Package 'dSimer'

April 14, 2017

Type Package

Title Integration of Disease Similarity Methods

Version 1.0.0

Date 2015-12-10

Author Min Li <limin@mail.csu.edu.cn>, Peng Ni <nipeng@csu.edu.cn> with contributions from Zhihui Fei and Ping Huang.

Maintainer Peng Ni <nipeng@csu.edu.cn>

Description dSimer is an R package which provides computation of nine methods for measuring disease-disease similarity, including a standard cosine similarity measure and eight function-based methods. The disease similarity matrix obtained from these nine methods can be visualized through heatmap and network. Biological data widely used in disease-disease associations study are also provided by dSimer.

Depends R (>= 3.3.0), igraph (>= 1.0.1)

Imports stats, Rcpp (>= 0.11.3), ggplot2, reshape2, GO.db, org.Hs.eg.db, AnnotationDbi, graphics

Suggests knitr, rmarkdown, BiocStyle

LinkingTo Rcpp

License GPL (≥ 2)

biocViews Software, Visualization, Network

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

Simer-package	2
OG	3
osineDFV	4
go_sample	5
2g_fundo_entrezid	5
2g_fundo_symbol	6
g_separation	6
S_hsdn	7

d2s_hsdn_sample	7
FunSim	8
get_GOterm2GeneAssos	9
go2g_sample	0
graphlet_sig_hprd	0
HumanNet_sample	1
HypergeometricTest	1
ICod	2
InformationContent	3
interactome	4
jaccardindex	4
LLSn2List	5
Normalize	6
orbit_dependency_count	6
plot_bipartite	7
plot_heatmap	8
plot_net	9
plot_topo	0
PPI_HPRD 2	1
PSB	2
Separation	3
Separation2Similarity	4
setWeight	4
Sun_annotation	5
Sun_function	6
Sun_topology	7
weight	8
x2y_conv2_y2x	8
x2y_df2list	9
3	0

Index

dSimer-package

Integration of Disease Similarity Methods

Description

dSimer is an R package which provides computation of nine methods for measuring disease-disease similarity, including a standard cosine similarity measure and eight function-based methods. The disease similarity matrix obtained from these nine methods can be visualized through heatmap and network. Biological data widely used in disease-disease associations study are also provided by dSimer.

Details

Package:	dSimer
Type:	Package
Version:	0.99.6
Date:	12-10-2015
biocViews:	Software, Visualization, Network
Depends:	R (>= 3.3.0), igraph (>= 1.0.1)

BOG

Imports:stats, Rcpp (>= 0.11.3), ggplot2, reshape2, GO.db, AnnotationDbi, org.Hs.eg.db, graphicsSuggests:knitr, rmarkdown, BiocStyleLinkingTo:RcppLicense:GPL (>= 2)

Author(s)

Min Li, Peng Ni

BOG

calculate disease similarity by BOG

Description

given two vectors of diseases and a list of disease-gene associations, this function will calculate disease similarity by method BOG.

Usage

BOG(D1, D2, d2g)

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Mathur S, Dinakarpandian D. Automated ontological gene annotation for computing disease similarity[J]. AMIA Summits on Translational Science Proceedings, 2010, 2010: 12

See Also

Normalize

```
data(d2g_separation) #get disease-gene associations
ds<-sample(names(d2g_separation),5)
sim<-BOG(ds,ds,d2g_separation)
Normalize(sim) #normalize BOG sim scores
```

CosineDFV

Description

given two (lists of) disease names, this function will calculate cosine similarity between these diseases' feature vectors.

Usage

CosineDFV(D1, D2, d2f, dcol = 2, fcol = 1, ccol = 3)

Arguments

D1	a vector consists of disease ids/names
D2	another vector consists of disease ids/names
d2f	data.frame, contains term co-occurrences between features and diseases
dcol	integer, disease column number in d2f
fcol	integer, feature column number in d2f
ccol	integer, co-occurrences column number in d2f

Value

a matrix of disease disease similarity which rownames and colnames are the disease names

Author(s)

Zhihui Fei, Peng Ni, Min Li

References

Zhou X Z, Menche J, Barabasi A L, et al. Human symptoms-disease network[J]. Nature communications, 2014, 5.

Van Driel M A, Bruggeman J, Vriend G, et al. A text-mining analysis of the human phenome[J]. European journal of human genetics, 2006, 14(5): 535-542.

```
### this is a disease-symptom-cooccurrence sample, if you want to use
### the complete data, please use "data(d2s_hsdn)" command
data(d2s_hsdn_sample)
ds <- sample(unique(d2s_hsdn_sample[,2]), 10)
simmat <- CosineDFV(ds, ds, d2s_hsdn_sample)</pre>
```

d2go_sample

Description

a sample list of disease-GO term associations.

Value

d2go_sample is a named list of length 3. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of GO term ids. The entire data of disease-GO term associations can be obtained by function HypergeometricTest.

See Also

HypergeometricTest

Examples

data(d2go_sample)

d2g_fundo_entrezid d2g_fundo_entrezid

Description

a list of disease-gene associations from FunDO.

Value

d2g_fundo_entrezid is a named list of length 1855 which stored disease-gene associations from FunDO. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of Entrez gene IDs.

References

Osborne J D, Flatow J, Holko M, et al. Annotating the human genome with Disease Ontology[J]. BMC genomics, 2009, 10(Suppl 1): S6.

Examples

data(d2g_fundo_entrezid)

d2g_fundo_symbol d2g_fundo_symbol

Description

a list of disease-gene associations from FunDO.

Value

d2g_fundo_symbol is a named list of length 1855 which stored disease-gene associations from FunDO. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of gene symbols.

References

Osborne J D, Flatow J, Holko M, et al. Annotating the human genome with Disease Ontology[J]. BMC genomics, 2009, 10(Suppl 1): S6.

Examples

data(d2g_fundo_symbol)

d2g_separation d2g_separation

Description

a list of disease-gene associations from the reference paper (see below).

Value

d2g_separation is a named list of length 299 which stored disease-gene associations from the reference paper (see below). The names are diseases and list elements are vectors of gene entrez ids.

References

Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome[J]. Science, 2015, 347(6224): 1257601.

Examples

data(d2g_separation)

d2s_hsdn

d2s_hsdn

Description

diseases, symptoms and their co-occurrences in PubMed

Value

d2s_hsdn is a data.frame of 73726 rows and 3 columns, contains PubMed co-occurrences of diseases and symptoms, will be used in method CosineDFV.

References

Zhou X Z, Menche J, Barabasi A L, et al. Human symptoms-disease network[J]. Nature communications, 2014, 5.

See Also

CosineDFV

Examples

data(d2s_hsdn)

d2s_hsdn_sample d2s_hsdn_sample

Description

a sample of d2s_hsdn

Value

d2s_hsdn__sample is a data.frame of 1480 rows and 3 columns, contains PubMed co- occurrences of diseases and symptoms. It is a sample of d2s_hsdn.

References

Zhou X Z, Menche J, Barabasi A L, et al. Human symptoms-disease network[J]. Nature communications, 2014, 5.

See Also

d2s_hsdn, CosineDFV

Examples

data(d2s_hsdn_sample)

FunSim

Description

given two vectors of diseases, a list of disease-gene associations, and a list of gene-gene loglikelihood score from HumanNet, this function will calculate disease similarity by method FunSim

Usage

FunSim(D1, D2, d2g, LLSnList)

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations, while gene ids should be entrez id.
LLSnList	a list of gene-gene log-likelihood score from HumanNet

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association[J]. PloS one, 2014, 9(6): e99415.

See Also

LLSn2List

```
## in this method, we must use disease-gene associations
## which genes are represented by entrez ids because of
## HumanNet
data(d2g_fundo_entrezid)
data(HumanNet_sample)
## we specified 5 DOIDs to match Human_sample
ds<-c("DOID:8176","DOID:2394","DOID:3744","DOID:8466","DOID:5679")
llsnlist<-LLSn2List(HumanNet_sample)
FunSim(ds,ds,d2g_fundo_entrezid,llsnlist)</pre>
```

get_GOterm2GeneAssos get GO-gene associations

Description

get GO-gene associations from GO.db and org.Hs.eg.db

Usage

```
get_GOterm2GeneAssos(GOONTOLOGY = c("BP", "MF", "CC"),
geneid = c("ENTREZID", "SYMBOL"), rm.IEAs = TRUE,
rm.termlessthan3genes = TRUE)
```

Arguments

GOONTOLOGY	"BP" or "MF" or "CC	
geneid	gene id type, "ENTREZID" or "SYMBOL"	
rm.IEAs	logical value, remove GO terms with evidence "IEA" or not	
rm.termlessthan3genes		
	logical value, remove terms whose number of annotated genes are less than 3 or	
	not	

Value

a list which names are GO term IDs and elements are gene ids or symbols annotated with GO terms

Author(s)

Peng Ni, Min Li

References

Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity[J]. Journal of biomedical informatics, 2012, 45(2): 363-371.

See Also

PSB, Sun_function

```
go2g<-get_GOterm2GeneAssos(GOONTOLOGY="BP", geneid="SYMBOL")
go2g</pre>
```

go2g_sample

Description

a sample list of GO term-gene associations.

Value

go2g_sample is a named list of length 465. The names are GO term ids (GOIDs) and list elements are vectors of gene symbols. The entire data of GO term-gene assos can be obtained by function get_GOterm2GeneAssos.

See Also

get_GOterm2GeneAssos

Examples

data(go2g_sample)

graphlet_sig_hprd graphlet_sig_hprd

Description

graphlet signature of nodes in HPRD PPI network.

Value

#' graphlet_sig_hprd is a matrix of 9270 rows and 73 rows. The rownames of graphlet_sig_hprd are gene symbols of nodes from HPRD. Each row indicates a graphlet signature of one node. Graphlet signatures of nodes in HPRD PPI network were calculated by ORCA tool, will be used in method Sun_topology.

References

Hocevar T, Demsar J. A combinatorial approach to graphlet counting[J]. Bioinformatics, 2014, 30(4): 559-565.

See Also

Sun_topology

Examples

data(graphlet_sig_hprd)

HumanNet_sample HumanNet_sample

Description

a sample of HumanNet likelihood score data which will be used in method FunSim.

Value

HumanNet_sample is a data.frame has 22708 rows and 3 columns. Each row indicates a pair of genes and their normalized likelihood score in HumanNet. HumanNet_sample will be used in method FunSim after being converted to list by method LLSn2List. The entire data of HumanNet can be downloaded from the website http://www.functionalnet.org/humannet/.

References

Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association[J]. PloS one, 2014, 9(6): e99415.

See Also

FunSim, LLSn2List

Examples

data(HumanNet_sample)

HypergeometricTest Hypergeometric test and multiple testing

Description

given disease-gene associations and go-gene associations, return disease-go associations by using hypergeometric test and fdr mulitiple testing

Usage

```
HypergeometricTest(d2g, go2g, method = "BH", cutoff = 0.05)
```

Arguments

d2g	a list of disease-gene associations
go2g	a list of GOterm-gene associations
method	multiple testing method, the same as parameter in method p.adjust
cutoff	multiple testing cut off value

Value

a list of disease-GO term associations

Author(s)

Peng Ni, Min Li

See Also

PSB, Sun_function, get_GOterm2GeneAssos

Examples

```
## see more examples in function PSB or Sun_function
data(d2go_sample)
data(go2g_sample)
data(d2g_fundo_symbol)
HypergeometricTest(d2g_fundo_symbol[names(d2go_sample)],go2g_sample)
```

ICod

calculate disease similarity by ICod

Description

given two vectors of diseases, a list of disease-gene associations and a PPI neteork, this function will calculate disease similarity by method ICod

Usage

ICod(D1, D2, d2g, graph, A = 0.9, b = 1, C = 0)

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations
graph	an igraph graph object of PPI network
A	a parameter used in ICod to calculate transformed distance of node pair, default 0.9
b	a parameter used in ICod to calculate transformed distance of node pair, default 1
С	a parameter used in ICod to calculate disease similarity, default 0

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

InformationContent

References

Paik H, Heo HS, Ban H, et al. Unraveling human protein interaction networks underlying cooccurrences of diseases and pathological conditions[J]. Journal of translational medicine, 2014, 12(1): 99.

Examples

```
data(d2g_fundo_symbol)
data(PPI_HPRD)
```

```
graph_hprd<-graph.data.frame(PPI_HPRD,directed=FALSE) #get a igraph object based on HPRD data
ds<-sample(names(d2g_fundo_symbol),5)
ICod(ds,ds,d2g_fundo_symbol,graph_hprd)
```

InformationContent calculating information content

Description

calculate information content of all term ids in a term list

Usage

```
InformationContent(T2G)
```

Arguments

T2G

a list of Term-Gene associations which names are term ids

Value

a list of IC values of inputted term ids

Author(s)

Peng Ni, Min Li

```
data(d2g_fundo_symbol)
InformationContent(d2g_fundo_symbol[1:5])
```

interactome

interactome

Description

interactome data

Value

interactome is a data.frame of 141296 rows and 2 columns. Each row indicates an interaction of two gene entrez ids. It was obtained from the reference below.

References

Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome[J]. Science, 2015, 347(6224): 1257601.

Examples

data(interactome)

	1. 1
_	accardindex

calculating Jaccard Index

Description

calculate Jaccard Index of two terms by using their annotated genes

Usage

jaccardindex(x1, x2, x2y)

Arguments

x1	a disease id
x2	another disease id
x2y	a list of disease-gene associations which consists x1 and x2

Value

numeric value of a jaccard index of x1 and x2

Author(s)

Peng Ni, Min Li

```
## this function is not just for disease-gene associations
data(d2go_sample)
d1<-names(d2go_sample)[1]
d2<-names(d2go_sample)[2]
jaccardindex(d1,d2,d2go_sample)</pre>
```

LLSn2List

Description

convert HumanNet normalized log-likelihood score from data.frame to list, which will be used in FunSim method

Usage

LLSn2List(LLSn)

Arguments

LLSn data.frame of gene-gene normalized log-likelihood score in HumanNet

Value

a list of normalized log-likelihood score

Author(s)

Peng Ni, Min Li

References

Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association[J]. PloS one, 2014, 9(6): e99415.

See Also

FunSim

```
## see examples in function FunSim
data(HumanNet_sample)
llsnlist<-LLSn2List(HumanNet_sample[1:100,])
llsnlist</pre>
```

Normalize

Description

normalize a vector or a matrix based on the formula from SemFunSim

Usage

Normalize(data)

Arguments

data

a numeric/integer vector or matrix

Value

normalized vector or matrix

Author(s)

Peng Ni, Min Li

References

Cheng L, Li J, Ju P, et al. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association[J]. PloS one, 2014, 9(6): e99415.

Examples

```
sim<-matrix(1:9,3,3)
Normalize(sim)</pre>
```

orbit_dependency_count

orbit_dependency_count

Description

orbit dependency count

Value

orbit_dependency_count is a 73-dim vector, indicating 73 orbits' dependency count in graphlet theory, used to calculate weight factor in method setWeight.

References

Milenkovic T, Przulj N. Uncovering biological network function via graphlet degree signatures[J]. Cancer informatics, 2008, 6: 257.

plot_bipartite

See Also

setWeight

Examples

data(orbit_dependency_count)

plot_bipartite plot disease-gene (or GO term etc.) associations as a bipartite graph

Description

plot a bipartite graph which visualizes associations between diseases and genes (or GO terms etc.)

Usage

```
plot_bipartite(xylist, vertex.size = 12, vertex.shape1 = "circle",
  vertex.shape2 = "square", vertex.color1 = "darkseagreen",
  vertex.color2 = "turquoise1", vertex.label.font = 2,
  vertex.label.dist = 0, vertex.label.color = "black",
  vertex.label.cex = 0.8, edge.color = "black",
  layout = layout.kamada.kawai)
```

Arguments

xylist	a named list object which names are diseases and each element of the list is a gene set with respect to each disease.
vertex.size	vertex size
vertex.shape1	shape for one kind of vertex
vertex.shape2	shape for another kind of vertex
vertex.color1	color for one kind of vertex
<pre>vertex.color2 vertex.label.fo</pre>	color for another kind of vertex nt
	label text font
vertex.label.di	st
	label text dist
vertex.label.co	lor
	label text color
vertex.label.ce	X
	label text cex
edge.color	edge color
layout	layout

Value

an igraph plot object

Author(s)

Peng Ni, Min Li

Examples

```
data(d2g_fundo_symbol)
d2g_sample<-sample(d2g_fundo_symbol, 3)
plot_bipartite(d2g_sample)
```

plot_heatmap

similarity matrix heatmap plotting

Description

plot heatmap of a disease similarity matrix

Usage

```
plot_heatmap(simmat, xlab = "", ylab = "", color.low = "white",
  color.high = "red", labs = TRUE, digits = 2, labs.size = 3,
  font.size = 14)
```

Arguments

simmat	a similarity matrix
xlab	xlab
ylab	ylab
color.low	color of low value
color.high	color of high value
labs	logical, add text label or not
digits	round digit numbers
labs.size	lable size
font.size	font size

Value

a ggplot object

Author(s)

Peng Ni, Min Li

References

Yu G, Wang L G, Yan G R, et al. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis[J]. Bioinformatics, 2015, 31(4): 608-609.

18

plot_net

Examples

```
data(d2g_separation)
data(interactome)
graph_interactome<-graph.data.frame(interactome,directed=FALSE)
ds<-c("myocardial ischemia","myocardial infarction","coronary artery disease",
    "cerebrovascular disorders","arthritis, rheumatoid","diabetes mellitus, type 1",
    "autoimmune diseases of the nervous system","demyelinating autoimmune diseases, cns",
    "respiratory hypersensitivity","asthma","retinitis pigmentosa",
    "retinal degeneration","macular degeneration")
sep<-Separation(ds,ds,d2g_separation,graph_interactome)
sim<-Separation2Similarity(sep)
plot_heatmap(sim)
```

```
plot_net
```

```
plot a network based on a symmetric disease similarity matrix
```

Description

plot a network/graph of a symmetric disease similarity matrix, note that a unsymmetric matrix can't be visualized into a network by this method.

Usage

```
plot_net(simmat, cutoff = 1, vertex.label.font = 2,
  vertex.label.dist = 0.5, vertex.label.color = "black",
  vertex.label.cex = 0.8, vertex.shape = "circle",
  vertex.color = "paleturquoise", vertex.size = 20, edge.color = "red",
  layout = layout.fruchterman.reingold)
```

Arguments

simmat	a symmetric similarity matrix
cutoff	a cutoff value, only disease pairs have similarity scores no less than cutoff will be visualized in the network
vertex.label.fo	nt
	label text font
vertex.label.di	st
	label text dist
vertex.label.color	
	label text color
vertex.label.ce	X
	label text cex
vertex.shape	vertex shape
vertex.color	vertex color
vertex.size	vertex size
edge.color	edge color
layout	layout

Value

an igraph plot object

Author(s)

Peng Ni, Min Li

Examples

```
data(d2g_separation)
data(interactome)
graph_interactome<-graph.data.frame(interactome,directed=FALSE)
ds<-c("myocardial ischemia","myocardial infarction","coronary artery disease",
    "cerebrovascular disorders","arthritis, rheumatoid","diabetes mellitus, type 1",
    "autoimmune diseases of the nervous system","demyelinating autoimmune diseases, cns",
    "respiratory hypersensitivity","asthma","retinitis pigmentosa",
    "retinal degeneration","macular degeneration")
sep<-Separation(ds,ds,d2g_separation,graph_interactome)
sim<-Separation2Similarity(sep)
plot_net(sim,cutoff=0.2)</pre>
```

plot_topo

plot topological relationship of two gene sets

Description

plot topological relationship of two gene sets (which are associated with two diseases respectively).

Usage

```
plot_topo(geneset1, geneset2, graph, vertexcolor = c("tomato", "orange",
   "lightsteelblue"), vertex.shape = "circle", vertex.size = 14,
   vertex.label.font = 1, vertex.label.dist = 0,
   vertex.label.color = "black", vertex.label.cex = 0.5,
   edge.color = "black", layout = layout.auto)
```

Arguments

geneset1	a character vector contains gene ids
geneset2	another character vector contains gene ids
graph	an igraph graph object which represents a gene network
vertexcolor	a character vector contains 3 colors for vertexs
vertex.shape	vertex shape
vertex.size	vertex size
vertex.label.font	
	label text font
vertex.label.dist	
	label text dist

20

PPI_HPRD

vertex.label.co	lor
	label text color
vertex.label.ce	x
	label text cex
edge.color	edge color
layout	layout

Value

an igraph plot object

Author(s)

Peng Ni, Min Li

Examples

```
data("PPI_HPRD")
g<-graph.data.frame(PPI_HPRD,directed = FALSE) #get an igraph graph</pre>
```

```
data(d2g_fundo_symbol)
a<-d2g_fundo_symbol[["DOID:8242"]] # get gene set a
b<-d2g_fundo_symbol[["DOID:4914"]] # get gene set b</pre>
```

plot_topo(a,b,g)

PPI_HPRD

PPI_HPRD

Description

PPI data from HPRD

Value

PPI_HPRD is a data.frame of 36867 rows and 2 columns. Each rows indicates an interaction of two gene symbols. It was fetched from HPRD.

References

Prasad T S K, Goel R, Kandasamy K, et al. Human protein reference database-2009 update[J]. Nucleic acids research, 2009, 37(suppl 1): D767-D772.

Examples

data(PPI_HPRD)

Description

given two vectors of diseases, a list of disease-GO term associations and a list of GO term-gene associations, this function will calculate disease similarity by method PSB

Usage

PSB(D1, D2, d2go, go2g)

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2go	a list of disease-go associations
go2g	a list of go-gene associations

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity[J]. Journal of biomedical informatics, 2012, 45(2): 363-371.

See Also

get_GOterm2GeneAssos, HypergeometricTest, Normalize

Examples

```
## these are samples of GO-gene associations and disease-GO associations
data(go2g_sample)
data(d2go_sample)
```

```
sim<-PSB(ds,ds,d2go_sample,go2g_sample)
Normalize(sim)</pre>
```

PSB

Separation

Description

given two vectors of diseases, a list of disease-gene associations and a PPI network, this function will calculate network-based separation by method Separation.

Usage

Separation(D1, D2, d2g, graph)

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations
graph	an igraph graph object of PPI network

Value

a matrix of disease disease network-based separation which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome[J]. Science, 2015, 347(6224): 1257601.

See Also

Separation2Similarity

```
data(d2g_separation)
data(interactome)
```

```
graph_interactome<-graph.data.frame(interactome,directed=FALSE)
ds<-sample(names(d2g_separation),5)
sep<-Separation(ds,ds,d2g_separation,graph_interactome)
sim<-Separation2Similarity(sep)
sim</pre>
```

Separation2Similarity *a method which convert separation to similarity*

Description

convert a separation matrix to a similarity matrix

Usage

```
Separation2Similarity(data)
```

Arguments

data a numeric/integer matrix calculated by method Separation

Value

a similarity matrix

Author(s)

Peng Ni

See Also

Separation

Examples

```
a<-matrix(c(-4:4),3,3)
Separation2Similarity(a)</pre>
```

setWeight

set weight factor

Description

set weight factor of 73-orbits in graphlet theory

Usage

```
setWeight(orbit_dependency_count)
```

Arguments

```
orbit_dependency_count
```

a vector which each element are the dependency count of each orbit

Value

a vector which contains weight factors to each orbit

Sun_annotation

Author(s)

Peng Ni

References

Milenkovic T, Przulj N. Uncovering biological network function via graphlet degree signatures[J]. Cancer informatics, 2008, 6: 257.

Examples

```
data(orbit_dependency_count)
setWeight(orbit_dependency_count)
```

Sun_annotation Sun's annotation measure of disease similarity calculating

Description

given two vectors of diseases and a list of disease-gene associations, this function will calculate disease similarity by method Sun_annotation

Usage

```
Sun_annotation(D1, D2, d2g)
```

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Sun K, Goncalves JP, Larminie C. Predicting disease associations via biological network analysis[J]. BMC bioinformatics, 2014, 15(1): 304.

```
data(d2g_separation)
ds<-sample(names(d2g_separation),5)
Sun_annotation(ds,ds,d2g_separation)</pre>
```

Sun_function

Description

given two vectors of diseases and a list of disease-go term associations, this function will calculate disease similarity by method Sun_function

Usage

```
Sun_function(D1, D2, d2go)
```

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2go	a list of disease-go term associations

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Sun K, Goncalves JP, Larminie C. Predicting disease associations via biological network analysis[J]. BMC bioinformatics, 2014, 15(1): 304.

See Also

get_GOterm2GeneAssos, HypergeometricTest

Examples

```
## get a sample of disease-GO associations
data(d2go_sample)
```

ds<-names(d2go_sample)
Sun_function(ds,ds,d2go_sample)</pre>

Sun_topology

Description

given two vectors of diseases, a list of disease-gene associations, a matrix of genes' graphlet signature in a PPI network and a weight vector of 73 orbits in graphlet theory, this function will calculate disease similarity by method Sun_function

Usage

```
Sun_topology(D1, D2, d2g, graphlet_sig_mat, weight)
```

Arguments

D1	a vector consists disease ids
D2	another vector consists disease ids
d2g	a list of disease-gene associations
graphlet_sig_ma	at
	matrix of graphlet signature of nodes in a ppi network calculated by orca, see examples below.
weight	a vector which elements are weight factors to each orbit in graphlet theory

Value

a disease disease similarity matrix

Author(s)

Peng Ni, Min Li

References

Sun K, Goncalves JP, Larminie C. Predicting disease associations via biological network analysis[J]. BMC bioinformatics, 2014, 15(1): 304.

```
data(d2g_fundo_symbol)
data(graphlet_sig_hprd) #get graphlet signatures of genes in HPRD PPI network
data(weight)
ds<-sample(names(d2g_fundo_symbol),5)
Sun_topology(ds,ds,d2g_fundo_symbol,graphlet_sig_hprd,weight)</pre>
```

weight

weight

Description

weight factor

Value

weight is a 73-dim vector, indicating 73 orbits' weight factor, will be used in method Sun_topology.

References

Sun K, Goncalves JP, Larminie C. Predicting disease associations via biological network analysis[J]. BMC bioinformatics, 2014, 15(1): 304.

See Also

setWeight, Sun_topology

Examples

data(weight)

x2y_conv2_y2x convert x2ylist to y2xlist

Description

convert list of x-y associations to list of y-x associations

Usage

```
x2y_conv2_y2x(x2ylist)
```

Arguments

x2ylist a list which the names are xs and the elements are ys of each x

Value

a list of y2x

Author(s)

Peng Ni, Min Li

```
data(go2g_sample)
g2go_sample<-x2y_conv2_y2x(go2g_sample[1:100])</pre>
```

x2y_df2list convert x-y associations

Description

concert x-y associations (e.g. disease-gene associations) from data.frame to list

Usage

x2y_df2list(x2ydf, xcol = 1, ycol = 2)

Arguments

x2ydf	data.frame of x-y associations
xcol	col of x in x2ydf
ycol	col of y in x2ydf

Value

a list of x-y associations

Author(s)

Peng Ni, Min Li

Examples

options(stringsAsFactors = FALSE)

```
d2g_fundo_sample<-read.table(text = "DOID:5218 IL6
DOID:8649 EGFR
DOID:8649 PTGS2
DOID:8649 VHL
DOID:8649 ERBB2
DOID:8649 KLRC1
DOID:5214 MPZ
DOID:5214 EGR2
DOID:5210 AMH")
```

d2g_fundo_list<-x2y_df2list(d2g_fundo_sample)</pre>

Index

*Topic dataset d2g_fundo_entrezid, 5d2g_fundo_symbol, 6 d2g_separation, 6 d2go_sample, 5 d2s_hsdn, 7 d2s_hsdn_sample, 7 go2g_sample, 10 graphlet_sig_hprd, 10 HumanNet_sample, 11 interactome, 14 orbit_dependency_count, 16 PPI_HPRD, 21 weight, 28 *Topic **package** dSimer-package, 2

BOG, 3

CosineDFV, 4, 7

d2g_fundo_entrezid, 5 d2g_fundo_symbol, 6 d2g_separation, 6 d2go_sample, 5 d2s_hsdn, 7, 7 d2s_hsdn_sample, 7 dSimer (dSimer-package), 2 dSimer-package, 2

FunSim, 8, 11, 15

get_GOterm2GeneAssos, 9, 10, 12, 22, 26
go2g_sample, 10
graphlet_sig_hprd, 10

HumanNet_sample, 11 HypergeometricTest, 5, 11, 22, 26

ICod, 12 InformationContent, 13 interactome, 14

jaccardindex, 14

LLSn2List, 8, 11, 15

Normalize, 3, 16, 22 orbit_dependency_count, 16 plot_bipartite, 17 plot_heatmap, 18 plot_net, 19 plot_topo, 20 PPI_HPRD, 21 PSB, 9, 12, 22 Separation, 23, 24 Separation2Similarity, 23, 24 setWeight, 17, 24, 28 Sun_annotation, 25 Sun_function, 9, 12, 26 Sun_topology, 10, 27, 28 weight, 28 x2y_conv2_y2x, 28 x2y_df2list, 29