
flowCore: data structures package for flow cytometry data

N. Le Meur F. Hahne B. Ellis P. Haaland

March 17, 2017

Abstract

Background The recent application of modern automation technologies to staining and collecting
flow cytometry (FCM) samples has led to many new challenges in data management and analysis.
We limit our attention here to the associated problems in the analysis of the massive amounts of
FCM data now being collected. From our viewpoint, see two related but substantially different
problems arising. On the one hand, there is the problem of adapting existing software to apply
standard methods to the increased volume of data. The second problem, which we intend to ad-
dress here, is the absence of any research platform which bioinformaticians, computer scientists,
and statisticians can use to develop novel methods that address both the volume and multidimen-
sionality of the mounting tide of data. In our opinion, such a platform should be Open Source,
be focused on visualization, support rapid prototyping, have a large existing base of users, and
have demonstrated suitability for development of new methods. We believe that the Open Source
statistical software R in conjunction with the Bioconductor Project fills all of these requirements.
Consequently we have developed a Bioconductor package that we call flowCore. The flowCore
package is not intended to be a complete analysis package for FCM data, rather, we see it as provid-
ing a clear object model and a collection of standard tools that enable R as an informatics research
platform for flow cytometry. One of the important issues that we have addressed in the flowCore
package is that of using a standardized representation that will insure compatibility with existing
technologies for data analysis and will support collaboration and interoperability of new methods
as they are developed. In order to do this, we have followed the current standardized descriptions
of FCM data analysis as being developed under NIH Grant xxxx [n]. We believe that researchers
will find flowCore to be a solid foundation for future development of new methods to attack the
many interesting open research questions in FCM data analysis.

Methods We propose a variety different data structures. We have implemented the classes and
methods in the Bioconductor package flowCore. We illustrate their use with X case studies.

Results We hope that those proposed data structures will be the base for the development of many
tools for the analysis of high throughput flow cytometry.

keywords Flow cytometry, high throughput, software, standard

1 Introduction

Traditionally, flow cytometry has been a tube-based technique limited to small-scale laboratory and
clinical studies. High throughput methods for flow cytometry have recently been developed for drug
discovery and advanced research methods (Gasparetto et al., 2004). As an example, the flow cytometry
high content screening (FC-HCS) can process up to a thousand samples daily at a single workstation,

1

and the results have been equivalent or superior to traditional manual multi-parameter staining and
analysis techniques.

The amount of information generated by high throughput technologies such as FC-HCS need to
be transformed into executive summaries (which are brief enough) for creative studies by a human
researcher (Brazma, 2001). Standardization is critical when developing new high throughput technolo-
gies and their associated information services (Brazma, 2001; Chicurel, 2002; Boguski and McIntosh,
2003). Standardization efforts have been made in clinical cell analysis by flow cytometry (Keeney et al.,
2004), however data interpretation has not been standardized for even low throughput FCM. It is one
of the most difficult and time consuming aspects of the entire analytical process as well as a primary
source of variation in clinical tests, and investigators have traditionally relied on intuition rather than
standardized statistical inference (Bagwell, 2004; Braylan, 2004; Parks, 1997; Suni et al., 2003). In the
development of standards in high throughput FCM, few progress has been done in term of Open Source
software. In this article we propose R data structures to handle flow cytometry data through the main
steps of preprocessing: compensation, transformation, filtering.

The aim is to merge both prada and rflowcyt (LeMeur and Hahne, 2006) into one core package
which is compliant with the data exchange standards that are currently developed in the community
(Spidlen et al., 2006).

Visualization as well as quality control will than be part of the utility packages that depend on the
data structures defined in the flowCore package.

2 Representing Flow Cytometry Data

flowCore’s primary task is the representation and basic manipulation of flow cytometry (or similar)
data. This is accomplished through a data model very similar to that adopted by other Bioconduc-
tor packages using the expressionSet and AnnotatedDataFrame structures familiar to most
Bioconductor users.

2.1 The flowFrame Class

The basic unit of manipulation in flowCore is the flowFrame, which corresponds roughly with a single
“FCS” file exported from the flow cytometer’s acquisition software. At the moment we support FCS
file versions 2.0 through 3.0, and we expect to support FCS4/ACS1 as soon as the specification has
been ratified.

2.1.1 Data elements

The primary elements of the flowFrame are the exprs and parameters slots, which contain the
event-level information and column metadata respectively. The event information, stored as a single
matrix, is accessed and manipulated via the exprs() and exprs<-methods, allowing flowFrames
to be stitched together if necessary (for example, if the same tube has been collected in two acquisition
files for memory reasons).

The parameters slot is an AnnotatedDataFrame that contains information derived from an FCS
file’s “$P¡n¿” keywords, which describe the detector and stain information. The entire list is available
via the parameter() method, but more commonly this information is accessed through the names,
featureNames and colnames methods. The names function returns a concatenated version of

2

names and featureNames using a format similar to the one employed by most flow cytometry anal-
ysis software. The colnames method returns the detector names, often named for the fluorochrome
detected, while the featureNames methods returns the description field of the parameters, which
will typically be an identifier for the antibody.

The keyword method allows access to the raw FCS keywords, which are a mix of standard entries
such as “SAMPLE ID,” vendor specific keywords and user-defined keywords that add more information
about an experiment. In the case of plate-based experiments, there are also one or more keywords that
identify the specific well on the plate.

Most vendor software also include some sort of unique identifier for the file itself. The specialized
methods identifier attempts to locate an appropriate globally unique identifier that can be used
to uniquely identify a frame. Failing that, this method will return the original file name offering some
assurance that this frame is at least unique to a particular session.

2.1.2 Reading a flowFrame

FCS files are read into the R environment via the read.FCS function using the standard connection
interface—allowing for the possibility of accessing FCS files hosted on a remote resource as well as
those that have been compressed or even retrieved as a blob from a database interface. FCS files
(version 2.0 and 3.0) and LMD (List Mode Data) extensions are currently supported.

There are also several immediate processing options available in this function, the most important
of which is the transformation parameter, which can either “linearize” (the default) or “linearize-
with-PnG-scaling” or “scale” our data. To see how this works, first we will examine an FCS file without
any transformation at all:

file.name <- system.file("extdata","0877408774.B08", package="flowCore")
x <- read.FCS(file.name, transformation=FALSE)
summary(x)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time
Min. 85 11.0 0.0 0.0 0.0 0.00 0.0 1.0
1st Qu. 385 141.0 233.0 277.0 90.0 0.00 210.0 122.0
Median 441 189.0 545.5 346.0 193.0 26.00 279.0 288.0
Mean 492 277.9 439.1 366.2 179.7 34.08 323.5 294.8
3rd Qu. 518 270.0 610.0 437.0 264.0 51.00 390.0 457.5
Max. 1023 1023.0 912.0 1023.0 900.0 1023.00 1022.0 626.0

As we can see, in this case the values from each parameter seem to run from 0 to 1023 (210 − 1).
However, inspection of the “exponentiation” keyword ($P¡n¿E) reveals that some of the parameters (3
and 4) have been stored in the format of the form a× 10x/R where a is given by the first element of the
string.

keyword(x,c("$P1E", "$P2E", "$P3E", "$P4E"))

$`$P1E`
[1] "0,0"
##

3

$`$P2E`
[1] "0,0"
##
$`$P3E`
[1] "4,0"
##
$`$P4E`
[1] "4,0"

The default “linearize” transformation option will convert these to, effectively, have a “$P¡n¿E” of
“0,0”:

summary(read.FCS(file.name))

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H Time
Min. 85 11.0 1.000 1.00 1.000 0.00 1.000 1.0
1st Qu. 385 141.0 8.131 12.08 2.247 0.00 6.612 122.0
Median 441 189.0 135.200 22.47 5.674 26.00 12.300 288.0
Mean 492 277.9 157.800 106.00 8.465 34.08 140.400 294.8
3rd Qu. 518 270.0 241.400 50.94 10.750 51.00 33.380 457.5
Max. 1023 1023.0 3652.000 9910.00 3278.000 1023.00 9822.000 626.0

The “linearize-with-PnG-scaling” option will perform the previous transformation and it will also
apply a “division by gain” to pamameters stored on linear scale with specified gain. The gain is speci-
fied in the $PnG keywords. This option has been introduced as part of Gating-ML 2.0 compliance.

Finally, the “scale” option will both linearize values as well as ensure that output values are con-
tained in [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0 specification:

summary(read.FCS(file.name,transformation="scale"))

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
Min. 0.08309 0.01075 0.0000000 0.000000 0.0000000 0.00000 0.0000000
1st Qu. 0.37630 0.13780 0.0007132 0.001108 0.0001247 0.00000 0.0005612
Median 0.43110 0.18480 0.0134200 0.002147 0.0004675 0.02542 0.0011300
Mean 0.48090 0.27170 0.0156800 0.010500 0.0007466 0.03331 0.0139400
3rd Qu. 0.50640 0.26390 0.0240500 0.004994 0.0009747 0.04985 0.0032380
Max. 1.00000 1.00000 0.3651000 0.991000 0.3277000 1.00000 0.9822000
Time
Min. 0.0009775
1st Qu. 0.1193000
Median 0.2815000
Mean 0.2881000
3rd Qu. 0.4472000
Max. 0.6119000

4

Another parameter of interest is the alter.names parameter, which will convert the parameter
names into more “R friendly” equivalents, usually by replacing “-” with “.”:

read.FCS(file.name,alter.names=TRUE)

flowFrame object '0877408774.B08'
with 10000 cells and 8 observables:
name desc range minRange maxRange
$P1 FSC.H FSC-H 1024 0 1023
$P2 SSC.H SSC-H 1024 0 1023
$P3 FL1.H <NA> 1024 1 10000
$P4 FL2.H <NA> 1024 1 10000
$P5 FL3.H <NA> 1024 1 10000
$P6 FL1.A <NA> 1024 0 1023
$P7 FL4.H <NA> 1024 1 10000
$P8 Time Time (51.20 sec.) 1024 0 1023
164 keywords are stored in the 'description' slot

When only a particular subset of parameters is desired the column.pattern parameter allows
for the specification of a regular expression and only parameters that match the regular expression will
be included in the frame. For example, to include on the Height parameters:

x <- read.FCS(file.name, column.pattern="-H")
x

flowFrame object '0877408774.B08'
with 10000 cells and 6 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-H 1024 0 1023
$P2 SSC-H SSC-H 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P7 FL4-H <NA> 1024 1 10000
160 keywords are stored in the 'description' slot

Note that column.pattern is applied after alter.names if it is used.
Finally, only a sample of lines can be read in case you need a quick overview of a large series of

files.

lines <- sample(100:500, 50)
y <- read.FCS(file.name, which.lines = lines)
y

flowFrame object '0877408774.B08'
with 50 cells and 8 observables:

5

name desc range minRange maxRange
$P1 FSC-H FSC-H 1024 0 1023
$P2 SSC-H SSC-H 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
$P8 Time Time (51.20 sec.) 1024 0 1023
164 keywords are stored in the 'description' slot

2.1.3 Visualizing a flowFrame

Much of the more sophisticated visualization of flowFrame and flowSet objects, including an interface
to the ggplot2 graphics system is implemented by the ggcyto package, also included as part of Bio-
conductor. Here, we will only introduce the autoplot function. See vignettes of ggcyto for more
examples of how to visualize flow data.

To create a bivariate density plot:

library(ggcyto)

Loading required package: ggplot2
Loading required package: ncdfFlow
Loading required package: RcppArmadillo
Loading required package: BH
Loading required package: flowWorkspace

autoplot(x, "FL1-H", "FL2-H")

0877408774.B08

0 1000 2000 3000

0

2500

5000

7500

10000

FL1−H

FL
2−H

1000

2000

3000
4000count

6

To get a univariate densityplot:

autoplot(x, "FL1-H")

0877408774.B08

0 1000 2000 3000

0.000

0.002

0.004

0.006

FL1−H

den
sity

2.2 The flowSet Class

Most experiments consist of several flowFrame objects, which are organized using a flowSet object.
This class provides a mechanism for efficiently hosting the flowFrame objects with minimal copying,
reducing memory requirements, as well as ensuring that experimental metadata stays properly to the
appropriate flowFrame objects.

2.2.1 Creating a flowSet

To facilitate the creation of flowSet objects from a variety of sources, we provide a means to coerce
list and environment objects to a flowSet object using the usual coercion mechanisms. For example, if
we have a directory containing FCS files we can read in a list of those files and create a flowSet out of
them:

frames <- lapply(dir(system.file("extdata", "compdata", "data",
package="flowCore"), full.names=TRUE),

read.FCS)
as(frames, "flowSet")

A flowSet with 5 experiments.
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

7

Note that the original list is unnamed and that the resulting sample names are not particularly
meaningful. If the list is named, the list constructed is much more meaningful. One such approach is to
employ the keyword method for flowFrame objects to extract the “SAMPLE ID” keyword from each
frame:

names(frames) <- sapply(frames, keyword, "SAMPLE ID")
fs <- as(frames, "flowSet")
fs

A flowSet with 5 experiments.
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

2.2.2 Working with experimental metadata

Like most Bioconductor organizational classes, the flowSet has an associated AnnotatedDataFrame that
provides metadata not contained within the flowFrame objects themselves. This data frame is accessed
and modified via the usual phenoData and phenoData<- methods. You can also generally treat
the phenotypic data as a normal data frame to add new descriptive columns. For example, we might
want to track the original filename of the frames from above in the phenotypic data for easier access:

phenoData(fs)$Filename <- fsApply(fs,keyword, "$FIL")
pData(phenoData(fs))

name Filename
NA NA 060909.001
fitc fitc 060909.002
pe pe 060909.003
apc apc 060909.004
7AAD 7AAD 060909.005

Note that we have used the flowSet-specific iterator, fsApply, which acts much like sapply or
lapply. Additionally, we should also note that the phenoData data frame must have row names
that correspond to the original names used to create the flowSet.

2.2.3 Bringing it all together: read.flowSet

Much of the functionality described above has been packaged into the read.flowSet convenience
function. In it’s simplest incarnation, this function takes a path, that defaults to the current working
directory, and an optional pattern argument that allows only a subset of files contained within the
working directory to be selected. For example, to read a flowSet of the files read in by frame above:

read.flowSet(path = system.file("extdata", "compdata", "data",
package="flowCore"))

8

A flowSet with 5 experiments.
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

read.flowSet will pass on additional arguments meant for the underlying read.FCS func-
tion, such as alter.names and column.pattern, but also supports several other interesting
arguments for conducting initial processing:

files An alternative to the pattern argument, you may also supply a vector of filenames to read.

name.keyword Like the example in the previous section, you may specify a particular keyword to use
in place of the filename when creating the flowSet.

phenoData If this is an AnnotatedDataFrame, then this will be used in place of the data frame that is
ordinarily created. Additionally, the row names of this object will be taken to be the filenames of
the FCS files in the directory specified by path. This argument may also be a named list made
up of a combination of character and function objects that specify a keyword to extract
from the FCS file or a function to apply to each frame that will return a result.

To recreate the flowSet that we created by hand from the last section we can use read.flowSets
advanced functionality:

fs <- read.flowSet(path=system.file("extdata", "compdata", "data",
package="flowCore"), name.keyword="SAMPLE ID",
phenoData=list(name="SAMPLE ID", Filename="$FIL"))

fs

A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

pData(phenoData(fs))

name Filename
NA NA 060909.001
fitc fitc 060909.002
pe pe 060909.003
apc apc 060909.004
7AAD 7AAD 060909.005

9

2.2.4 Manipulating a flowSet

You can extract a flowFrame from a flowSet object in the usual way using the [[or $ extraction
operators. On the other hand using the [extraction operator returns a new flowSet by copying the
environment. However, simply assigning the flowFrame to a new variable will not copy the contained
frames.

The primary iterator method for a flowSet is the fsApply method, which works more-or-less like
sapply or lapply with two extra options. The first argument, simplify, which defaults to TRUE,
instructs fsApply to attempt to simplify it’s results much in the same way as sapply. The primary
difference is that if all of the return values of the iterator are flowFrame objects, fsApply will create
a new flowSet object to hold them. The second argument, use.exprs, which defaults to FALSE
instructs fsApply to pass the expression matrix of each frame rather than the flowFrame object itself.
This allows functions to operate directly on the intensity information without first having to extract it.

As an aid to this sort of operation we also introduce the each row and each col convenience
functions that take the place of apply in the fsApply call. For example, if we wanted the median
value of each parameter of each flowFrame we might write:

fsApply(fs, each_col, median)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
NA 423 128 4.104698 4.531584 3.651741 0 7.233942
fitc 436 128 930.572041 228.757320 33.376247 217 8.278826
pe 438 120 10.181517 791.475544 114.444190 0 9.305720
apc 441 129 4.371445 4.869675 4.782858 0 358.663762
7AAD 429 133 5.002865 14.989296 63.209339 0 20.908000

which is equivalent to the less readable

fsApply(fs,function(x) apply(x, 2, median), use.exprs=TRUE)

FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
NA 423 128 4.104698 4.531584 3.651741 0 7.233942
fitc 436 128 930.572041 228.757320 33.376247 217 8.278826
pe 438 120 10.181517 791.475544 114.444190 0 9.305720
apc 441 129 4.371445 4.869675 4.782858 0 358.663762
7AAD 429 133 5.002865 14.989296 63.209339 0 20.908000

In this case, the use.exprs argument is not required in the first case because each col and
each row are methods and have been defined to work on flowFrame objects by first extracting the
intensity data.

3 Transformation

flowCore features two methods of transforming parameters within a flowFrame: inline and out-of-
line. The inline method, discussed in the next section has been developed primarily to support fil-
tering features and is strictly more limited than the out-of-line transformation method, which uses

10

R’s transform function to accomplish the filtering. Like the normal transform function, the
flowFrameis considered to be a data frame with columns named for parameters of the FCS file. For
example, if we wished to plot our first flowFrame’s first two fluorescence parameters on the log scale
we might write:

autoplot(transform(fs[[1]]
, `FL1-H`=log(`FL1-H`)
, `FL2-H`=log(`FL2-H`)
)

, "FL1-H","FL2-H")

NA

0 1 2 3 4

0

1

2

3

4

FL1−H

FL
2−H

100

200

300
400

count

Like the usual transform function, we can also create new parameters based on the old param-
eters, without destroying the old

autoplot(transform(fs[[1]]
, log.FL1.H=log(`FL1-H`)
, log.FL2.H=log(`FL2-H`)
)

, "log.FL1.H", "log.FL2.H")

11

NA

0 1 2 3 4

0

1

2

3

4

log.FL1.H derived from transformation of FL1−H

log
.FL

2.H
 de

rive
d fr

om
 tra

nsf
orm

atio
n o

f F
L2−

H

100

200

300
400

count

3.1 Standard Transforms

Though any function can be used as a transform in both the out-of-line and inline transformation tech-
niques, flowCore provides a number of parameterized transform generators that correspond to the
transforms commonly found in flow cytometry and defined in the Transformation Markup Language
(Transformation-ML, see http://www.ficcs.org/ and Spidlen et al. (2006) for more details).
Briefly, the predefined transforms are:

truncateTransform y =

{
a x < a
x x ≥ a

scaleTransform f(x) = x−a
b−a

linearTransform f(x) = a+ bx

quadraticTransform f(x) = ax2 + bx+ c

lnTransform f(x) = log (x) r
d

logTransform f(x) = logb (x)
r
d

biexponentialTransform f−1(x) = aebx − cedx + f

logicleTransform A special form of the biexponential transform with parameters selected by the data.

arcsinhTransform f(x) = asinh (a+ bx) + c

To use a standard transform, first we create a transform function via the constructors supplied by
flowCore:

12

http://www.ficcs.org/

aTrans <- truncateTransform("truncate at 1", a=1)
aTrans

transform object 'truncate at 1'

which we can then use on the parameter of interest in the usual way

transform(fs,`FL1-H`=aTrans(`FL1-H`))

A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

However this form of transform call is not intended to used in the programmatic context because
locally defined transform function (e.g. ’aTrans’) may not be always visible to the non-standard evalu-
ation environment. .e.g

f1 <- function(fs,...){
transform(fs, ...)[,'FL1-H']

}

f2 <- function(fs){
aTrans <- truncateTransform("truncate at 1", a=1)
f1(fs, `FL1-H` = aTrans(`FL1-H`))

}
res <- try(f2(fs), silent = TRUE)
res

A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename
varMetadata: labelDescription
##
column names:
FL1-H

So this form of usage of ’transform’ method is only useful for the interactive exploratary. we highly
recommend the usage of transformList instead for the more robust and reproducible code.

13

myTrans <- transformList('FL1-H', aTrans)
transform(fs, myTrans)

A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

4 Gating

The most common task in the analysis of flow cytometry data is some form of filtering operation,
also known as gating, either to obtain summary statistics about the number of events that meet a certain
criteria or to perform further analysis on a subset of the data. Most filtering operations are a composition
of one or more common filtering operations. The definition of gates in flowCore follows the Gating
Markup Language Candidate Recommendation Spidlen et al. (2008), thus any flowCore gating strategy
can be reproduced by any other software that also adheres to the standard and vice versa.

4.1 Standard gates and filters

Like transformations, flowCore includes a number of built-in common flow cytometry gates. The
simplest of these gates are the geometric gates, which correspond to those typically found in interactive
flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions–a rectangle in one dimension is
simply an interval gate.

polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can exist in
dimensions higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all described in more or less the same manner (see man pages for more details):

rectGate <- rectangleGate(filterId="Fluorescence Region",
"FL1-H"=c(0, 12), "FL2-H"=c(0, 12))

In addition, we introduce the notion of data-driven gates, or filters, not usually found in flow cy-
tometry software. In these approaches, the necessary parameters are computed based on the properties
of the underlying data, for instance by modelling data distribution or by density estimation :

14

norm2Filter A robust method for finding a region that most resembles a bivariate Normal distribution.

kmeansFilter Identifies populations based on a one dimensional k-means clustering operation. Allows
the specification of multiple populations.

4.2 Count Statistics

When we have constructed a filter, we can apply it in two basic ways. The first is to collect simple
summary statistics on the number and proportion of events considered to be contained within the gate
or filter. This is done using the filter method. The first step is to apply our filter to some data

result = filter(fs[[1]],rectGate)
result

A filterResult produced by the filter named 'Fluorescence Region'

As we can see, we have returned a filterResult object, which is in turn a filter allowing for reuse in,
for example, subsetting operations. To obtain count and proportion statistics, we take the summary of
this filterResult, which returns a list of summary values:

summary(result)

Fluorescence Region+: 9811 of 10000 events (98.11%)

summary(result)$n

[1] 10000

summary(result)$true

[1] 9811

summary(result)$p

[1] 0.9811

A filter which contains multiple populations, such as the kmeansFilter, can return a list of summary
lists:

summary(filter(fs[[1]], kmeansFilter("FSC-H"=c("Low", "Medium", "High"),
filterId="myKMeans")))

Low: 2518 of 10000 events (25.18%)
Medium: 5109 of 10000 events (51.09%)
High: 2373 of 10000 events (23.73%)

A filter may also be applied to an entire flowSet, in which case it returns a list of filterResult objects:

15

filter(fs,rectGate)

A list of filterResults for a flowSet containing 5 frames
produced by the filter named 'Fluorescence Region'

4.3 Subsetting

To subset or split a flowFrame or flowSet, we use the Subset and split methods respectively. The
first, Subset, behaves similarly to the standard R subset function, which unfortunately could not
used. For example, recall from our initial plots of this data that the morphology parameters, Forward
Scatter and Side Scatter contain a large more-or-less ellipse shaped population. If we wished to deal
only with that population, we might use Subset along with a norm2Filter object as follows:

morphGate <- norm2Filter("FSC-H", "SSC-H", filterId="MorphologyGate",
scale=2)

smaller <- Subset(fs, morphGate)
fs[[1]]

flowFrame object 'NA'
with 10000 cells and 7 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
141 keywords are stored in the 'description' slot

smaller[[1]]

flowFrame object 'NA'
with 8312 cells and 7 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
141 keywords are stored in the 'description' slot

16

Notice how the smaller flowFrame objects contain fewer events. Now imagine we wanted to use
a kmeansFilter as before to split our first fluorescence parameter into three populations. To do this we
employ the split function:

split(smaller[[1]], kmeansFilter("FSC-H"=c("Low","Medium","High"),
filterId="myKMeans"))

$Low
flowFrame object 'NA (Low)'
with 2422 cells and 7 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
141 keywords are stored in the 'description' slot
##
$Medium
flowFrame object 'NA (Medium)'
with 3563 cells and 7 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
141 keywords are stored in the 'description' slot
##
$High
flowFrame object 'NA (High)'
with 2327 cells and 7 observables:
name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
141 keywords are stored in the 'description' slot

17

or for an entire flowSet

split(smaller, kmeansFilter("FSC-H"=c("Low", "Medium", "High"),
filterId="myKMeans"))

$Low
A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename population
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
$Medium
A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename population
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
$High
A flowSet with 5 experiments.
##
An object of class 'AnnotatedDataFrame'
rowNames: NA fitc ... 7AAD (5 total)
varLabels: name Filename population
varMetadata: labelDescription
##
column names:
FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

4.4 Combining Filters

Of course, most filtering operations consist of more than one gate. To combine gates and filters we
use the standard R Boolean operators: &, — and ! to construct an intersection, union and complement
respectively:

18

rectGate & morphGate

filter 'Fluorescence Region and MorphologyGate'
the intersection between the 2 filters
##
Rectangular gate 'Fluorescence Region' with dimensions:
FL1-H: (0,12)
FL2-H: (0,12)
##
norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
method: covMcd
scale.factor: 2
n: 50000

rectGate | morphGate

filter 'Fluorescence Region or MorphologyGate'
the union of the 2 filters
##
Rectangular gate 'Fluorescence Region' with dimensions:
FL1-H: (0,12)
FL2-H: (0,12)
##
norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
method: covMcd
scale.factor: 2
n: 50000

!morphGate

filter 'not MorphologyGate', the complement of
norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
method: covMcd
scale.factor: 2
n: 50000

we also introduce the notion of the subset operation, denoted by either %subset% or %&%. This
combination of two gates first performs a subsetting operation on the input flowFrame using the right-
hand filter and then applies the left-hand filter. For example,

summary(filter(smaller[[1]],rectGate %&% morphGate))

Fluorescence Region in MorphologyGate+: 7186 of 8312 events (86.45%)

first calculates a subset based on the morphGate filter and then applies the rectGate.

19

4.5 Transformation Filters

Finally, it is sometimes desirable to construct a filter with respect to transformed parameters. To al-
low for this in our filtering constructs we introduce a special form of the transform method along
with another filter combination operator %on%, which can be applied to both filters and flowFrame or
flowSet objects. To specify our transform filter we must first construct a transform list using a simplified
version of the transform function:

tFilter <- transform("FL1-H"=log,"FL2-H"=log)
tFilter

An object of class "transformList"
Slot "transforms":
[[1]]
transformMap for parameter 'FL1-H' mapping to 'FL1-H'
##
[[2]]
transformMap for parameter 'FL2-H' mapping to 'FL2-H'
##
##
Slot "transformationId":
[1] "defaultTransformation"

Note that this version of the transform filter does not take parameters on the right-hand side–the
functions can only take a single vector that is specified by the parameter on the left-hand side. In this
case those parameters are “FL1-H” and “FL2-H.” The function also does not take a specific flowFrame
or flowSet allowing us to use this with any appropriate data. We can then construct a filter with respect
to the transform as follows:

rect2 <- rectangleGate(filterId="Another Rect", "FL1-H"=c(1,2),
"FL2-H"=c(2,3)) %on% tFilter
rect2

transformed filter 'Another Rect on transformed values of FL1-H,FL2-H'

Additionally, we can use this construct directly on a flowFrame or flowSet by moving the transform
to the left-hand side and placing the data on the right-hand side:

20

autoplot(tFilter %on% smaller[[1]], "FL1-H","FL2-H")

NA

0 1 2 3
0

1

2

3

FL1−H

FL
2−H

50

100

150
200

count

which has the same effect as the log transform used earlier.

5 GatingSet

filterSets are very limited in their use for complex analysis work flows. They are result-centric and it is
hard to access intermediate results. flowWorkspace and openCyto framework (http://opencyto.org)
offers much more versatile tools for such tasks though the GatingSet class (the old workFlow is now
deprecated). The general idea is to let the software handle the organization of intermediate results, and
operations and to provide a unified API to access and summarize these operations.

5.1 Abstraction of GatingSet

There are two classes in flowWorkspace that are used to abstract work flows: GatingSet objects are
the basic container holding all the necessary bits and pieces and they are the main structure for user
interaction. It is the container storing multiple GatingHierarchy objects which are associate with indi-
vidual samples. One can think of GatingSet corresponds to (flowSet) and GatingHierarchy corresponds
to (flowFrame).

It is important to know that GatingSet use ’exteranl pointer’ to store the ’gating tree’ and thus
most of its accessors have a reference semantic instead of the pass-by-value semantic that is usually
found in the R language. The main consequence on the user-level is the fact that direct assignments
to a GatingSet object are usually not necessary; i.e., functions that operate on the GatingSet have the
potential side-effect of modifying the object.

5.2 Creating GatingSet objects

Before creating a ’GatingSet’, we need to have flow data loaded into R as a flowSet or ncdfFlowSet(the
disk-based ’flowSet’, to handle large data set that are too big for memory, see (ncdfFlow) package).

21

library(flowWorkspace)
fcsfiles <- list.files(pattern = "CytoTrol"

, system.file("extdata", package = "flowWorkspaceData")
, full = TRUE)

fs <- read.flowSet(fcsfiles)

Then GatingSet can be created using the constructor GatingSet.

gs <- GatingSet(fs)

..
done!

gs

A GatingSet with 2 samples

Normally, we want to compensate the data firstly by using a user supplied compensation matrix:

loading R object...
loading tree object...
Done

comp

Compensation object 'defaultCompensation':
B710-A G560-A G780-A R660-A R780-A V450-A
B710-A 1.000000 0.0009476 0.071170002 0.0362400 0.1800000 0.007104
G560-A 0.115400 1.0000000 0.009097001 0.0018360 0.0000000 0.000000
G780-A 0.014280 0.0380000 1.000000000 0.0006481 0.1500000 0.000000
R660-A 0.005621 0.0000000 0.006604000 1.0000000 0.1786000 0.000000
R780-A 0.000000 0.0000000 0.035340000 0.0102100 1.0000000 0.000000
V450-A 0.000000 0.0000000 -0.059999999 -0.0400000 0.0000000 1.000000
V545-A 0.002749 0.0000000 0.000000000 0.0000000 0.0006963 0.035000
V545-A
B710-A 0.007608
G560-A 0.000000
G780-A 0.000000
R660-A 0.000000
R780-A 0.000000
V450-A 0.410000
V545-A 1.000000

gs <- compensate(gs, comp)

Here is the effect of compensation:

22

fs_comp <- getData(gs)
transList <- estimateLogicle(fs[[1]], c("V545-A","V450-A"))
library(gridExtra)
p1 <- autoplot(transform(fs[[1]], transList)

, 'V545-A', 'V450-A') + ggtitle("Before")
p2 <- autoplot(transform(fs_comp[[1]], transList)

, 'V545-A', 'V450-A') + ggtitle("After")
grid.arrange(as.ggplot(p1), as.ggplot(p2), ncol = 2)

CytoTrol_CytoTrol_1.fcs

0 1 2 3 4

0

1

2

3

4

V545−A HLA−DR V500

V4
50−

A C
D3

 V4
50

2500

5000
7500
10000
12500

count

Before
CytoTrol_CytoTrol_1.fcs

0 1 2 3 4

−1

0

1

2

3

4

V545−A HLA−DR V500

V4
50−

A C
D3

 V4
50

1000

2000
3000
4000
5000

count

After

We can query the available nodes in the GatingSet using the getNodes method:

getNodes(gs)

[1] "root"

It shows the only node ’root’ which corresponds to the raw ’flow data’ just added.

5.3 transform the data

Transformation can be either done on ’flowSet’ before constructing ’GatingSet’ or a transformerList
can be directly added to a GatingSet:

biexpTrans <- flowJo_biexp_trans(channelRange=4096, maxValue=262144
, pos=4.5,neg=0, widthBasis=-10)

chnls <- parameters(comp)
tf <- transformerList(chnls, biexpTrans)

#or use estimateLogicle directly on GatingHierarchy object to generate transformerList automatically
#tf <- estimateLogicle(gs[[1]], chnls)

23

gs <- transform(gs, tf)

p1 <- autoplot(fs_comp[[1]], "B710-A") + ggtitle("raw")
p2 <- autoplot(flowData(gs)[[1]], "B710-A") +

ggtitle("trans") +
ggcyto_par_set(limits = "instrument")

grid.arrange(as.ggplot(p1), as.ggplot(p2), ncol = 2)

CytoTrol_CytoTrol_1.fcs

0e+00 1e+05 2e+05

0.00000

0.00005

0.00010

0.00015

0.00020

B710−A CD4 PcpCy55

den
sity

raw
CytoTrol_CytoTrol_1.fcs

0 1000 2000 3000 4000

0.00000

0.00025

0.00050

0.00075

0.00100

B710−A CD4 PcpCy55

den
sity

trans

Note that we did assign the return value of transform back to gs. This is because ’flow data’ is
stored as R object and thus transforming the data still follows the pass-by-value semantics.

5.4 Add the gates

Some basic flowCore filter can be added to a GatingSet:

rg1 <- rectangleGate("FSC-A"=c(50000, Inf), filterId="NonDebris")
add(gs, rg1, parent = "root")

replicating filter ’NonDebris’ across samples!

[1] 2

getNodes(gs)

[1] "root" "/NonDebris"

gate the data
recompute(gs)

24

.
.
done!

As we see, here we don’t need to assign GatingSet back because all the modifications are made
in place to the external pointer rather than the R object itself. And now there is one new population
node under the ‘root’ node called ’NonDebris’. The node is named after the ’filterId’ of the gate if
not explictly supplied. After the gates are added, the actual gating process is done by explictly calling
recompute method. Note that the numeric value it returns is the internal ID for the new population
just added, which can be normally ignored since the gating path instead of numeric id is recommended
way to refer to population nodes later.

To view the gate we just added,

autoplot(gs, "NonDebris")

79.3% 81.5%

CytoTrol_CytoTrol_1.fcs CytoTrol_CytoTrol_2.fcs

0e+00 1e+05 2e+05 0e+00 1e+05 2e+05

0e+00

1e+05

2e+05

0e+00

1e+05

2e+05

FSC−A

SS
C−

A

1000

2000

count

root

Since They are ’1d‘ gates, we can also dispaly it in ‘densityplot‘

ggcyto(gs, aes(x = `FSC-A`)) + geom_density() + geom_gate("NonDebris")

25

CytoTrol_CytoTrol_1.fcs CytoTrol_CytoTrol_2.fcs

1e+05 2e+05 1e+05 2e+05

0.0e+00

5.0e−06

1.0e−05

1.5e−05

0.0e+00

5.0e−06

1.0e−05

1.5e−05

FSC−A

den
sity

root

To get population statistics for the given populatuion

getTotal(gs[[1]], "NonDebris")#counts

[1] 94764

getProp(gs[[1]], "NonDebris")#proportion

[1] 0.7927985

Now we add two more gates:

add the second gate
mat <- matrix(c(54272,59392,259071.99382782

,255999.994277954,62464,43008,70656
,234495.997428894,169983.997344971,34816)

, nrow = 5)
colnames(mat) <-c("FSC-A", "FSC-H")
mat

FSC-A FSC-H
[1,] 54272 43008
[2,] 59392 70656
[3,] 259072 234496
[4,] 256000 169984
[5,] 62464 34816

pg <- polygonGate(mat)
add(gs, pg, parent = "NonDebris", name = "singlets")

26

replicating filter ’defaultPolygonGate’ across samples!

[1] 3

add the third gate
rg2 <- rectangleGate("V450-A"=c(2000, Inf))
add(gs, rg2, parent = "singlets", name = "CD3")

replicating filter ’defaultRectangleGate’ across samples!

[1] 4

getNodes(gs)

[1] "root" "/NonDebris"
[3] "/NonDebris/singlets" "/NonDebris/singlets/CD3"

We see two more nodes are added to ’GatingSet’ and the population names are explicitly specified
during the adding this time.

quadrantGate that results in four sub-populationsis also supported.

qg <- quadGate("B710-A" = 2000, "R780-A" = 3000)
add(gs, qg, parent="CD3", names = c("CD8", "DPT", "CD4", "DNT"))

replicating filter ’defaultQuadGate’ across samples!

[1] 5 6 7 8

getChildren(gs[[1]], "CD3")

[1] "/NonDebris/singlets/CD3/CD8" "/NonDebris/singlets/CD3/DPT"
[3] "/NonDebris/singlets/CD3/CD4" "/NonDebris/singlets/CD3/DNT"

gate the data from "singlets"
recompute(gs, "singlets")

.
.
done!

Here we see four children nodes are added to ’CD3’ parent node. Four quadrants are named explic-
itly through ’names’ argument by clock-wise order (start from top-left quadrant). ’recomputing’ only
needs to be done once from the first ungated node, which will automatically compute all its descen-
dants.

To plot the underlying tree

27

plot(gs)

Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Loading required package: parallel
##
Attaching package: ’BiocGenerics’
The following objects are masked from ’package:parallel’:
##
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following object is masked from ’package:gridExtra’:
##
combine
The following objects are masked from ’package:flowCore’:
##
normalize, sort
The following objects are masked from ’package:stats’:
##
IQR, mad, xtabs
The following objects are masked from ’package:base’:
##
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, cbind, colnames, do.call, duplicated, eval,
evalq, get, grep, grepl, intersect, is.unsorted, lapply,
lengths, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unsplit, which, which.max,
which.min
Loading required package: grid

28

root NonDebris singlets CD3

CD8

DPT

CD4

DNT

To plot all gates for one sample

autoplot(gs[[1]])

79.3%

root

0e+00 1e+05 2e+05

0e+00

1e+05

2e+05

FSC−A

SS
C−

A

93.5%

NonDebris

0e+00 1e+05 2e+05

0e+00

1e+05

2e+05

FSC−A

FS
C−

H

67.6%

singlets

0 102 103 104 105

0e+00

1e+05

2e+05

V450−A CD3 V450

SS
C−

A

27.6% 3.46%

64.3%4.71%

CD3

0 102 103 104 105

0

102

103

104

105

B710−A CD4 PcpCy55

R7
80−

A C
D8

 AP
CH

7

CytoTrol_CytoTrol_1.fcs

To retreive the underlying flow data for a gated population

fs_nonDebris <- getData(gs, "NonDebris")
fs_nonDebris

A flowSet with 2 experiments.
##
column names:
FSC-A FSC-H FSC-W SSC-A B710-A R660-A R780-A V450-A V545-A G560-A G780-A Time

29

nrow(fs_nonDebris[[1]])

[1] 94764

nrow(fs[[1]])

[1] 119531

To get all the population statistics

getPopStats(gs)

name Population Parent Count ParentCount
1: CytoTrol_CytoTrol_1.fcs NonDebris root 94764 119531
2: CytoTrol_CytoTrol_1.fcs singlets NonDebris 88586 94764
3: CytoTrol_CytoTrol_1.fcs CD3 singlets 59911 88586
4: CytoTrol_CytoTrol_1.fcs CD8 CD3 16515 59911
5: CytoTrol_CytoTrol_1.fcs DPT CD3 2070 59911
6: CytoTrol_CytoTrol_1.fcs CD4 CD3 38506 59911
7: CytoTrol_CytoTrol_1.fcs DNT CD3 2820 59911
8: CytoTrol_CytoTrol_2.fcs NonDebris root 94290 115728
9: CytoTrol_CytoTrol_2.fcs singlets NonDebris 88334 94290
10: CytoTrol_CytoTrol_2.fcs CD3 singlets 59845 88334
11: CytoTrol_CytoTrol_2.fcs CD8 CD3 16774 59845
12: CytoTrol_CytoTrol_2.fcs DPT CD3 2200 59845
13: CytoTrol_CytoTrol_2.fcs CD4 CD3 38127 59845
14: CytoTrol_CytoTrol_2.fcs DNT CD3 2744 59845

5.5 Removing nodes from GatingSet object

There are dependencies between Rclassnodes in the hierarchical structure of the GatingSet object.
Thus, removing a particular node means also removing all of its associated child nodes.

Rm('CD3', gs)
getNodes(gs)

[1] "root" "/NonDebris" "/NonDebris/singlets"

Rm('NonDebris', gs)
getNodes(gs)

[1] "root"

Now for the larger data set, it would be either inaccurate to apply the same hard-coded gate to all
samples or impractical to manually set the gate coordinates for each individual sample. openCyto((G.
et al., 2014)) provides some data-driven gating functions to automatically generate these gates.

30

For example, mindensity can be used for estimating ’nonDebris‘ gate for each sample.

library(openCyto)
thisData <- getData(gs)
nonDebris_gate <- fsApply(thisData

, function(fr)
openCyto:::.mindensity(fr, channels = "FSC-A"))

add(gs, nonDebris_gate, parent = "root", name = "nonDebris")

[1] 2

recompute(gs)

..
done!

singeltGate can be used for estimating ’singlets‘

thisData <- getData(gs, "nonDebris") #get parent data
singlet_gate <- fsApply(thisData

, function(fr)
openCyto:::.singletGate(fr, channels =c("FSC-A", "FSC-H")))

add(gs, singlet_gate, parent = "nonDebris", name = "singlets")

[1] 3

recompute(gs)

..
done!

and then use mindensity again for ”CD3” gate

thisData <- getData(gs, "singlets") #get parent data
CD3_gate <- fsApply(thisData

, function(fr)
openCyto:::.mindensity(fr, channels ="V450-A"))

add(gs, CD3_gate, parent = "singlets", name = "CD3")

[1] 4

recompute(gs)

..
done!

and then use more adanced version of ’quadGate’: quadGate.seq for gating ”CD4” and ”CD8”
sequentially:

31

thisData <- getData(gs, "CD3") #get parent data
Tsub_gate <- fsApply(thisData

, function(fr)
openCyto::quadGate.seq(fr

, channels = c("B710-A", "R780-A")
, gFunc = 'mindensity'
)

)
add(gs, Tsub_gate, parent = "CD3", names = c("CD8", "DPT", "CD4", "DNT"))

q1 q2 q3 q4
5 6 7 8

recompute(gs)

..
done!

and then plot the gates

autoplot(gs[[1]])

77.3%

root

0e+00 1e+05 2e+05

0e+00

1e+05

2e+05

FSC−A

SS
C−

A

93.5%

nonDebris

0e+00 1e+05 2e+05

0e+00

1e+05

2e+05

FSC−A

FS
C−

H

69.5%

singlets

0 102 103 104 105

0e+00

1e+05

2e+05

V450−A CD3 V450

SS
C−

A

28.3% 4.2%

63.6%3.88%

CD3

0 102 103 104 105

0

102

103

104

105

B710−A CD4 PcpCy55

R7
80−

A C
D8

 AP
CH

7

CytoTrol_CytoTrol_1.fcs

Note that in order to get parent gated data by ’getData’ we have to ’recompute’ after adding each
gate. And the result is very similar to the manual gates but the gating process is more data-driven and
more consistent across samples.

The further automated the process, a gating pipeline can be established through OpenCyto((G.
et al., 2014)) that defines the hierarchical gating template in a text-based csv file. (See more details
from http://openCyto.org)

32

References

C. Bruce Bagwell. DNA histogram analysis for node-negative breast cancer. Cytometry A, 58:76–78,
2004.

Mark S Boguski and Martin W McIntosh. Biomedical informatics for proteomics. Nature, 422:233–
237, 2003.

Raul C Braylan. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic
lymphoproliferative disorders and plasma cell neoplasias. Cytometry A, 58:57–61, 2004.

A. Brazma. On the importance of standardisation in life sciences. Bioinformatics, 17:113–114, 2001.

M. Chicurel. Bioinformatics: bringing it all together. Nature, 419:751–755, 2002.

Finak G., Frelinger J., Newell E.W., Ramey J., Davis M.M., Kalams S.A., De Rosa S.C., and Gottardo
R. OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated,
End-to-End Flow Cytometry Data Analysis, volume 10. Public Library of Science, Aug 2014.

Maura Gasparetto, Tracy Gentry, Said Sebti, Erica O’Bryan, Ramadevi Nimmanapalli, Michelle A
Blaskovich, Kapil Bhalla, David Rizzieri, Perry Haaland, Jack Dunne, and Clay Smith. Identification
of compounds that enhance the anti-lymphoma activity of rituximab using flow cytometric high-
content screening. J Immunol Methods, 292:59–71, 2004.

M. Keeney, D. Barnett, and J. W. Gratama. Impact of standardization on clinical cell analysis by flow
cytometry. J Biol Regul Homeost Agents, 18:305–312, 2004.

N. LeMeur and F. Hahne. Analyzing flow cytometry data with bioconductor. Rnews, 6:27–32, 2006.

DR Parks. Data Processing and Analysis: Data Management., volume 1 of Current Protocols in
Cytometry. John Wiley & Sons, Inc, New York, 1997.

J. Spidlen, R.C. Gentleman, P.D. Haaland, M. Langille, N. Le Meur N, M.F. Ochs, C. Schmitt, C.A.
Smith, A.S. Treister, and R.R. Brinkman. Data standards for flow cytometry. OMICS, 10(2):209–
214, 2006.

J. Spidlen, R.C. Leif, W. Moore, M. Roederer, International Society for the Advancement of Cytometry
Data Standards Task Force, and R.R. Brinkman. Gating-ml: Xml-based gating descriptions in flow
cytometry. Cytometry A, 73A(12):1151–1157, 2008.

Maria A Suni, Holli S Dunn, Patricia L Orr, Rian de Laat, Elizabeth Sinclair, Smita A Ghanekar,
Barry M Bredt, John F Dunne, Vernon C Maino, and Holden T Maecker. Performance of plate-
based cytokine flow cytometry with automated data analysis. BMC Immunol, 4:9, 2003.

33

	Introduction
	Representing Flow Cytometry Data
	The flowFrame Class
	Data elements
	Reading a flowFrame
	Visualizing a flowFrame

	The flowSet Class
	Creating a flowSet
	Working with experimental metadata
	Bringing it all together: read.flowSet
	Manipulating a flowSet

	Transformation
	Standard Transforms

	Gating
	Standard gates and filters
	Count Statistics
	Subsetting
	Combining Filters
	Transformation Filters

	GatingSet
	Abstraction of GatingSet
	Creating GatingSet objects
	transform the data
	Add the gates
	Removing nodes from GatingSet object

