfront
virtual reshaping.

• DelayedArray objects in the DelayedArray package.
• writeHDF5Array for writing an array-like object to an HDF5 file.

• saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDF5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

• The ReshapedHDF5ArraySeed helper class.
• h5ls to list the content of an HDF5 file.

ReshapedHDF5ArraySeed-class 21

Examples

library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",

package="h5vcData")
h5ls(tally_file)

Pick up "Coverages" dataset for Human chromosome 16 and collapse its
first 2 dimensions:
cvg <- ReshapedHDF5Array(tally_file, "/ExampleStudy/16/Coverages",

dim=c(12, 90354753))
cvg

is(cvg, "DelayedArray") # TRUE
seed(cvg)
path(cvg)
dim(cvg)
chunkdim(cvg)

ReshapedHDF5ArraySeed-class

ReshapedHDF5ArraySeed objects

Description

ReshapedHDF5ArraySeed is a low-level helper class for representing a pointer to a virtually re-
shaped HDF5 dataset.

ReshapedHDF5ArraySeed objects are not intended to be used directly. Most end users should
create and manipulate ReshapedHDF5Array objects instead. See ?ReshapedHDF5Array for more
information.

Usage

Constructor function:
ReshapedHDF5ArraySeed(filepath, name, dim, type=NA)

Arguments

filepath, name, dim, type
See ?ReshapedHDF5Array for a description of these arguments.

Details

No operation can be performed directly on a ReshapedHDF5ArraySeed object. It first needs to be
wrapped in a DelayedArray object. The result of this wrapping is a ReshapedHDF5Array object (a
ReshapedHDF5Array object is just a ReshapedHDF5ArraySeed object wrapped in a DelayedArray
object).

22 saveHDF5SummarizedExperiment

Value

A ReshapedHDF5ArraySeed object.

See Also

• ReshapedHDF5Array objects.

• h5ls to list the content of an HDF5 file.

Examples

library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",

package="h5vcData")
h5ls(tally_file)

Collapse the first 2 dimensions:
seed <- ReshapedHDF5ArraySeed(tally_file, "/ExampleStudy/16/Coverages",

dim=c(12, 90354753))
seed
path(seed)
dim(seed)
chunkdim(seed)

saveHDF5SummarizedExperiment

Save/load an HDF5-based SummarizedExperiment object

Description

saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment can be used to save/load
an HDF5-based SummarizedExperiment object to/from disk.

NOTE: These functions use functionalities from the SummarizedExperiment package internally
and so require this package to be installed.

Usage

saveHDF5SummarizedExperiment(x, dir="my_h5_se", prefix="", replace=FALSE,
chunkdim=NULL, level=NULL, as.sparse=NA,
verbose=NA)

loadHDF5SummarizedExperiment(dir="my_h5_se", prefix="")

quickResaveHDF5SummarizedExperiment(x, verbose=FALSE)

saveHDF5SummarizedExperiment 23

Arguments

x A SummarizedExperiment object or derivative.
For quickResaveHDF5SummarizedExperiment the object must have been pre-
viously saved with saveHDF5SummarizedExperiment (and has been possibly
modified since then).

dir The path (as a single string) to the directory where to save the HDF5-based
SummarizedExperiment object or to load it from.
When saving, the directory will be created if it doesn’t already exist. If the
directory already exists and no prefix is specified and replace is set to TRUE,
then it’s replaced with an empty directory.

prefix An optional prefix to add to the names of the files created inside dir. Allows
saving more than one object in the same directory.

replace When no prefix is specified, should a pre-existing directory be replaced with a
new empty one? The content of the pre-existing directory will be lost!

chunkdim, level The dimensions of the chunks and the compression level to use for writing the
assay data to disk.
Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information.

as.sparse Whether the assay data should be flagged as sparse or not. If set to NA (the
default), then the specific as.sparse value to use for each assay is determined
by calling is_sparse() on them.
Passed to the internal calls to writeHDF5Array. See ?writeHDF5Array for more
information and an IMPORTANT NOTE.

verbose Set to TRUE to make the function display progress.
In the case of saveHDF5SummarizedExperiment(), verbose is set to NA by de-
fault, in which case verbosity is controlled by DelayedArray:::get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

Details

saveHDF5SummarizedExperiment(): Creates the directory specified thru the dir argument and
populates it with the HDF5 datasets (one per assay in x) plus a serialized version of x that
contains pointers to these datasets. This directory provides a self-contained HDF5-based rep-
resentation of x that can then be loaded back in R with loadHDF5SummarizedExperiment.
Note that this directory is relocatable i.e. it can be moved (or copied) to a different place,
on the same or a different computer, before calling loadHDF5SummarizedExperiment on it.
For convenient sharing with collaborators, it is suggested to turn it into a tarball (with Unix
command tar), or zip file, before the transfer.
Please keep in mind that saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment
don’t know how to produce/read tarballs or zip files at the moment, so the process of packag-
ing/extracting the tarball or zip file is entirely the user responsibility. This is typically done
from outside R.
Finally please note that, depending on the size of the data to write to disk and the perfor-
mance of the disk, saveHDF5SummarizedExperiment can take a long time to complete. Use
verbose=TRUE to see its progress.

24 saveHDF5SummarizedExperiment

loadHDF5SummarizedExperiment(): Typically very fast, even if the assay data is big, because all
the assays in the returned object are HDF5Array objects pointing to the on-disk HDF5 datasets
located in dir. HDF5Array objects are typically light-weight in memory.

quickResaveHDF5SummarizedExperiment(): Preserves the HDF5 file and datasets that the as-
says in x are already pointing to (and which were created by an earlier call to saveHDF5SummarizedExperiment).
All it does is re-serialize x on top of the .rds file that is associated with this HDF5 file (and
which was created by an earlier call to saveHDF5SummarizedExperiment or quickResaveHDF5SummarizedExperiment).
Because the delayed operations possibly carried by the assays in x are not realized, this is very
fast.

Value

saveHDF5SummarizedExperiment returns an invisible SummarizedExperiment object that is the
same as what loadHDF5SummarizedExperiment will return when loading back the object. All the
assays in the object are HDF5Array objects pointing to datasets in the HDF5 file saved in dir.

Difference between saveHDF5SummarizedExperiment() and saveRDS()

Roughly speaking, saveRDS() only serializes the part of an object that resides in memory (the
reality is a little bit more nuanced, but discussing the full details is not important here, and would
only distract us). For most objects in R, that’s the whole object, so saveRDS() does the job.

However some objects are pointing to on-disk data. For example: a TxDb object (the TxDb class
is implemented and documented in the GenomicFeatures package) points to an SQLite db; an
HDF5Array object points to a dataset in an HDF5 file; a SummarizedExperiment derivative can
have one or more of its assays that point to datasets (one per assay) in an HDF5 file. These objects
have 2 parts: one part is in memory, and one part is on disk. The 1st part is sometimes called the
object shell and is generally thin (i.e. it has a small memory footprint). The 2nd part is the data
and is typically big. The object shell and data are linked together via some kind of pointer stored
in the shell (e.g. an SQLite connection, or a path to a file, etc...). Note that this is a one way link
in the sense that the object shell "knows" where to find the on-disk data but the on-disk data knows
nothing about the object shell (and is completely agnostic about what kind of object shell could be
pointing to it). Furthermore, at any given time on a given system, there could be more than one
object shell pointing to the same on-disk data. These object shells could exist in the same R session
or in sessions in other languages (e.g. Python). These various sessions could be run by the same or
by different users.

Using saveRDS() on such object will only serialize the shell part so will produce a small .rds file
that contains the serialized object shell but not the object data.

This is problematic because:

1. If you later unserialize the object (with readRDS()) on the same system where you origi-
nally serialized it, it is possible that you will get back an object that is fully functional and
semantically equivalent to the original object. But here is the catch: this will be the case
ONLY if the data is still at the original location and has not been modified (i.e. nobody
wrote or altered the data in the SQLite db or HDF5 file in the mean time), and if the serial-
ization/unserialization cycle didn’t break the link between the object shell and the data (this
serialization/unserialization cycle is known to break open SQLite connections).

2. After serialization the object shell and data are stored in separate files (in the new .rds file
for the shell, still in the original SQLite or HDF5 file for the data), typically in very different

saveHDF5SummarizedExperiment 25

places on the file system. But these 2 files are not relocatable, that is, moving or copying them
to another system or sending them to collaborators will typically break the link between them.
Concretely this means that the object obtained by using readRDS() on the destination system
will be broken.

saveHDF5SummarizedExperiment() addresses these issues by saving the object shell and assay
data in a folder that is relocatable.

Note that it only works on SummarizedExperiment derivatives. What it does exactly is (1) write all
the assay data to an HDF5 file, and (2) serialize the object shell, which in this case is everything
in the object that is not the assay data. The 2 files (HDF5 and .rds) are written to the directory
specified by the user. The resulting directory contains a full representation of the object and is
relocatable, that is, it can be moved or copied to another place on the system, or to another system
(possibly after making a tarball of it), where loadHDF5SummarizedExperiment() can then be used
to load the object back in R.

Note

The files created by saveHDF5SummarizedExperiment in the user-specified directory dir should
not be renamed.

The user-specified directory created by saveHDF5SummarizedExperiment is relocatable i.e. it can
be renamed and/or moved around, but not the individual files in it.

Author(s)

Hervé Pagès

See Also

• SummarizedExperiment and RangedSummarizedExperiment objects in the SummarizedEx-
periment package.

• The writeHDF5Array function which saveHDF5SummarizedExperiment uses internally to
write the assay data to disk.

• base::saveRDS

Examples

saveHDF5SummarizedExperiment() / loadHDF5SummarizedExperiment()

library(SummarizedExperiment)

nrow <- 200
ncol <- 6
counts <- matrix(as.integer(runif(nrow * ncol, 1, 1e4)), nrow)
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),

row.names=LETTERS[1:6])
se0 <- SummarizedExperiment(assays=list(counts=counts), colData=colData)
se0

Save 'se0' as an HDF5-based SummarizedExperiment object:

26 saveHDF5SummarizedExperiment

dir <- tempfile("h5_se0_")
h5_se0 <- saveHDF5SummarizedExperiment(se0, dir)
list.files(dir)

h5_se0
assay(h5_se0, withDimnames=FALSE) # HDF5Matrix object

h5_se0b <- loadHDF5SummarizedExperiment(dir)
h5_se0b
assay(h5_se0b, withDimnames=FALSE) # HDF5Matrix object

Sanity checks:
stopifnot(is(assay(h5_se0, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical(assay(se0), as.matrix(assay(h5_se0))))
stopifnot(is(assay(h5_se0b, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical(assay(se0), as.matrix(assay(h5_se0b))))

More sanity checks

Make a copy of directory 'dir':
somedir <- tempfile("somedir")
dir.create(somedir)
file.copy(dir, somedir, recursive=TRUE)
dir2 <- list.files(somedir, full.names=TRUE)

'dir2' contains a copy of 'dir'. Call loadHDF5SummarizedExperiment()
on it.
h5_se0c <- loadHDF5SummarizedExperiment(dir2)

stopifnot(is(assay(h5_se0c, withDimnames=FALSE), "HDF5Matrix"))
stopifnot(identical(assay(se0), as.matrix(assay(h5_se0c))))

Using a prefix

se1 <- se0[51:100,]
saveHDF5SummarizedExperiment(se1, dir, prefix="xx_")
list.files(dir)
loadHDF5SummarizedExperiment(dir, prefix="xx_")

quickResaveHDF5SummarizedExperiment()

se2 <- loadHDF5SummarizedExperiment(dir, prefix="xx_")
se2 <- se2[1:14,]
assay1 <- assay(se2, withDimnames=FALSE)
assays(se2, withDimnames=FALSE) <- c(assays(se2), list(score=assay1/100))
rowRanges(se2) <- GRanges("chr1", IRanges(1:14, width=5))
rownames(se2) <- letters[1:14]

TENxMatrix-class 27

se2

This will replace saved 'se1'!
quickResaveHDF5SummarizedExperiment(se2, verbose=TRUE)
list.files(dir)
loadHDF5SummarizedExperiment(dir, prefix="xx_")

TENxMatrix-class 10x Genomics datasets as DelayedMatrix objects

Description

A 10x Genomics dataset like the "1.3 Million Brain Cell Dataset" is an HDF5 sparse matrix stored
in CSR/CSC/Yale format ("Compressed Sparse Row").

The TENxMatrix class is a DelayedMatrix subclass for representing and operating on this kind of
dataset.

All the operations available for DelayedMatrix objects work on TENxMatrix objects.

Usage

Constructor function:
TENxMatrix(filepath, group="matrix")

Arguments

filepath The path (as a single string) to the HDF5 file where the 10x Genomics dataset is
located.

group The name of the group in the HDF5 file containing the 10x Genomics data.

Details

In addition to all the methods defined for DelayedMatrix objects, TENxMatrix objects support the
following specialized methods: nzcount() and extractNonzeroDataByCol(). See ?H5SparseMatrixSeed
for more information about what these methods do.

Value

TENxMatrix() returns a TENxMatrix object.

Note

If your dataset uses the HDF5 sparse matrix representation from 10x Genomics, use the TENxMatrix()
constructor documented here.

But if your dataset uses the conventional (a.k.a. dense) HDF5 representation, use the HDF5Array()
constructor instead.

28 TENxMatrix-class

See Also

• HDF5Array objects for representing conventional (a.k.a. dense) HDF5 datasets as DelayedAr-
ray objects.

• DelayedMatrix objects in the DelayedArray package.

• writeTENxMatrix for writing a matrix-like object as an HDF5-based sparse matrix.

• The TENxBrainData dataset (in the TENxBrainData package).

• detectCores from the parallel package.

• setAutoBPPARAM and setAutoBlockSize in the DelayedArray package.

• colAutoGrid and blockApply in the DelayedArray package.

• The TENxMatrixSeed helper class.

• h5ls to list the content of an HDF5 file.

• NumericList and IntegerList objects in the IRanges package.

• SparseArray objects in the SparseArray package.

Examples

SIMPLE TENxMatrix EXAMPLE

sm <- Matrix::rsparsematrix(10, 7, density=0.3)
M <- writeTENxMatrix(sm)
M

class(M) # TENxMatrix
is(M, "DelayedMatrix") # TRUE

seed(M)
class(seed(M)) # TENxMatrixSeed

rhdf5::h5ls(path(M))

is_sparse(M) # TRUE

Use coercion to load the full dataset into memory:
as.matrix(M) # as ordinary array (usually not recommended)
as(M, "dgCMatrix") # as dgCMatrix (brings back 'sm')
as(M, "SparseArray") # as SparseArray object (most efficient)
SparseArray(M) # equivalent to 'as(M, "SparseArray")'

THE "1.3 Million Brain Cell Dataset" AS A DelayedMatrix OBJECT

The 1.3 Million Brain Cell Dataset from 10x Genomics is available
via ExperimentHub:

library(ExperimentHub)

TENxMatrix-class 29

hub <- ExperimentHub()
query(hub, "TENxBrainData")
fname <- hub[["EH1039"]]

'fname' is an HDF5 file. Use h5ls() to list its content:
h5ls(fname)

The 1.3 Million Brain Cell Dataset is represented by the "mm10"
group. We point the TENxMatrix() constructor to this group to
create a TENxMatrix object representing the dataset:
oneM <- TENxMatrix(fname, group="mm10")
oneM

is(oneM, "DelayedMatrix") # TRUE
seed(oneM)
path(oneM)
nzcount(oneM) # nb of nonzero values in the dataset

Some examples of delayed operations:
oneM != 0
oneM^2

SOME EXAMPLES OF ROW/COL SUMMARIZATION

In order to reduce computation times, we'll use only the first
25000 columns of the 1.3 Million Brain Cell Dataset:
oneM25k <- oneM[, 1:25000]

Row/col summarization methods like rowSums() use a block-processing
mechanism behind the scene that can be controlled via global
settings. 2 important settings that can have a strong impact on
performance are the automatic number of workers and automatic block
size, controlled by setAutoBPPARAM() and setAutoBlockSize()
respectively.
library(BiocParallel)
if (.Platform$OS.type != "windows") {

On a modern Linux laptop with 8 cores (as reported by
parallel::detectCores()) and 16 Gb of RAM, reasonably good
performance is achieved by setting the automatic number of workers
to 5 or 6 and the automatic block size between 300 Mb and 400 Mb:
workers <- 5
block_size <- 3e8 # 300 Mb
setAutoBPPARAM(MulticoreParam(workers))

} else {
MulticoreParam() is not supported on Windows so we use SnowParam()
on this platform. Also we reduce the block size to 200 Mb on
32-bit Windows to avoid memory allocation problems (they tend to
be common there because a process cannot use more than 3 Gb of
memory).
workers <- 4
setAutoBPPARAM(SnowParam(workers))

30 TENxMatrix-class

block_size <- if (.Platform$r_arch == "i386") 2e8 else 3e8
}
setAutoBlockSize(block_size)

We're ready to compute the library sizes, number of genes expressed
per cell, and average expression across cells:
system.time(lib_sizes <- colSums(oneM25k))
system.time(n_exprs <- colSums(oneM25k != 0))
system.time(ave_exprs <- rowMeans(oneM25k))

Note that the 3 computations above load the data in oneM25k 3 times
in memory. This can be avoided by computing the 3 summarizations in
a single pass with blockApply(). First we define the function that
we're going to apply to each block of data:
FUN <- function(block)

list(colSums(block), colSums(block != 0), rowSums(block))

Then we call blockApply() to apply FUN() to each block. The blocks
are defined by the grid passed to the 'grid' argument. In this case
we supply a grid made with colAutoGrid() to generate blocks of full
columns (see ?colAutoGrid for more information):
system.time({

block_results <- blockApply(oneM25k, FUN, grid=colAutoGrid(oneM25k),
verbose=TRUE)

})

'block_results' is a list with 1 list element per block in
colAutoGrid(oneM25k). Each list element is the result that was
obtained by applying FUN() on the block so is itself a list of
length 3.
Let's combine the results:
lib_sizes2 <- unlist(lapply(block_results, `[[`, 1L))
n_exprs2 <- unlist(lapply(block_results, `[[`, 2L))
block_rowsums <- unlist(lapply(block_results, `[[`, 3L), use.names=FALSE)
tot_exprs <- rowSums(matrix(block_rowsums, nrow=nrow(oneM25k)))
ave_exprs2 <- setNames(tot_exprs / ncol(oneM25k), rownames(oneM25k))

Sanity checks:
stopifnot(all.equal(lib_sizes, lib_sizes2))
stopifnot(all.equal(n_exprs, n_exprs2))
stopifnot(all.equal(ave_exprs, ave_exprs2))

Turn off parallel evaluation and reset automatic block size to factory
settings:
setAutoBPPARAM()
setAutoBlockSize()

extractNonzeroDataByCol()

extractNonzeroDataByCol() provides a convenient and very efficient
way to extract the nonzero data in a compact form:

TENxMatrixSeed-class 31

nonzeros <- extractNonzeroDataByCol(oneM, 1:25000) # takes < 5 sec.

The data is returned as an IntegerList object with one list element
per column and no row indices associated to the values in the object.
Furthermore, the values within a given list element can be returned
in any order:
nonzeros

names(nonzeros) <- colnames(oneM25k)

This can be used to compute some simple summaries like the library
sizes and the number of genes expressed per cell. For these use
cases, it is a lot more efficient than using colSums(oneM25k) and
colSums(oneM25k != 0):
lib_sizes3 <- sum(nonzeros)
n_exprs3 <- lengths(nonzeros)

Sanity checks:
stopifnot(all.equal(lib_sizes, lib_sizes3))
stopifnot(all.equal(n_exprs, n_exprs3))

TENxMatrixSeed-class TENxMatrixSeed objects

Description

TENxMatrixSeed is a low-level helper class that is a direct extension of the H5SparseMatrixSeed
class. It is used to represent a pointer to an HDF5 sparse matrix that is stored in the CSR/CSC/Yale
format ("Compressed Sparse Row") and follows the 10x Genomics convention for storing the di-
mensions of the matrix.

Note that a TENxMatrixSeed object is not intended to be used directly. Most end users will typi-
cally create and manipulate a higher-level TENxMatrix object instead. See ?TENxMatrix for more
information.

Usage

Constructor function:
TENxMatrixSeed(filepath, group="matrix")

Arguments

filepath, group See ?TENxMatrix for a description of these arguments.

Details

A TENxMatrixSeed object supports the same limited set of methods as an H5SparseMatrixSeed
object. See ?H5SparseMatrixSeed for the details.

32 TENxMatrixSeed-class

Value

TENxMatrixSeed() returns a TENxMatrixSeed object.

TENxMatrixSeed vs TENxMatrix objects

In order to have access to the full set of operations that are available for DelayedMatrix objects, a
TENxMatrixSeed object first needs to be wrapped in a DelayedMatrix object, typically by calling
the DelayedArray() constructor on it.

This is what the TENxMatrix() constructor function does.

Note that the result of this wrapping is a TENxMatrix object, which is just a TENxMatrixSeed
object wrapped in a DelayedMatrix object.

See Also

• TENxMatrix objects.

• H5SparseMatrixSeed objects.

• The TENxBrainData dataset (in the TENxBrainData package).

• h5ls to list the content of an HDF5 file.

Examples

The 1.3 Million Brain Cell Dataset from 10x Genomics is available
via ExperimentHub:
library(ExperimentHub)
hub <- ExperimentHub()
query(hub, "TENxBrainData")
fname <- hub[["EH1039"]]

'fname' is an HDF5 file. Use h5ls() to list its content:
h5ls(fname)

The 1.3 Million Brain Cell Dataset is represented by the "mm10"
group. We point the TENxMatrixSeed() constructor to this group
to create a TENxMatrixSeed object representing the dataset:
seed <- TENxMatrixSeed(fname, group="mm10")
seed
path(seed)
dim(seed)
is_sparse(seed)
sparsity(seed)

DelayedArray(seed)
stopifnot(class(DelayedArray(seed)) == "TENxMatrix")

writeHDF5Array 33

writeHDF5Array Write an array-like object to an HDF5 file

Description

A function for writing an array-like object to an HDF5 file.

Usage

writeHDF5Array(x, filepath=NULL, name=NULL,
H5type=NULL, chunkdim=NULL, level=NULL, as.sparse=NA,
with.dimnames=TRUE, verbose=NA)

Arguments

x The array-like object to write to an HDF5 file.
If x is a DelayedArray object, writeHDF5Array realizes it on disk, that is, all the
delayed operations carried by the object are executed while the object is written
to disk. See "On-disk realization of a DelayedArray object as an HDF5 dataset"
section below for more information.

filepath NULL or the path (as a single string) to the (new or existing) HDF5 file where to
write the dataset. If NULL, then the dataset will be written to the current HDF5
dump file i.e. to the file whose path is getHDF5DumpFile.

name NULL or the name of the HDF5 dataset to write. If NULL, then the name returned
by getHDF5DumpName will be used.

H5type The H5 datatype to use for the HDF5 dataset to be written to the HDF5 file
is automatically inferred from the type of x (type(x)). Advanced users can
override this by specifying the H5 datatype they want via the H5type argument.
See rhdf5::h5const("H5T") for a list of available H5 datatypes. See Refer-
ences section below for the link to the HDF Group’s Support Portal where H5
predefined datatypes are documented.
A typical use case is to use a datatype that is smaller than the automatic one
in order to reduce the size of the dataset on disk. For example you could
use "H5T_IEEE_F32LE" when type(x) is "double" and you don’t care about
preserving the precision of 64-bit floating-point numbers (the automatic H5
datatype used for "double" is "H5T_IEEE_F64LE"). Another example is to
use "H5T_STD_U16LE" when x contains small non-negative integer values like
counts (the automatic H5 datatype used for "integer" is "H5T_STD_I32LE").

chunkdim The dimensions of the chunks to use for writing the data to disk. By default (i.e.
when chunkdim is set to NULL), getHDF5DumpChunkDim(dim(x)) will be used.
See ?getHDF5DumpChunkDim for more information.
Set chunkdim to 0 to write unchunked data (a.k.a. contiguous data).

level The compression level to use for writing the data to disk. By default, getHDF5DumpCompressionLevel()
will be used. See ?getHDF5DumpCompressionLevel for more information.

34 writeHDF5Array

as.sparse Whether the data in the returned HDF5Array object should be flagged as sparse
or not. If set to NA (the default), then is_sparse(x) is used.
IMPORTANT NOTE: This only controls the as.sparse flag of the returned
HDF5Array object. See man page of the HDF5Array() constructor for more
information. In particular this does NOT affect how the data will be laid out in
the HDF5 file in any way (HDF5 doesn’t natively support sparse storage at the
moment). In other words, the data will always be stored in a dense format, even
when as.sparse is set to TRUE.

with.dimnames Whether the dimnames on x should also be written to the HDF5 file or not. TRUE
by default.
Note that h5writeDimnames is used internally to write the dimnames to disk.
Setting with.dimnames to FALSE and calling h5writeDimnames is another way
to write the dimnames on x to disk that gives more control. See ?h5writeDimnames
for more information.

verbose Whether block processing progress should be displayed or not. If set to NA (the
default), verbosity is controlled by DelayedArray:::get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

Details

Please note that, depending on the size of the data to write to disk and the performance of the disk,
writeHDF5Array() can take a long time to complete. Use verbose=TRUE to see its progress.

Use setHDF5DumpFile and setHDF5DumpName to control the location of automatically created
HDF5 datasets.

Use setHDF5DumpChunkLength, setHDF5DumpChunkShape, and setHDF5DumpCompressionLevel,
to control the physical properties of automatically created HDF5 datasets.

Value

An HDF5Array object pointing to the newly written HDF5 dataset on disk.

On-disk realization of a DelayedArray object as an HDF5 dataset

When passed a DelayedArray object, writeHDF5Array realizes it on disk, that is, all the delayed
operations carried by the object are executed on-the-fly while the object is written to disk. This uses
a block-processing strategy so that the full object is not realized at once in memory. Instead the
object is processed block by block i.e. the blocks are realized in memory and written to disk one at
a time.

In other words, writeHDF5Array(x, ...) is semantically equivalent to writeHDF5Array(as.array(x),
...), except that as.array(x) is not called because this would realize the full object at once in
memory.

See ?DelayedArray for general information about DelayedArray objects.

References

Documentation of the H5 predefined datatypes on the HDF Group’s Support Portal: https://
portal.hdfgroup.org/display/HDF5/Predefined+Datatypes

https://portal.hdfgroup.org/display/HDF5/Predefined+Datatypes
https://portal.hdfgroup.org/display/HDF5/Predefined+Datatypes

writeHDF5Array 35

See Also

• HDF5Array objects.

• h5writeDimnames for writing the dimnames of an HDF5 dataset to disk.

• saveHDF5SummarizedExperiment and loadHDF5SummarizedExperiment in this package (the
HDF5Array package) for saving/loading an HDF5-based SummarizedExperiment object to/from
disk.

• HDF5-dump-management to control the location and physical properties of automatically cre-
ated HDF5 datasets.

• h5ls to list the content of an HDF5 file.

Examples

WRITE AN ORDINARY ARRAY TO AN HDF5 FILE

m0 <- matrix(runif(364, min=-1), nrow=26,

dimnames=list(letters, LETTERS[1:14]))

h5file <- tempfile(fileext=".h5")
M1 <- writeHDF5Array(m0, h5file, name="M1", chunkdim=c(5, 5))
M1
chunkdim(M1)

By default, writeHDF5Array() writes the dimnames to the HDF5 file:
dimnames(M1) # same as 'dimnames(m0)'

Use 'with.dimnames=FALSE' to not write the dimnames to the file:
M1b <- writeHDF5Array(m0, h5file, name="M1b", with.dimnames=FALSE)
dimnames(M1b) # no dimnames

With sparse data:
sm <- rsparsematrix(20, 8, density=0.1)
M2 <- writeHDF5Array(sm, h5file, name="M2", chunkdim=c(5, 5))
M2
is_sparse(M2) # TRUE

WRITE A DelayedArray OBJECT TO AN HDF5 FILE

M3 <- log(t(DelayedArray(m0)) + 1)
M3 <- writeHDF5Array(M3, h5file, name="M3", chunkdim=c(5, 5))
M3
chunkdim(M3)

library(h5vcData)
tally_file <- system.file("extdata", "example.tally.hfs5",

package="h5vcData")
h5ls(tally_file)

cvg0 <- HDF5Array(tally_file, "/ExampleStudy/16/Coverages")

36 writeTENxMatrix

cvg1 <- cvg0[, , 29000001:29000007]

writeHDF5Array(cvg1, h5file, "cvg1")
h5ls(h5file)

writeTENxMatrix Write a matrix-like object as an HDF5-based sparse matrix

Description

The 1.3 Million Brain Cell Dataset and other datasets published by 10x Genomics use an HDF5-
based sparse matrix representation instead of the conventional (a.k.a. dense) HDF5 representation.

writeTENxMatrix writes a matrix-like object to this format.

IMPORTANT NOTE: Only use writeTENxMatrix if the matrix-like object to write is sparse, that
is, if most of its elements are zero. Using writeTENxMatrix on dense data is very inefficient! In
this case, you should use writeHDF5Array instead.

Usage

writeTENxMatrix(x, filepath=NULL, group=NULL, level=NULL, verbose=NA)

Arguments

x The matrix-like object to write to an HDF5 file.
The object to write should typically be sparse, that is, most of its elements should
be zero.
If x is a DelayedMatrix object, writeTENxMatrix realizes it on disk, that is,
all the delayed operations carried by the object are executed while the object is
written to disk.

filepath NULL or the path (as a single string) to the (new or existing) HDF5 file where to
write the data. If NULL, then the data will be written to the current HDF5 dump
file i.e. to the file whose path is getHDF5DumpFile.

group NULL or the name of the HDF5 group where to write the data. If NULL, then the
name returned by getHDF5DumpName will be used.

level The compression level to use for writing the data to disk. By default, getHDF5DumpCompressionLevel()
will be used. See ?getHDF5DumpCompressionLevel for more information.

verbose Whether block processing progress should be displayed or not. If set to NA (the
default), verbosity is controlled by DelayedArray:::get_verbose_block_processing().
Setting verbose to TRUE or FALSE overrides this.

Details

Please note that, depending on the size of the data to write to disk and the performance of the disk,
writeTENxMatrix can take a long time to complete. Use verbose=TRUE to see its progress.

Use setHDF5DumpFile and setHDF5DumpName to control the location of automatically created
HDF5 datasets.

writeTENxMatrix 37

Value

A TENxMatrix object pointing to the newly written HDF5 data on disk.

See Also

• TENxMatrix objects.
• The TENxBrainData dataset (in the TENxBrainData package).
• HDF5-dump-management to control the location and physical properties of automatically cre-

ated HDF5 datasets.
• h5ls to list the content of an HDF5 file.

Examples

A SIMPLE EXAMPLE

m0 <- matrix(0L, nrow=25, ncol=12,

dimnames=list(letters[1:25], LETTERS[1:12]))
m0[cbind(2:24, c(12:1, 2:12))] <- 100L + sample(55L, 23, replace=TRUE)
out_file <- tempfile()
M0 <- writeTENxMatrix(m0, out_file, group="m0")
M0
sparsity(M0)

path(M0) # same as 'out_file'

Use h5ls() to list the content of this HDF5 file:
h5ls(path(M0))

USING THE "1.3 Million Brain Cell Dataset"

The 1.3 Million Brain Cell Dataset from 10x Genomics is available via
ExperimentHub:
library(ExperimentHub)
hub <- ExperimentHub()
query(hub, "TENxBrainData")
fname <- hub[["EH1039"]]
oneM <- TENxMatrix(fname, group="mm10") # see ?TENxMatrix for the details
oneM

Note that the following transformation preserves sparsity:
M2 <- log(oneM + 1) # delayed
M2 # a DelayedMatrix instance

In order to reduce computation times, we'll write only the first
5000 columns of M2 to disk:
out_file <- tempfile()
M3 <- writeTENxMatrix(M2[, 1:5000], out_file, group="mm10", verbose=TRUE)
M3 # a TENxMatrix instance

Index

∗ classes
H5ADMatrix-class, 2
H5ADMatrixSeed-class, 4
H5SparseMatrix-class, 5
H5SparseMatrixSeed-class, 7
HDF5Array-class, 13
HDF5ArraySeed-class, 17
ReshapedHDF5Array-class, 20
ReshapedHDF5ArraySeed-class, 21
TENxMatrix-class, 27
TENxMatrixSeed-class, 31

∗ internal
HDF5Array-internals, 17

∗ methods
H5ADMatrix-class, 2
H5ADMatrixSeed-class, 4
H5SparseMatrix-class, 5
H5SparseMatrixSeed-class, 7
HDF5Array-class, 13
HDF5ArraySeed-class, 17
ReshapedHDF5Array-class, 20
ReshapedHDF5ArraySeed-class, 21
TENxMatrix-class, 27
TENxMatrixSeed-class, 31
writeHDF5Array, 33
writeTENxMatrix, 36

∗ utilities
HDF5-dump-management, 10

appendDatasetCreationToHDF5DumpLog
(HDF5-dump-management), 10

blockApply, 28

check_and_delete_files
(HDF5Array-internals), 17

chunkdim, 9, 19
chunkdim,CSC_H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7

chunkdim,CSR_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

chunkdim,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

chunkdim,HDF5RealizationSink-method
(writeHDF5Array), 33

chunkdim,ReshapedHDF5ArraySeed-method
(ReshapedHDF5ArraySeed-class),
21

chunkdim,TENxRealizationSink-method
(writeTENxMatrix), 36

class:CSC_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4

class:CSC_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 7

class:CSR_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4

class:CSR_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 7

class:Dense_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4

class:H5ADMatrix (H5ADMatrix-class), 2
class:H5ADMatrixSeed

(H5ADMatrixSeed-class), 4
class:H5SparseMatrix

(H5SparseMatrix-class), 5
class:H5SparseMatrixSeed

(H5SparseMatrixSeed-class), 7
class:HDF5Array (HDF5Array-class), 13
class:HDF5ArraySeed

(HDF5ArraySeed-class), 17
class:HDF5Matrix (HDF5Array-class), 13
class:HDF5RealizationSink

(writeHDF5Array), 33
class:ReshapedHDF5Array

(ReshapedHDF5Array-class), 20
class:ReshapedHDF5ArraySeed

(ReshapedHDF5ArraySeed-class),
21

38

INDEX 39

class:ReshapedHDF5Matrix
(ReshapedHDF5Array-class), 20

class:TENxMatrix (TENxMatrix-class), 27
class:TENxMatrixSeed

(TENxMatrixSeed-class), 31
class:TENxRealizationSink

(writeTENxMatrix), 36
close,TENxRealizationSink-method

(writeTENxMatrix), 36
coerce,ANY,HDF5Array-method

(writeHDF5Array), 33
coerce,ANY,HDF5Matrix-method

(HDF5Array-class), 13
coerce,ANY,ReshapedHDF5Matrix-method

(ReshapedHDF5Array-class), 20
coerce,ANY,TENxMatrix-method

(writeTENxMatrix), 36
coerce,DelayedArray,HDF5Array-method

(writeHDF5Array), 33
coerce,DelayedArray,TENxMatrix-method

(writeTENxMatrix), 36
coerce,DelayedMatrix,HDF5Matrix-method

(writeHDF5Array), 33
coerce,DelayedMatrix,TENxMatrix-method

(writeTENxMatrix), 36
coerce,HDF5Array,HDF5Matrix-method

(HDF5Array-class), 13
coerce,HDF5Matrix,HDF5Array-method

(HDF5Array-class), 13
coerce,HDF5RealizationSink,DelayedArray-method

(writeHDF5Array), 33
coerce,HDF5RealizationSink,HDF5Array-method

(writeHDF5Array), 33
coerce,HDF5RealizationSink,HDF5ArraySeed-method

(writeHDF5Array), 33
coerce,ReshapedHDF5Array,ReshapedHDF5Matrix-method

(ReshapedHDF5Array-class), 20
coerce,ReshapedHDF5Matrix,ReshapedHDF5Array-method

(ReshapedHDF5Array-class), 20
coerce,TENxRealizationSink,DelayedArray-method

(writeTENxMatrix), 36
coerce,TENxRealizationSink,TENxMatrix-method

(writeTENxMatrix), 36
coerce,TENxRealizationSink,TENxMatrixSeed-method

(writeTENxMatrix), 36
colAutoGrid, 28
create_dir (HDF5Array-internals), 17
CSC_H5ADMatrixSeed

(H5ADMatrixSeed-class), 4
CSC_H5ADMatrixSeed-class

(H5ADMatrixSeed-class), 4
CSC_H5SparseMatrixSeed, 4
CSC_H5SparseMatrixSeed

(H5SparseMatrixSeed-class), 7
CSC_H5SparseMatrixSeed-class

(H5SparseMatrixSeed-class), 7
CSR_H5ADMatrixSeed

(H5ADMatrixSeed-class), 4
CSR_H5ADMatrixSeed-class

(H5ADMatrixSeed-class), 4
CSR_H5SparseMatrixSeed, 4
CSR_H5SparseMatrixSeed

(H5SparseMatrixSeed-class), 7
CSR_H5SparseMatrixSeed-class

(H5SparseMatrixSeed-class), 7

DelayedArray, 3, 5, 6, 9, 13, 14, 19–21, 28,
32–34

DelayedArray,H5ADMatrixSeed-method
(H5ADMatrix-class), 2

DelayedArray,H5SparseMatrixSeed-method
(H5SparseMatrix-class), 5

DelayedArray,HDF5ArraySeed-method
(HDF5Array-class), 13

DelayedArray,ReshapedHDF5ArraySeed-method
(ReshapedHDF5Array-class), 20

DelayedArray,TENxMatrixSeed-method
(TENxMatrix-class), 27

DelayedMatrix, 2, 3, 5, 6, 9, 14, 27, 28, 32, 36
Dense_H5ADMatrixSeed, 18
Dense_H5ADMatrixSeed

(H5ADMatrixSeed-class), 4
Dense_H5ADMatrixSeed-class

(H5ADMatrixSeed-class), 4
detectCores, 28
dim,H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
dim,HDF5ArraySeed-method

(HDF5ArraySeed-class), 17
dim,ReshapedHDF5ArraySeed-method

(ReshapedHDF5ArraySeed-class),
21

dimnames,Dense_H5ADMatrixSeed-method
(H5ADMatrixSeed-class), 4

dimnames,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

40 INDEX

dimnames,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

dimnames,HDF5RealizationSink-method
(writeHDF5Array), 33

dimnames,TENxRealizationSink-method
(writeTENxMatrix), 36

dump-management (HDF5-dump-management),
10

extract_array, 8, 9, 18, 19
extract_array,H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
extract_array,HDF5ArraySeed-method

(HDF5ArraySeed-class), 17
extract_array,ReshapedHDF5ArraySeed-method

(ReshapedHDF5ArraySeed-class),
21

extract_sparse_array, 9, 19
extract_sparse_array,CSC_H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
extract_sparse_array,CSR_H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
extract_sparse_array,HDF5ArraySeed-method

(HDF5ArraySeed-class), 17
extractNonzeroDataByCol

(H5SparseMatrixSeed-class), 7
extractNonzeroDataByCol,CSC_H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
extractNonzeroDataByCol,H5ADMatrix-method

(H5ADMatrix-class), 2
extractNonzeroDataByCol,H5SparseMatrix-method

(H5SparseMatrix-class), 5
extractNonzeroDataByCol,TENxMatrix-method

(TENxMatrix-class), 27
extractNonzeroDataByRow

(H5SparseMatrixSeed-class), 7
extractNonzeroDataByRow,CSR_H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
extractNonzeroDataByRow,H5ADMatrix-method

(H5ADMatrix-class), 2
extractNonzeroDataByRow,H5SparseMatrix-method

(H5SparseMatrix-class), 5

getHDF5DumpChunkDim, 33
getHDF5DumpChunkDim

(HDF5-dump-management), 10
getHDF5DumpChunkLength

(HDF5-dump-management), 10

getHDF5DumpChunkShape
(HDF5-dump-management), 10

getHDF5DumpCompressionLevel, 33, 36
getHDF5DumpCompressionLevel

(HDF5-dump-management), 10
getHDF5DumpDir (HDF5-dump-management),

10
getHDF5DumpFile, 33, 36
getHDF5DumpFile (HDF5-dump-management),

10
getHDF5DumpName, 33, 36
getHDF5DumpName (HDF5-dump-management),

10

H5ADMatrix, 4–6, 14
H5ADMatrix (H5ADMatrix-class), 2
H5ADMatrix-class, 2
H5ADMatrixSeed, 3
H5ADMatrixSeed (H5ADMatrixSeed-class), 4
H5ADMatrixSeed-class, 4
h5createDataset, 11
H5File, 14
h5ls, 6, 10–12, 15, 19, 20, 22, 28, 32, 35, 37
H5SparseMatrix, 3, 7, 8, 10, 14
H5SparseMatrix (H5SparseMatrix-class), 5
H5SparseMatrix-class, 5
H5SparseMatrixSeed, 4–6, 27, 31, 32
H5SparseMatrixSeed

(H5SparseMatrixSeed-class), 7
H5SparseMatrixSeed-class, 7
h5writeDimnames, 34, 35
HDF5-dump-management, 10, 15, 35, 37
HDF5Array, 3, 6, 12, 17–20, 24, 27, 28, 34, 35
HDF5Array (HDF5Array-class), 13
HDF5Array-class, 13
HDF5Array-internals, 17
HDF5ArraySeed, 4, 5, 15
HDF5ArraySeed (HDF5ArraySeed-class), 17
HDF5ArraySeed-class, 17
HDF5Matrix (HDF5Array-class), 13
HDF5Matrix-class (HDF5Array-class), 13
HDF5RealizationSink (writeHDF5Array), 33
HDF5RealizationSink-class

(writeHDF5Array), 33

IntegerList, 9, 28
is_sparse, 9, 19
is_sparse,H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7

INDEX 41

is_sparse,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

is_sparse,HDF5RealizationSink-method
(writeHDF5Array), 33

is_sparse<-,HDF5Array-method
(HDF5Array-class), 13

is_sparse<-,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

loadHDF5SummarizedExperiment, 15, 20, 35
loadHDF5SummarizedExperiment

(saveHDF5SummarizedExperiment),
22

lsHDF5DumpFile (HDF5-dump-management),
10

makeCappedVolumeBox, 11, 12
matrixClass,HDF5Array-method

(HDF5Array-class), 13
matrixClass,ReshapedHDF5Array-method

(ReshapedHDF5Array-class), 20

NumericList, 9, 28
nzcount,H5ADMatrix-method

(H5ADMatrix-class), 2
nzcount,H5SparseMatrix-method

(H5SparseMatrix-class), 5
nzcount,H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
nzcount,TENxMatrix-method

(TENxMatrix-class), 27

path,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

path,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

path<-,H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

path<-,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

quickResaveHDF5SummarizedExperiment
(saveHDF5SummarizedExperiment),
22

RangedSummarizedExperiment, 25
readH5AD, 3, 5
replace_dir (HDF5Array-internals), 17
ReshapedHDF5Array, 14, 21, 22

ReshapedHDF5Array
(ReshapedHDF5Array-class), 20

ReshapedHDF5Array-class, 20
ReshapedHDF5ArraySeed, 20
ReshapedHDF5ArraySeed

(ReshapedHDF5ArraySeed-class),
21

ReshapedHDF5ArraySeed-class, 21
ReshapedHDF5Matrix

(ReshapedHDF5Array-class), 20
ReshapedHDF5Matrix-class

(ReshapedHDF5Array-class), 20
restore_absolute_assay2h5_links

(HDF5Array-internals), 17

saveHDF5SummarizedExperiment, 15, 20, 22,
35

saveRDS, 25
setAutoBlockSize, 28
setAutoBPPARAM, 28
setHDF5DumpChunkLength, 34
setHDF5DumpChunkLength

(HDF5-dump-management), 10
setHDF5DumpChunkShape, 34
setHDF5DumpChunkShape

(HDF5-dump-management), 10
setHDF5DumpCompressionLevel, 34
setHDF5DumpCompressionLevel

(HDF5-dump-management), 10
setHDF5DumpDir (HDF5-dump-management),

10
setHDF5DumpFile, 34, 36
setHDF5DumpFile (HDF5-dump-management),

10
setHDF5DumpName, 34, 36
setHDF5DumpName (HDF5-dump-management),

10
shorten_assay2h5_links

(HDF5Array-internals), 17
show,H5SparseMatrixSeed-method

(H5SparseMatrixSeed-class), 7
showHDF5DumpLog (HDF5-dump-management),

10
SingleCellExperiment, 3, 5
SparseArray, 3, 6, 28
stop_if_bad_dir (HDF5Array-internals),

17
SummarizedExperiment, 15, 20, 22–25, 35

42 INDEX

t,CSC_H5ADMatrixSeed-method
(H5ADMatrixSeed-class), 4

t,CSC_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

t,CSR_H5ADMatrixSeed-method
(H5ADMatrixSeed-class), 4

t,CSR_H5SparseMatrixSeed-method
(H5SparseMatrixSeed-class), 7

t.CSC_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4

t.CSC_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 7

t.CSR_H5ADMatrixSeed
(H5ADMatrixSeed-class), 4

t.CSR_H5SparseMatrixSeed
(H5SparseMatrixSeed-class), 7

TENxBrainData, 28, 32, 37
TENxMatrix, 6, 14, 31, 32, 37
TENxMatrix (TENxMatrix-class), 27
TENxMatrix-class, 27
TENxMatrixSeed, 28
TENxMatrixSeed (TENxMatrixSeed-class),

31
TENxMatrixSeed-class, 31
TENxRealizationSink (writeTENxMatrix),

36
TENxRealizationSink-class

(writeTENxMatrix), 36
TxDb, 24
type, 11, 12, 14, 19
type,HDF5ArraySeed-method

(HDF5ArraySeed-class), 17
type,HDF5RealizationSink-method

(writeHDF5Array), 33
type,TENxRealizationSink-method

(writeTENxMatrix), 36

updateObject,HDF5ArraySeed-method
(HDF5ArraySeed-class), 17

validate_HDF5ArraySeed_dataset_geometry
(HDF5Array-internals), 17

write_block,HDF5RealizationSink-method
(writeHDF5Array), 33

write_block,TENxRealizationSink-method
(writeTENxMatrix), 36

write_h5_assays (HDF5Array-internals),
17

writeH5AD, 3, 5
writeHDF5Array, 12, 15, 20, 23, 25, 33, 36
writeTENxMatrix, 28, 36

	H5ADMatrix-class
	H5ADMatrixSeed-class
	H5SparseMatrix-class
	H5SparseMatrixSeed-class
	HDF5-dump-management
	HDF5Array-class
	HDF5Array-internals
	HDF5ArraySeed-class
	ReshapedHDF5Array-class
	ReshapedHDF5ArraySeed-class
	saveHDF5SummarizedExperiment
	TENxMatrix-class
	TENxMatrixSeed-class
	writeHDF5Array
	writeTENxMatrix
	Index

