flowCore: data structures package for flow cytometry data

N. Le Meur F. Hahne B. Ellis P. Haaland

March 17, 2017

Abstract

Background The recent application of modern automation technologies to staining and collecting flow cytometry (FCM) samples has led to many new challenges in data management and analysis. We limit our attention here to the associated problems in the analysis of the massive amounts of FCM data now being collected. From our viewpoint, see two related but substantially different problems arising. On the one hand, there is the problem of adapting existing software to apply standard methods to the increased volume of data. The second problem, which we intend to address here, is the absence of any research platform which bioinformaticians, computer scientists, and statisticians can use to develop novel methods that address both the volume and multidimensignality of the mounting tide of data. In our opinion, such a platform should be Open Source, be focused on visualization, support rapid prototyping, have a large existing base of users, and have demonstrated suitability for development of new methods. We believe that the Open Source statistical software R in conjunction with the Bioconductor Project fills all of these requirements. Consequently we have developed a Bioconductor package that we call flowCore. The flowCore package is not intended to be a complete analysis package for FCM data, rather, we see it as providing a clear object model and a collection of standard tools that enable R as an informatics research platform for flow cytometry. One of the important issues that we have addressed in the flowCore package is that of using a standardized representation that will insure compatibility with existing technologies for data analysis and will support collaboration and interoperability of new methods as they are developed. In order to do this, we have followed the current standardized descriptions of FCM data analysis as being developed under NIH Grant xxxx [n]. We believe that researchers will find flowCore to be a solid foundation for future development of new methods to attack the many interesting open research questions in FCM data analysis.

Methods We propose a variety different data structures. We have implemented the classes and methods in the Bioconductor package flowCore. We illustrate their use with X case studies.

Results We hope that those proposed data structures will be the base for the development of many tools for the analysis of high throughput flow cytometry.

keywords Flow cytometry, high throughput, software, standard

1 Introduction

Traditionally, flow cytometry has been a tube-based technique limited to small-scale laboratory and clinical studies. High throughput methods for flow cytometry have recently been developed for drug discovery and advanced research methods (Gasparetto et al., 2004). As an example, the flow cytometry high content screening (FC-HCS) can process up to a thousand samples daily at a single workstation,

and the results have been equivalent or superior to traditional manual multi-parameter staining and analysis techniques.

The amount of information generated by high throughput technologies such as FC-HCS need to be transformed into executive summaries (which are brief enough) for creative studies by a human researcher (Brazma, 2001). Standardization is critical when developing new high throughput technologies and their associated information services (Brazma, 2001; Chicurel, 2002; Boguski and McIntosh, 2003). Standardization efforts have been made in clinical cell analysis by flow cytometry (Keeney et al., 2004), however data interpretation has not been standardized for even low throughput FCM. It is one of the most difficult and time consuming aspects of the entire analytical process as well as a primary source of variation in clinical tests, and investigators have traditionally relied on intuition rather than standardized statistical inference (Bagwell, 2004; Braylan, 2004; Parks, 1997; Suni et al., 2003). In the development of standards in high throughput FCM, few progress has been done in term of Open Source software. In this article we propose R data structures to handle flow cytometry data through the main steps of preprocessing: compensation, transformation, filtering.

The aim is to merge both prada and rflowcyt (LeMeur and Hahne, 2006) into one core package which is compliant with the data exchange standards that are currently developed in the community (Spidlen et al., 2006).

Visualization as well as quality control will than be part of the utility packages that depend on the data structures defined in the flowCore package.

2 Representing Flow Cytometry Data

flowCore's primary task is the representation and basic manipulation of flow cytometry (or similar) data. This is accomplished through a data model very similar to that adopted by other Bioconductor packages using the expressionSet and AnnotatedDataFrame structures familiar to most Bioconductor users.

2.1 The *flowFrame* Class

The basic unit of manipulation in flowCore is the *flowFrame*, which corresponds roughly with a single "FCS" file exported from the flow cytometer's acquisition software. At the moment we support FCS file versions 2.0 through 3.0, and we expect to support FCS4/ACS1 as soon as the specification has been ratified.

2.1.1 Data elements

The primary elements of the flowFrame are the exprs and parameters slots, which contain the event-level information and column metadata respectively. The event information, stored as a single matrix, is accessed and manipulated via the exprs () and exprs<- methods, allowing flowFrames to be stitched together if necessary (for example, if the same tube has been collected in two acquisition files for memory reasons).

The parameters slot is an *AnnotatedDataFrame* that contains information derived from an FCS file's "\$Pin¿" keywords, which describe the detector and stain information. The entire list is available via the parameter() method, but more commonly this information is accessed through the names, featureNames and colnames methods. The names function returns a concatenated version of

names and featureNames using a format similar to the one employed by most flow cytometry analysis software. The colnames method returns the detector names, often named for the fluorochrome detected, while the featureNames methods returns the description field of the parameters, which will typically be an identifier for the antibody.

The keyword method allows access to the raw FCS keywords, which are a mix of standard entries such as "SAMPLE ID," vendor specific keywords and user-defined keywords that add more information about an experiment. In the case of plate-based experiments, there are also one or more keywords that identify the specific well on the plate.

Most vendor software also include some sort of unique identifier for the file itself. The specialized methods identifier attempts to locate an appropriate globally unique identifier that can be used to uniquely identify a frame. Failing that, this method will return the original file name offering some assurance that this frame is at least unique to a particular session.

2.1.2 Reading a flowFrame

FCS files are read into the R environment via the read.FCS function using the standard connection interface—allowing for the possibility of accessing FCS files hosted on a remote resource as well as those that have been compressed or even retrieved as a blob from a database interface. FCS files (version 2.0 and 3.0) and LMD (List Mode Data) extensions are currently supported.

There are also several immediate processing options available in this function, the most important of which is the transformation parameter, which can either "linearize" (the default) or "linearize-with-PnG-scaling" or "scale" our data. To see how this works, first we will examine an FCS file without any transformation at all:

```
file.name <- system.file("extdata","0877408774.B08", package="flowCore")
x <- read.FCS(file.name, transformation=FALSE)
summary(x)</pre>
```

##		FSC-H	SSC-H	FL1-H	FL2-H	FL3-H	FL1-A	FL4-H	Time
##	Min.	85	11.0	0.0	0.0	0.0	0.00	0.0	1.0
##	lst Qu.	385	141.0	233.0	277.0	90.0	0.00	210.0	122.0
##	Median	441	189.0	545.5	346.0	193.0	26.00	279.0	288.0
##	Mean	492	277.9	439.1	366.2	179.7	34.08	323.5	294.8
##	3rd Qu.	518	270.0	610.0	437.0	264.0	51.00	390.0	457.5
##	Max.	1023	1023.0	912.0	1023.0	900.0	1023.00	1022.0	626.0

As we can see, in this case the values from each parameter seem to run from 0 to 1023 ($2^{10} - 1$). However, inspection of the "exponentiation" keyword (P_in_iE) reveals that some of the parameters (3 and 4) have been stored in the format of the form $a \times 10^{x/R}$ where a is given by the first element of the string.

```
keyword(x,c("$P1E", "$P2E", "$P3E", "$P4E"))
```

```
## $`$P1E`
## [1] "0,0"
##
```

```
## $`$P2E`
## [1] "0,0"
##
## $`$P3E`
## [1] "4,0"
##
## $`$P4E`
## [1] "4,0"
```

The default "linearize" transformation option will convert these to, effectively, have a "\$Pin¿E" of "0,0":

```
summary(read.FCS(file.name))
```

##		FSC-H	SSC-H	FL1-H	FL2-H	FL3-H	FL1-A	FL4-H	Time
##	Min.	85	11.0	1.000	1.00	1.000	0.00	1.000	1.0
##	lst Qu.	385	141.0	8.131	12.08	2.247	0.00	6.612	122.0
##	Median	441	189.0	135.200	22.47	5.674	26.00	12.300	288.0
##	Mean	492	277.9	157.800	106.00	8.465	34.08	140.400	294.8
##	3rd Qu.	518	270.0	241.400	50.94	10.750	51.00	33.380	457.5
##	Max.	1023	1023.0	3652.000	9910.00	3278.000	1023.00	9822.000	626.0

The "linearize-with-PnG-scaling" option will perform the previous transformation and it will also apply a "division by gain" to pamameters stored on linear scale with specified gain. The gain is specified in the \$PnG keywords. This option has been introduced as part of Gating-ML 2.0 compliance.

Finally, the "scale" option will both linearize values as well as ensure that output values are contained in [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0 specification:

summary(read.FCS(file.name,transformation="scale"))

```
##
           FSC-H
                  SSC-H
                           FL1-H
                                   FL2-H
                                            FL3-H
                                                   FL1-A
                                                            FL4-H
## Min.
         ## 1st Qu. 0.37630 0.13780 0.0007132 0.001108 0.0001247 0.00000 0.0005612
## Median 0.43110 0.18480 0.0134200 0.002147 0.0004675 0.02542 0.0011300
## Mean 0.48090 0.27170 0.0156800 0.010500 0.0007466 0.03331 0.0139400
## 3rd Qu. 0.50640 0.26390 0.0240500 0.004994 0.0009747 0.04985 0.0032380
## Max. 1.00000 1.00000 0.3651000 0.991000 0.3277000 1.00000 0.9822000
##
              Time
      0.0009775
## Min.
## 1st Qu. 0.1193000
## Median 0.2815000
## Mean 0.2881000
## 3rd Qu. 0.4472000
## Max. 0.6119000
```

Another parameter of interest is the alter.names parameter, which will convert the parameter names into more "R friendly" equivalents, usually by replacing "-" with ".":

```
read.FCS(file.name, alter.names=TRUE)
## flowFrame object '0877408774.B08'
## with 10000 cells and 8 observables:
##
       name
                          desc range minRange maxRange
## $P1 FSC.H
                         FSC-H 1024
                                            0
                                                  1023
## $P2 SSC.H
                         SSC-H 1024
                                            0
                                                  1023
## $P3 FL1.H
                         <NA> 1024
                                            1
                                                 10000
## $P4 FL2.H
                          <NA> 1024
                                            1
                                                 10000
                          <NA> 1024
                                                 10000
## $P5 FL3.H
                                            1
## $P6 FL1.A
                          <NA> 1024
                                            0
                                                  1023
## $P7 FL4.H
                          <NA> 1024
                                            1
                                                 10000
## $P8 Time Time (51.20 sec.) 1024
                                            0
                                                 1023
## 164 keywords are stored in the 'description' slot
```

When only a particular subset of parameters is desired the column.pattern parameter allows for the specification of a regular expression and only parameters that match the regular expression will be included in the frame. For example, to include on the Height parameters:

```
x <- read.FCS(file.name, column.pattern="-H")</pre>
Х
## flowFrame object '0877408774.B08'
## with 10000 cells and 6 observables:
        name desc range minRange maxRange
##
## $P1 FSC-H FSC-H 1024
                                0
                                      1023
## $P2 SSC-H SSC-H 1024
                                0
                                      1023
## $P3 FL1-H <NA> 1024
                                1
                                      10000
## $P4 FL2-H <NA> 1024
                                1
                                     10000
                                1
## $P5 FL3-H <NA>
                   1024
                                     10000
## $P7 FL4-H <NA> 1024
                                1
                                      10000
## 160 keywords are stored in the 'description' slot
```

Note that column.pattern is applied after alter.names if it is used.

Finally, only a sample of lines can be read in case you need a quick overview of a large series of files.

```
lines <- sample(100:500, 50)
y <- read.FCS(file.name, which.lines = lines)
y
## flowFrame object '0877408774.B08'
## with 50 cells and 8 observables:</pre>
```

##		name		desc	range	minRange	maxRange
##	\$P1	FSC-H		FSC-H	1024	0	1023
##	\$P2	SSC-H		SSC-H	1024	0	1023
##	\$P3	FL1-H		<na></na>	1024	1	10000
##	\$P4	FL2-H		<na></na>	1024	1	10000
##	\$P5	FL3-H		<na></na>	1024	1	10000
##	\$P6	FL1-A		<na></na>	1024	0	1023
##	\$P7	FL4-H		<na></na>	1024	1	10000
##	\$P8	Time	Time (51.20	sec.)	1024	0	1023
##	164	keywor	rds are stor	ed in t	che 'de	escription	n' slot

2.1.3 Visualizing a flow Frame

Much of the more sophisticated visualization of *flowFrame* and *flowSet* objects, including an interface to the ggplot2 graphics system is implemented by the ggcyto package, also included as part of Bioconductor. Here, we will only introduce the autoplot function. See vignettes of ggcyto for more examples of how to visualize flow data.

To create a bivariate density plot:

```
library(ggcyto)
```

```
## Loading required package: ggplot2
## Loading required package: ncdfFlow
## Loading required package: RcppArmadillo
## Loading required package: BH
## Loading required package: flowWorkspace
```

```
autoplot(x, "FL1-H", "FL2-H")
```


To get a univariate densityplot:

2.2 The flowSet Class

Most experiments consist of several *flowFrame* objects, which are organized using a *flowSet* object. This class provides a mechanism for efficiently hosting the *flowFrame* objects with minimal copying, reducing memory requirements, as well as ensuring that experimental metadata stays properly to the appropriate *flowFrame* objects.

2.2.1 Creating a flowSet

To facilitate the creation of *flowSet* objects from a variety of sources, we provide a means to coerce *list* and *environment* objects to a *flowSet* object using the usual coercion mechanisms. For example, if we have a directory containing FCS files we can read in a list of those files and create a *flowSet* out of them:

Note that the original list is unnamed and that the resulting sample names are not particularly meaningful. If the list is named, the list constructed is much more meaningful. One such approach is to employ the keyword method for *flowFrame* objects to extract the "SAMPLE ID" keyword from each frame:

```
names(frames) <- sapply(frames, keyword, "SAMPLE ID")
fs <- as(frames, "flowSet")
fs
## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H</pre>
```

2.2.2 Working with experimental metadata

Like most Bioconductor organizational classes, the *flowSet* has an associated *AnnotatedDataFrame* that provides metadata not contained within the *flowFrame* objects themselves. This data frame is accessed and modified via the usual phenoData and phenoData<- methods. You can also generally treat the phenotypic data as a normal data frame to add new descriptive columns. For example, we might want to track the original filename of the frames from above in the phenotypic data for easier access:

```
phenoData(fs)$Filename <- fsApply(fs,keyword, "$FIL")
pData(phenoData(fs))

## name Filename
## NA NA 060909.001
## fitc fitc 060909.002
## pe pe 060909.003
## apc apc 060909.004
## 7AAD 7AAD 060909.005</pre>
```

Note that we have used the *flowSet*-specific iterator, fsApply, which acts much like sapply or lapply. Additionally, we should also note that the phenoData data frame **must** have row names that correspond to the original names used to create the *flowSet*.

2.2.3 Bringing it all together: read.flowSet

Much of the functionality described above has been packaged into the read.flowSet convenience function. In it's simplest incarnation, this function takes a path, that defaults to the current working directory, and an optional pattern argument that allows only a subset of files contained within the working directory to be selected. For example, to read a *flowSet* of the files read in by frame above:

```
## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
```

read.flowSet will pass on additional arguments meant for the underlying read.FCS function, such as alter.names and column.pattern, but also supports several other interesting arguments for conducting initial processing:

files An alternative to the pattern argument, you may also supply a vector of filenames to read.

- **name.keyword** Like the example in the previous section, you may specify a particular keyword to use in place of the filename when creating the *flowSet*.
- **phenoData** If this is an *AnnotatedDataFrame*, then this will be used in place of the data frame that is ordinarily created. Additionally, the row names of this object will be taken to be the filenames of the FCS files in the directory specified by path. This argument may also be a named list made up of a combination of character and function objects that specify a keyword to extract from the FCS file or a function to apply to each frame that will return a result.

To recreate the *flowSet* that we created by hand from the last section we can use read.flowSets advanced functionality:

```
fs <- read.flowSet(path=system.file("extdata", "compdata", "data",</pre>
                   package="flowCore"), name.keyword="SAMPLE ID",
                   phenoData=list(name="SAMPLE ID", Filename="$FIL"))
fs
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
    rowNames: NA fitc ... 7AAD (5 total)
##
##
    varLabels: name Filename
##
     varMetadata: labelDescription
##
##
     column names:
##
     FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
pData(phenoData(fs))
##
        name Filename
        NA 060909.001
## NA
## fitc fitc 060909.002
## pe pe 060909.003
## apc apc 060909.004
## 7AAD 7AAD 060909.005
```

2.2.4 Manipulating a *flowSet*

You can extract a *flowFrame* from a *flowSet* object in the usual way using the [[or \$ extraction operators. On the other hand using the [extraction operator returns a new *flowSet* by **copying** the environment. However, simply assigning the *flowFrame* to a new variable will **not** copy the contained frames.

The primary iterator method for a *flowSet* is the fsApply method, which works more-or-less like sapply or lapply with two extra options. The first argument, simplify, which defaults to TRUE, instructs fsApply to attempt to simplify it's results much in the same way as sapply. The primary difference is that if all of the return values of the iterator are *flowFrame* objects, fsApply will create a new *flowSet* object to hold them. The second argument, use.exprs, which defaults to FALSE instructs fsApply to pass the expression matrix of each frame rather than the *flowFrame* object itself. This allows functions to operate directly on the intensity information without first having to extract it.

As an aid to this sort of operation we also introduce the each_row and each_col convenience functions that take the place of apply in the fsApply call. For example, if we wanted the median value of each parameter of each *flowFrame* we might write:

```
fsApply(fs, each_col, median)
```

##		FSC-H	SSC-H	FL1-H	FL2-H	FL3-H	FL1-A	FL4-H
##	NA	423	128	4.104698	4.531584	3.651741	0	7.233942
##	fitc	436	128	930.572041	228.757320	33.376247	217	8.278826
##	pe	438	120	10.181517	791.475544	114.444190	0	9.305720
##	apc	441	129	4.371445	4.869675	4.782858	0	358.663762
##	7AAD	429	133	5.002865	14.989296	63.209339	0	20.908000

which is equivalent to the less readable

```
fsApply(fs,function(x) apply(x, 2, median), use.exprs=TRUE)
```

##		FSC-H	SSC-H	FL1-H	FL2-H	FL3-H	FL1-A	FL4-H
##	NA	423	128	4.104698	4.531584	3.651741	0	7.233942
##	fitc	436	128	930.572041	228.757320	33.376247	217	8.278826
##	pe	438	120	10.181517	791.475544	114.444190	0	9.305720
##	apc	441	129	4.371445	4.869675	4.782858	0	358.663762
##	7AAD	429	133	5.002865	14.989296	63.209339	0	20.908000

In this case, the use.exprs argument is not required in the first case because each_col and each_row are methods and have been defined to work on *flowFrame* objects by first extracting the intensity data.

3 Transformation

flowCore features two methods of transforming parameters within a *flowFrame*: inline and out-ofline. The inline method, discussed in the next section has been developed primarily to support filtering features and is strictly more limited than the out-of-line transformation method, which uses R's transform function to accomplish the filtering. Like the normal transform function, the *flowFrame* is considered to be a data frame with columns named for parameters of the FCS file. For example, if we wished to plot our first *flowFrame*'s first two fluorescence parameters on the log scale we might write:

Like the usual transform function, we can also create new parameters based on the old parameters, without destroying the old

3.1 Standard Transforms

Though any function can be used as a transform in both the out-of-line and inline transformation techniques, flowCore provides a number of parameterized transform generators that correspond to the transforms commonly found in flow cytometry and defined in the Transformation Markup Language (Transformation-ML, see http://www.ficcs.org/ and Spidlen et al. (2006) for more details). Briefly, the predefined transforms are:

truncateTransform $y = \begin{cases} a & x < a \\ x & x \ge a \end{cases}$ scaleTransform $f(x) = \frac{x-a}{b-a}$ linearTransform f(x) = a + bxquadraticTransform $f(x) = ax^2 + bx + c$ lnTransform $f(x) = \log(x) \frac{r}{d}$ logTransform $f(x) = \log_b(x) \frac{r}{d}$ biexponentialTransform $f^{-1}(x) = ae^{bx} - ce^{dx} + f$ logicleTransform A special form of the biexponential

logicleTransform A special form of the biexponential transform with parameters selected by the data.

arcsinhTransform f(x) = asinh(a+bx) + c

To use a standard transform, first we create a transform function via the constructors supplied by flowCore:

```
aTrans <- truncateTransform("truncate at 1", a=1)
aTrans
## transform object 'truncate at 1'</pre>
```

which we can then use on the parameter of interest in the usual way

```
transform(fs,`FL1-H`=aTrans(`FL1-H`))
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: NA fitc ... 7AAD (5 total)
## varLabels: name Filename
## varMetadata: labelDescription
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
```

However this form of transform call is not intended to used in the programmatic context because locally defined transform function (e.g. 'aTrans') may not be always visible to the non-standard evaluation environment. e.g

```
f1 <- function(fs,...){
  transform(fs, ...)[,'FL1-H']
f2 <- function(fs) {
  aTrans <- truncateTransform("truncate at 1", a=1)
  f1(fs, `FL1-H` = aTrans(`FL1-H`))
}
res <- try(f2(fs), silent = TRUE)</pre>
res
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: NA fitc ... 7AAD (5 total)
##
    varLabels: name Filename
## varMetadata: labelDescription
##
##
   column names:
## FL1-H
```

So this form of usage of 'transform' method is only useful for the interactive exploratory. we highly recommend the usage of transformList instead for the more robust and reproducible code.

```
myTrans <- transformList('FL1-H', aTrans)
transform(fs, myTrans)
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: NA fitc ... 7AAD (5 total)
## varLabels: name Filename
## varMetadata: labelDescription
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H</pre>
```

4 Gating

The most common task in the analysis of flow cytometry data is some form of filtering operation, also known as gating, either to obtain summary statistics about the number of events that meet a certain criteria or to perform further analysis on a subset of the data. Most filtering operations are a composition of one or more common filtering operations. The definition of gates in flowCore follows the Gating Markup Language Candidate Recommendation Spidlen et al. (2008), thus any flowCore gating strategy can be reproduced by any other software that also adheres to the standard and *vice versa*.

4.1 Standard gates and filters

Like transformations, flowCore includes a number of built-in common flow cytometry gates. The simplest of these gates are the geometric gates, which correspond to those typically found in interactive flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions-a rectangle in one dimension is simply an interval gate.

polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can exist in dimensions higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all described in more or less the same manner (see man pages for more details):

In addition, we introduce the notion of data-driven gates, or filters, not usually found in flow cytometry software. In these approaches, the necessary parameters are computed based on the properties of the underlying data, for instance by modelling data distribution or by density estimation : norm2Filter A robust method for finding a region that most resembles a bivariate Normal distribution.

kmeansFilter Identifies populations based on a one dimensional k-means clustering operation. Allows the specification of **multiple** populations.

4.2 **Count Statistics**

When we have constructed a filter, we can apply it in two basic ways. The first is to collect simple summary statistics on the number and proportion of events considered to be contained within the gate or filter. This is done using the filter method. The first step is to apply our filter to some data

```
result = filter(fs[[1]],rectGate)
result
## A filterResult produced by the filter named 'Fluorescence Region'
```

As we can see, we have returned a *filterResult* object, which is in turn a filter allowing for reuse in, for example, subsetting operations. To obtain count and proportion statistics, we take the summary of this *filterResult*, which returns a list of summary values:

```
summary(result)
## Fluorescence Region+: 9811 of 10000 events (98.11%)
summary(result)$n
## [1] 10000
summary(result)$true
## [1] 9811
summary(result)$p
## [1] 0.9811
```

A filter which contains multiple populations, such as the *kmeansFilter*, can return a list of summary lists:

A filter may also be applied to an entire *flowSet*, in which case it returns a list of *filterResult* objects:

```
filter(fs, rectGate)
```

```
## A list of filterResults for a flowSet containing 5 frames
## produced by the filter named 'Fluorescence Region'
```

4.3 Subsetting

To subset or split a *flowFrame* or *flowSet*, we use the Subset and split methods respectively. The first, Subset, behaves similarly to the standard R subset function, which unfortunately could not used. For example, recall from our initial plots of this data that the morphology parameters, Forward Scatter and Side Scatter contain a large more-or-less ellipse shaped population. If we wished to deal only with that population, we might use Subset along with a *norm2Filter* object as follows:

```
morphGate <- norm2Filter("FSC-H", "SSC-H", filterId="MorphologyGate",</pre>
                          scale=2)
smaller <- Subset(fs, morphGate)</pre>
fs[[1]]
## flowFrame object 'NA'
## with 10000 cells and 7 observables:
##
        name
                    desc range minRange maxRange
## $P1 FSC-H FSC-Height
                         1024
                                       0
                                             1023
## $P2 SSC-H SSC-Height
                          1024
                                       0
                                             1023
## $P3 FL1-H
                                       1
                   <NA>
                         1024
                                            10000
## $P4 FL2-H
                          1024
                                       1
                    <NA>
                                            10000
## $P5 FL3-H
                         1024
                                       1
                    <NA>
                                            10000
## $P6 FL1-A
                                       0
                    <NA>
                         1024
                                             1023
## $P7 FL4-H
                    <NA>
                          1024
                                       1
                                            10000
## 141 keywords are stored in the 'description' slot
smaller[[1]]
## flowFrame object 'NA'
## with 8312 cells and 7 observables:
##
        name
                    desc range minRange maxRange
## $P1 FSC-H FSC-Height
                          1024
                                       0
                                             1023
## $P2 SSC-H SSC-Height
                          1024
                                       0
                                             1023
## $P3 FL1-H
                         1024
                                       1
                    <NA>
                                            10000
## $P4 FL2-H
                    <NA> 1024
                                       1
                                            10000
## $P5 FL3-H
                         1024
                                       1
                    <NA>
                                            10000
## $P6 FL1-A
                         1024
                                       0
                                             1023
                    <NA>
## $P7 FL4-H
                    <NA>
                         1024
                                       1
                                            10000
## 141 keywords are stored in the 'description' slot
```

Notice how the smaller *flowFrame* objects contain fewer events. Now imagine we wanted to use a *kmeansFilter* as before to split our first fluorescence parameter into three populations. To do this we employ the split function:

```
split(smaller[[1]], kmeansFilter("FSC-H"=c("Low", "Medium", "High"),
                                   filterId="myKMeans"))
## $Low
## flowFrame object 'NA (Low) '
## with 2422 cells and 7 observables:
##
        name
                    desc range minRange maxRange
## $P1 FSC-H FSC-Height
                          1024
                                       0
                                              1023
                                              1023
## $P2 SSC-H SSC-Height
                          1024
                                       0
## $P3 FL1-H
                    <NA>
                          1024
                                       1
                                            10000
## $P4 FL2-H
                    <NA>
                          1024
                                       1
                                            10000
                                       1
## $P5 FL3-H
                    <NA>
                          1024
                                            10000
## $P6 FL1-A
                          1024
                                       0
                    <NA>
                                             1023
                                       1
## $P7 FL4-H
                    <NA>
                          1024
                                             10000
## 141 keywords are stored in the 'description' slot
##
## $Medium
## flowFrame object 'NA (Medium)'
## with 3563 cells and 7 observables:
                    desc range minRange maxRange
##
        name
## $P1 FSC-H FSC-Height
                          1024
                                       0
                                              1023
## $P2 SSC-H SSC-Height
                          1024
                                       0
                                              1023
## $P3 FL1-H
                          1024
                                       1
                                            10000
                    <NA>
## $P4 FL2-H
                    <NA>
                          1024
                                       1
                                            10000
## $P5 FL3-H
                    <NA>
                          1024
                                       1
                                             10000
                                             1023
## $P6 FL1-A
                    <NA>
                          1024
                                       0
## $P7 FL4-H
                          1024
                                       1
                    <NA>
                                            10000
## 141 keywords are stored in the 'description' slot
##
## $High
## flowFrame object 'NA (High)'
## with 2327 cells and 7 observables:
##
        name
                    desc range minRange maxRange
## $P1 FSC-H FSC-Height
                          1024
                                       0
                                              1023
                                       0
## $P2 SSC-H SSC-Height
                          1024
                                             1023
## $P3 FL1-H
                    <NA>
                                       1
                          1024
                                            10000
## $P4 FL2-H
                    <NA>
                          1024
                                       1
                                            10000
## $P5 FL3-H
                    <NA>
                          1024
                                       1
                                            10000
## $P6 FL1-A
                    <NA>
                          1024
                                       0
                                             1023
                                       1
## $P7 FL4-H
                    <NA>
                          1024
                                            10000
## 141 keywords are stored in the 'description' slot
```

or for an entire flowSet

```
split(smaller, kmeansFilter("FSC-H"=c("Low", "Medium", "High"),
                            filterId="myKMeans"))
## $Low
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: NA fitc ... 7AAD (5 total)
##
   varLabels: name Filename population
##
  varMetadata: labelDescription
##
##
  column names:
##
  FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
## $Medium
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
##
   rowNames: NA fitc ... 7AAD (5 total)
##
  varLabels: name Filename population
##
   varMetadata: labelDescription
##
##
   column names:
##
   FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
## $High
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
    rowNames: NA fitc ... 7AAD (5 total)
##
##
  varLabels: name Filename population
##
    varMetadata: labelDescription
##
##
    column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
```

4.4 Combining Filters

Of course, most filtering operations consist of more than one gate. To combine gates and filters we use the standard R Boolean operators: &, — and ! to construct an intersection, union and complement respectively:

```
rectGate & morphGate
## filter 'Fluorescence Region and MorphologyGate'
## the intersection between the 2 filters
##
## Rectangular gate 'Fluorescence Region' with dimensions:
##
   FL1-H: (0,12)
    FL2-H: (0,12)
##
##
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
   method: covMcd
##
## scale.factor: 2
  n: 50000
##
rectGate | morphGate
## filter 'Fluorescence Region or MorphologyGate'
## the union of the 2 filters
##
## Rectangular gate 'Fluorescence Region' with dimensions:
##
    FL1-H: (0,12)
##
    FL2-H: (0,12)
##
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
  method: covMcd
##
##
  scale.factor: 2
## n: 50000
!morphGate
## filter 'not MorphologyGate', the complement of
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
##
   method: covMcd
##
  scale.factor: 2
## n: 50000
```

we also introduce the notion of the subset operation, denoted by either %subset% or %&%. This combination of two gates first performs a subsetting operation on the input *flowFrame* using the right-hand filter and then applies the left-hand filter. For example,

```
summary(filter(smaller[[1]],rectGate %&% morphGate))
```

Fluorescence Region in MorphologyGate+: 7186 of 8312 events (86.45%)

first calculates a subset based on the morphGate filter and then applies the rectGate.

4.5 Transformation Filters

Finally, it is sometimes desirable to construct a filter with respect to transformed parameters. To allow for this in our filtering constructs we introduce a special form of the transform method along with another filter combination operator %on%, which can be applied to both filters and *flowFrame* or *flowSet* objects. To specify our transform filter we must first construct a transform list using a simplified version of the transform function:

```
tFilter <- transform("FL1-H"=log, "FL2-H"=log)
tFilter

## An object of class "transformList"
## Slot "transforms":
## [[1]]
## transformMap for parameter 'FL1-H' mapping to 'FL1-H'
##
## [[2]]
## transformMap for parameter 'FL2-H' mapping to 'FL2-H'
##
##
##
## Slot "transformationId":
## [1] "defaultTransformation"</pre>
```

Note that this version of the transform filter does not take parameters on the right-hand side–the functions can only take a single vector that is specified by the parameter on the left-hand side. In this case those parameters are "FL1-H" and "FL2-H." The function also does not take a specific *flowFrame* or *flowSet* allowing us to use this with any appropriate data. We can then construct a filter with respect to the transform as follows:

```
rect2 <- rectangleGate(filterId="Another Rect", "FL1-H"=c(1,2),
"FL2-H"=c(2,3)) %on% tFilter
rect2
## transformed filter 'Another Rect on transformed values of FL1-H,FL2-H'</pre>
```

Additionally, we can use this construct directly on a *flowFrame* or *flowSet* by moving the transform to the left-hand side and placing the data on the right-hand side:

autoplot (tFilter %on% smaller[[1]], "FL1-H", "FL2-H")

which has the same effect as the \log transform used earlier.

5 GatingSet

filterSets are very limited in their use for complex analysis work flows. They are result-centric and it is hard to access intermediate results. flowWorkspace and openCyto framework (http://opencyto.org) offers much more versatile tools for such tasks though the *GatingSet* class (the old *workFlow* is now deprecated). The general idea is to let the software handle the organization of intermediate results, and operations and to provide a unified API to access and summarize these operations.

5.1 Abstraction of GatingSet

There are two classes in flowWorkspace that are used to abstract work flows: *GatingSet* objects are the basic container holding all the necessary bits and pieces and they are the main structure for user interaction. It is the container storing multiple *GatingHierarchy* objects which are associate with individual samples. One can think of *GatingSet* corresponds to (flowSet) and *GatingHierarchy* corresponds to (flowFrame).

It is important to know that *GatingSet* use 'external pointer' to store the 'gating tree' and thus most of its accessors have a reference semantic instead of the pass-by-value semantic that is usually found in the R language. The main consequence on the user-level is the fact that direct assignments to a *GatingSet* object are usually not necessary; i.e., functions that operate on the *GatingSet* have the potential side-effect of modifying the object.

5.2 Creating GatingSet objects

Before creating a 'GatingSet', we need to have flow data loaded into R as a *flowSet* or *ncdfFlowSet*(the disk-based 'flowSet', to handle large data set that are too big for memory, see (ncdfFlow) package).

```
library(flowWorkspace)
fcsfiles <- list.files(pattern = "CytoTrol"
                      , system.file("extdata", package = "flowWorkspaceData")
                     , full = TRUE)
fs <- read.flowSet(fcsfiles)</pre>
```

Then GatingSet can be created using the constructor GatingSet.

```
gs <- GatingSet(fs)
## ..
## done!
gs
## A GatingSet with 2 samples</pre>
```

Normally, we want to compensate the data firstly by using a user supplied compensation matrix:

```
## loading R object...
## loading tree object...
## Done
```

```
comp
```

```
## Compensation object 'defaultCompensation':
            B710-A
                     G560-A G780-A
##
                                             R660-A
                                                       R780-A
                                                                V450-A
## B710-A 1.000000 0.0009476 0.071170002 0.0362400 0.1800000 0.007104
## G560-A 0.115400 1.0000000 0.009097001 0.0018360 0.0000000 0.000000
## G780-A 0.014280 0.0380000 1.000000000 0.0006481 0.1500000 0.000000
## R660-A 0.005621 0.0000000 0.006604000 1.0000000 0.1786000 0.000000
## R780-A 0.000000 0.0000000 0.035340000 0.0102100 1.0000000 0.000000
## V450-A 0.000000 0.0000000 -0.059999999 -0.0400000 0.00000000 1.000000
## V545-A 0.002749 0.0000000 0.00000000 0.0000000 0.0006963 0.035000
##
           V545-A
## B710-A 0.007608
## G560-A 0.00000
## G780-A 0.00000
## R660-A 0.000000
## R780-A 0.000000
## V450-A 0.410000
## V545-A 1.000000
gs <- compensate(gs, comp)</pre>
```

Here is the effect of compensation:

We can query the available nodes in the *GatingSet* using the getNodes method:


```
## [1] "root"
```

It shows the only node 'root' which corresponds to the raw 'flow data' just added.

5.3 transform the data

Transformation can be either done on 'flowSet' before constructing 'GatingSet' or a *transformerList* can be directly added to a *GatingSet*:

```
gs <- transform(gs, tf)</pre>
```

```
p1 <- autoplot(fs_comp[[1]], "B710-A") + ggtitle("raw")
p2 <- autoplot(flowData(gs)[[1]], "B710-A") +
        ggtitle("trans") +
        ggcyto_par_set(limits = "instrument")
grid.arrange(as.ggplot(p1), as.ggplot(p2), ncol = 2)</pre>
```


Note that we did assign the return value of transform back to gs. This is because 'flow data' is stored as R object and thus transforming the data still follows the pass-by-value semantics.

5.4 Add the gates

Some basic flowCore *filter* can be added to a *GatingSet*:

```
rg1 <- rectangleGate("FSC-A"=c(50000, Inf), filterId="NonDebris")
add(gs, rg1, parent = "root")
## replicating filter 'NonDebris' across samples!
## [1] 2
getNodes(gs)
## [1] "root" "/NonDebris"
# gate the data
recompute(gs)</pre>
```

. ## . ## done!

As we see, here we don't need to assign *GatingSet* back because all the modifications are made in place to the *external pointer* rather than the R object itself. And now there is one new population node under the 'root' node called 'NonDebris'. The node is named after the 'filterId' of the gate if not explicitly supplied. After the gates are added, the actual gating process is done by explicitly calling recompute method. Note that the numeric value it returns is the internal ID for the new population just added, which can be normally ignored since the gating path instead of numeric id is recommended way to refer to population nodes later.

To view the gate we just added,

Since They are '1d' gates, we can also dispaly it in 'densityplot'

ggcyto(gs, aes(x = `FSC-A`)) + geom_density() + geom_gate("NonDebris")


```
To get population statistics for the given populatuion
```

```
getTotal(gs[[1]], "NonDebris")#counts
```

```
## [1] 94764
```

```
getProp (gs[[1]], "NonDebris") #proportion
```

```
## [1] 0.7927985
```

Now we add two more gates:

```
# add the second gate
mat <- matrix(c(54272,59392,259071.99382782</pre>
                 ,255999.994277954,62464,43008,70656
                 ,234495.997428894,169983.997344971,34816)
               , nrow = 5)
colnames(mat) <-c("FSC-A", "FSC-H")</pre>
mat
##
        FSC-A FSC-H
## [1,] 54272 43008
## [2,] 59392 70656
## [3,] 259072 234496
## [4,] 256000 169984
## [5,] 62464 34816
pg <- polygonGate(mat)</pre>
add(gs, pg, parent = "NonDebris", name = "singlets")
```

```
## replicating filter 'defaultPolygonGate' across samples!
## [1] 3
# add the third gate
rg2 <- rectangleGate("V450-A"=c(2000, Inf))
add(gs, rg2, parent = "singlets", name = "CD3")
## replicating filter 'defaultRectangleGate' across samples!
## [1] 4
getNodes(gs)
## [1] "root" "/NonDebris"
## [3] "/NonDebris/singlets" "/NonDebris/singlets/CD3"</pre>
```

We see two more nodes are added to 'GatingSet' and the population names are explicitly specified during the adding this time.

quadrantGate that results in four sub-populationsis also supported.

```
qg <- quadGate("B710-A" = 2000, "R780-A" = 3000)
add(gs, qg, parent="CD3", names = c("CD8", "DPT", "CD4", "DNT"))
## replicating filter 'defaultQuadGate' across samples!
## [1] 5 6 7 8
getChildren(gs[[1]], "CD3")
## [1] "/NonDebris/singlets/CD3/CD8" "/NonDebris/singlets/CD3/DPT"
## [3] "/NonDebris/singlets/CD3/CD4" "/NonDebris/singlets/CD3/DNT"
# gate the data from "singlets"
recompute(gs, "singlets")
## .
## .
## .
## .
## done!</pre>
```

Here we see four children nodes are added to 'CD3' parent node. Four quadrants are named explicitly through 'names' argument by clock-wise order (start from top-left quadrant). 'recomputing' only needs to be done once from the first ungated node, which will automatically compute all its descendants.

To plot the underlying tree

plot (gs)

```
## Loading required package: Rgraphviz
## Loading required package: graph
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
##
     clusterExport, clusterMap, parApply, parCapply, parLapply,
     parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following object is masked from 'package:gridExtra':
##
##
     combine
## The following objects are masked from 'package:flowCore':
##
##
     normalize, sort
## The following objects are masked from 'package:stats':
##
##
      IQR, mad, xtabs
## The following objects are masked from 'package:base':
##
##
     Filter, Find, Map, Position, Reduce, anyDuplicated, append,
##
     as.data.frame, cbind, colnames, do.call, duplicated, eval,
##
     evalq, get, grep, grepl, intersect, is.unsorted, lapply,
##
     lengths, mapply, match, mget, order, paste, pmax, pmax.int,
     pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort,
##
##
     table, tapply, union, unique, unsplit, which, which.max,
##
      which.min
## Loading required package: grid
```


To plot all gates for one sample

To retreive the underlying flow data for a gated *population*

```
fs_nonDebris <- getData(gs, "NonDebris")
fs_nonDebris
## A flowSet with 2 experiments.
##
## column names:
## FSC-A FSC-H FSC-W SSC-A B710-A R660-A R780-A V450-A V545-A G560-A G780-A Time</pre>
```

```
nrow(fs_nonDebris[[1]])
```

[1] 94764

nrow(fs[[1]])

[1] 119531

To get all the population statistics

getPopStats (gs)

##		name	Population	Parent	Count	ParentCount
##	1:	CytoTrol_CytoTrol_1.fcs	NonDebris	root	94764	119531
##	2:	CytoTrol_CytoTrol_1.fcs	singlets	NonDebris	88586	94764
##	3:	CytoTrol_CytoTrol_1.fcs	CD3	singlets	59911	88586
##	4:	CytoTrol_CytoTrol_1.fcs	CD8	CD3	16515	59911
##	5:	CytoTrol_CytoTrol_1.fcs	DPT	CD3	2070	59911
##	6:	CytoTrol_CytoTrol_1.fcs	CD4	CD3	38506	59911
##	7:	CytoTrol_CytoTrol_1.fcs	DNT	CD3	2820	59911
##	8:	CytoTrol_CytoTrol_2.fcs	NonDebris	root	94290	115728
##	9:	CytoTrol_CytoTrol_2.fcs	singlets	NonDebris	88334	94290
##	10:	CytoTrol_CytoTrol_2.fcs	CD3	singlets	59845	88334
##	11:	CytoTrol_CytoTrol_2.fcs	CD8	CD3	16774	59845
##	12:	CytoTrol_CytoTrol_2.fcs	DPT	CD3	2200	59845
##	13:	CytoTrol_CytoTrol_2.fcs	CD4	CD3	38127	59845
##	14:	CytoTrol_CytoTrol_2.fcs	DNT	CD3	2744	59845

5.5 Removing nodes from *GatingSet* object

There are dependencies between Rclassnodes in the hierarchical structure of the *GatingSet* object. Thus, removing a particular node means also removing all of its associated child *nodes*.

```
Rm('CD3', gs)
getNodes(gs)
## [1] "root" "/NonDebris" "/NonDebris/singlets"
Rm('NonDebris', gs)
getNodes(gs)
## [1] "root"
```

Now for the larger data set, it would be either inaccurate to apply the same hard-coded gate to all samples or impractical to manually set the gate coordinates for each individual sample. **openCyto**((G. et al., 2014)) provides some data-driven gating functions to automatically generate these gates.

For example, mindensity can be used for estimating 'nonDebris' gate for each sample.

singeltGate can be used for estimating 'singlets'

and then use mindensity again for "CD3" gate

and then use more adanced version of 'quadGate': quadGate.seq for gating "CD4" and "CD8" sequentially:

```
thisData <- getData(gs, "CD3") #get parent data
Tsub_gate <- fsApply(thisData</pre>
                      , function(fr)
                         openCyto::quadGate.seq(fr
                              , channels = c("B710-A", "R780-A")
                                gFunc = 'mindensity'
                              )
add(gs, Tsub_gate, parent = "CD3", names = c("CD8", "DPT", "CD4", "DNT"))
## q1 q2 q3 q4
    5
##
       6
         7 8
recompute(gs)
##
  . .
## done!
```

and then plot the gates

autoplot (gs[[1]])

Note that in order to get parent gated data by 'getData' we have to 'recompute' after adding each gate. And the result is very similar to the manual gates but the gating process is more data-driven and more consistent across samples.

The further automated the process, a gating pipeline can be established through OpenCyto((G. et al., 2014)) that defines the hierarchical gating template in a text-based csv file. (See more details from http://openCyto.org)

References

- C. Bruce Bagwell. DNA histogram analysis for node-negative breast cancer. *Cytometry A*, 58:76–78, 2004.
- Mark S Boguski and Martin W McIntosh. Biomedical informatics for proteomics. *Nature*, 422:233–237, 2003.
- Raul C Braylan. Impact of flow cytometry on the diagnosis and characterization of lymphomas, chronic lymphoproliferative disorders and plasma cell neoplasias. *Cytometry A*, 58:57–61, 2004.
- A. Brazma. On the importance of standardisation in life sciences. *Bioinformatics*, 17:113–114, 2001.
- M. Chicurel. Bioinformatics: bringing it all together. Nature, 419:751-755, 2002.
- Finak G., Frelinger J., Newell E.W., Ramey J., Davis M.M., Kalams S.A., De Rosa S.C., and Gottardo R. OpenCyto: An Open Source Infrastructure for Scalable, Robust, Reproducible, and Automated, End-to-End Flow Cytometry Data Analysis, volume 10. Public Library of Science, Aug 2014.
- Maura Gasparetto, Tracy Gentry, Said Sebti, Erica O'Bryan, Ramadevi Nimmanapalli, Michelle A Blaskovich, Kapil Bhalla, David Rizzieri, Perry Haaland, Jack Dunne, and Clay Smith. Identification of compounds that enhance the anti-lymphoma activity of rituximab using flow cytometric high-content screening. *J Immunol Methods*, 292:59–71, 2004.
- M. Keeney, D. Barnett, and J. W. Gratama. Impact of standardization on clinical cell analysis by flow cytometry. *J Biol Regul Homeost Agents*, 18:305–312, 2004.
- N. LeMeur and F. Hahne. Analyzing flow cytometry data with bioconductor. Rnews, 6:27-32, 2006.
- DR Parks. Data Processing and Analysis: Data Management., volume 1 of Current Protocols in Cytometry. John Wiley & Sons, Inc, New York, 1997.
- J. Spidlen, R.C. Gentleman, P.D. Haaland, M. Langille, N. Le Meur N, M.F. Ochs, C. Schmitt, C.A. Smith, A.S. Treister, and R.R. Brinkman. Data standards for flow cytometry. *OMICS*, 10(2):209–214, 2006.
- J. Spidlen, R.C. Leif, W. Moore, M. Roederer, International Society for the Advancement of Cytometry Data Standards Task Force, and R.R. Brinkman. Gating-ml: Xml-based gating descriptions in flow cytometry. *Cytometry A*, 73A(12):1151–1157, 2008.
- Maria A Suni, Holli S Dunn, Patricia L Orr, Rian de Laat, Elizabeth Sinclair, Smita A Ghanekar, Barry M Bredt, John F Dunne, Vernon C Maino, and Holden T Maecker. Performance of platebased cytokine flow cytometry with automated data analysis. *BMC Immunol*, 4:9, 2003.