Package 'CTexploreR'

October 31, 2025

Title Explores Cancer Testis Genes

Version 1.7.0

Description The CTexploreR package re-defines the list of Cancer Testis/Germline (CT) genes. It is based on publicly available RNAseq databases (GTEx, CCLE and TCGA) and summarises CT genes' main characteristics. Several visualisation functions allow to explore their expression in different types of tissues and cancer cells, or to inspect the methylation status of their promoters in normal tissues.

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>= 4.3), CTdata (>= 1.5.3)

Imports BiocGenerics, ComplexHeatmap, grid, SummarizedExperiment, GenomicRanges, IRanges, dplyr, tidyr, tibble, ggplot2, rlang, grDevices, stats, circlize, ggrepel, SingleCellExperiment, MatrixGenerics

Suggests BiocStyle, knitr, rmarkdown, testthat (>= 3.0.0), InteractiveComplexHeatmap

biocViews Transcriptomics, Epigenetics, DifferentialExpression, GeneExpression, DNAMethylation, ExperimentHubSoftware, DataImport

VignetteBuilder knitr

URL https://github.com/UCLouvain-CBIO/CTexploreR

 ${\bf BugReports} \ {\tt https://github.com/UCLouvain-CBIO/CTexploreR/issues}$

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/CTexploreR

git_branch devel

git_last_commit db48290

2 all_genes

git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-10-31
Author Axelle Loriot [aut, cre] (ORCID:
Maintainer Avelle Lariot < availa lariot@uclouvain ha>

Maintainer Axelle Loriot <axelle.loriot@uclouvain.be>

Contents

	all_genes	2
	CCLE_expression	3
	CT_correlated_genes	4
	CT_genes	5
	DAC_induction	6
	embryos_mean_methylation	7
	embryo_expression	8
	fetal_germcells_expression	9
	fetal_germcells_mean_methylation	10
	GTEX_expression	10
	hESC_expression	11
	hESC_mean_methylation	12
	HPA_cell_type_expression	13
	normal_tissues_mean_methylation	14
	normal_tissues_methylation	15
	normal_tissue_expression_multimapping	16
	oocytes_expression	17
	set_fontsize	18
	TCGA_expression	19
	TCGA_methylation_expression_correlation	20
	testis_expression	21
Index		23

all_genes All genes description table

Description

All genes description, imported from CTdata

CCLE_expression 3

Usage

```
all_genes
```

Format

A tibble object with 24488 rows and 47 columns.

- Rows correspond to CT genes
- Columns give CT genes characteristics

Details

```
See CTdata::all_genes documentation for details
```

Value

A tibble of all 24 488 genes with their characteristics

Source

See scripts/make_all_genes.R in CTdata for details on how this list was created.

Examples

```
all_genes
```

CCLE_expression

Gene expression in CCLE Tumors

Description

Plots an expression heatmap of genes in CCLE tumor cell lines.

```
CCLE_expression(
  genes = NULL,
  type = NULL,
  units = c("TPM", "log_TPM"),
  include_CTP = FALSE,
  values_only = FALSE
)
```

genes character naming the selected genes. The default value, NULL, takes all CT

(specific) genes.

type character() describing the tumor cell line(s) type to be plotted. Allowed

cell lines are "Ovarian", "Leukemia", "Colorectal", "Skin", "Lung", "Bladder", "Kidney", "Breast", "Pancreatic", "Myeloma", "Brain", "Sarcoma", "Lymphoma", "Bone", "Neuroblastoma", "Gastric", "Uterine", "Head_and_Neck", "Bile_Duct"

and "Esophageal".

units character(1) with expression values unit. Can be "TPM" (default) or "log_TPM"

 $(\log(\text{TPM} + 1))$

include_CTP logical(1) If TRUE, CTP genes are included. (FALSE by default).

values_only logical(1). If TRUE, values are returned instead of the heatmap (FALSE by

default).

Value

A heatmap of selected genes in CCLE cell lines from specified type. If values_only is TRUE, expression values are returned instead.

Examples

```
## Not run:
CCLE_expression(
   genes = c("MAGEA1", "MAGEA3", "MAGEA4", "MAGEA6", "MAGEA10"),
   type = c("Skin", "Lung"), units = "log_TPM")
## End(Not run)
```

CT_correlated_genes

Gene correlations in CCLE cancer cell lines

Description

A function that uses expression data from CCLE cell lines and highlights genes correlated (or anticorrelated) with specified CT gene. Genes with a correlation coefficient above threshold are colored in red if they are CT genes or in blue, if not.

Usage

```
CT_correlated_genes(gene, corr_thr = 0.5, values_only = FALSE)
```

Arguments

gene CT gene selected

corr_thr numeric(1) with default 0.5. Genes with an absolute correlation coefficient

(Pearson) higher than this threshold will be highlighted.

values_only logical(1), FALSE by default. If TRUE, the function will return the correlation

coefficients with all genes instead of the plot.

CT_genes 5

Value

A plot where each dots represent the correlation coefficients (Pearson) between genes and the specified CT gene (entered as input). Genes with a correlation coefficient above threshold are colored in red if they are CT genes or in blue, if not. If values_only = TRUE, all correlations coefficients are returned instead.

Examples

```
## Not run:
CT_correlated_genes(gene = "MAGEA3")
## End(Not run)
```

CT_genes

CT genes description table

Description

Cancer-Testis (CT) genes description, imported from CTdata

Usage

CT_genes

Format

A tibble object with 280 rows and 47 columns.

- Rows correspond to CT genes
- Columns give CT genes characteristics

Details

See CTdata::CT_genes documentation for details

Value

A tibble of all 280 CT and CTP genes with their characteristics

Source

See scripts/make_CT_genes.R in CTdata for details on how this list of curated CT genes was created.

Examples

CT_genes

DAC_induction

DAC_induction	Gene expression in cells treated or not by a demethylating agent

Description

Plots a heatmap of normalised gene counts (log-transformed) in a selection of cells treated or not by 5-Aza-2'-Deoxycytidine (DAC), a demethylating agent.

Usage

```
DAC_induction(
  genes = NULL,
  multimapping = TRUE,
  include_CTP = FALSE,
  values_only = FALSE
)
```

Arguments

genes	character naming the selected genes. The default value, NULL, takes all CT specific genes.
multimapping	logical(1) defining whether to use multi-mapped gene expression dataset CTdata::DAC_treated_cell or DAC_treated_cells. Default is TRUE.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
values_only	logical(1). If TRUE, the function will return the gene normalised logcounts in all samples instead of the heatmap. Default is FALSE.

Details

RNAseq data from cells treated or not with 5-aza downloaded from SRA. (SRA references and information about cell lines and DAC treatment are stored the colData of DAC_treated_cells). Data was processed using a standard RNAseq pipeline. hisat2 was used to align reads to grch38 genome. featurecounts was used to assign reads to genes. Note that -M parameter was used or not to allow or not counting multi-mapping reads.

Value

A heatmap of selected genes in cells treated or not by a demethylating agent. If values_only is TRUE, gene normalised logcounts are returned instead.

```
DAC_induction(genes = c("MAGEA1", "MAGEA3", "MAGEA4", "MAGEA6", "CTAG1A"))
DAC_induction(genes = c("MAGEA1", "MAGEA3", "MAGEA4", "MAGEA6", "CTAG1A",
    multimapping = FALSE))
```

```
embryos_mean_methylation
```

Promoter methylation of any gene in early embryos

Description

Plots a heatmap of mean promoter methylation levels of any genes in early embryos, using WGSB data from ("Single-cell DNA methylome sequencing of human preimplantation embryos". Zhu et al. Nat genetics 2018). Methylation levels in tissues correspond to the mean methylation of CpGs located in range of 1000 pb upstream and 500 pb downstream from gene TSS.

Usage

```
embryos_mean_methylation(
  genes = NULL,
  stage = c("GV Oocyte", "MII Oocyte", "Sperm", "Zygote", "2-cell", "4-cell", "8-cell",
    "Morula", "Blastocyst", "Post-implantation"),
  include_CTP = FALSE,
  values_only = FALSE
)
```

Arguments

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
stage	character defining the cell types to be plotted. Can be "GV Oocyte", "MII Oocyte", "Sperm", "Zygote", "2-cell", "4-cell", "8-cell", "Morula", "Blastocyst", "Post-implantation".
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
values_only	logical(1), FALSE by default. If TRUE, the function will return the methylation values in all samples instead of the heatmap.

Value

Heatmap of mean promoter methylation of any gene in embryos. If values_only = TRUE, a Ranged-SummarizedExperiment with methylation values is returned instead.

```
embryos_mean_methylation()
embryos_mean_methylation(c("MAGEA1", "MAGEA3", "MAGEA4", "MAGEC2", "MAGEB16"),
stage = c( "MII Oocyte", "Sperm", "Zygote", "2-cell", "4-cell", "8-cell",
"Morula"))
```

8 embryo_expression

embryo_expression

Gene expression in human embryos

Description

Plots a heatmap of genes expression in human early embryos, from "Petropoulos" scRNAseq dataset ("Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos". Petropoulos et al., Cell 2016) or from "Zhu" scRNAseq dataset ("Single-cell DNA methylome sequencing of human preimplantation embryos". Zhu et al. Nat genetics 2018)

Usage

```
embryo_expression(
  dataset = c("Petropoulos", "Zhu"),
  genes = NULL,
  include_CTP = FALSE,
  scale_lims = NULL,
  values_only = FALSE
)
```

Arguments

character. Indicates which scRNAseq dataset to use. Either Petropoulos or Zhu, no default.

genes character naming the selected genes. The default value, NULL, takes all CT (specific) genes.

include_CTP logical(1) If TRUE, CTP genes are included. (FALSE by default).

vector of length 2 setting the lower and upper limits of the heatmap colorbar. By default, the lower limit is 0, and the upper limit corresponds to the third quartile of the logcounts values.

values_only logical(1). If TRUE, the function will return the SingleCellExperiment instead

Value

A heatmap of selected CT genes expression in single cells from embryos. If values_only = TRUE, a SingleCellExperiment is returned instead.

Examples

```
## Not run:
embryo_expression(dataset = "Petropoulos", include_CTP = FALSE)
embryo_expression(dataset = "Zhu", include_CTP = FALSE)
## End(Not run)
```

of the heatmap. Default is FALSE.

```
fetal_germcells_expression
```

Gene expression in fetal germ cells

Description

Plots a heatmap of genes expression in fetal germ cells, using scRNAseq data from "Single-cell roadmap of human gonadal development" (Garcia-Alonso, Nature 2022)

Usage

```
fetal_germcells_expression(
  genes = NULL,
  include_CTP = FALSE,
  ncells_max = 200,
  scale_lims = NULL,
  values_only = FALSE
)
```

Arguments

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
ncells_max	integer(1) Sets the number of each cell type to represent on the heatmap (these cells will be randomly selected among each cell type) (set to 200 by default). If NULL, all cells are displayed.
scale_lims	vector of length 2 setting the lower and upper limits of the heatmap colorbar. By default, the lower limit is 0, and the upper limit corresponds to the third quartile of the logcounts values.
values_only	logical(1). If TRUE, the function will return the SingleCellExperiment instead of the heatmap. Default is FALSE.

Value

A heatmap of selected CT genes expression in single cells from fetal germ cells. If values_only = TRUE, a SingleCellExperiment is returned instead.

```
## Not run:
fetal_germcells_expression(include_CTP = FALSE, ncells_max = 100)
## End(Not run)
```

10 GTEX_expression

```
fetal_germcells_mean_methylation
```

Promoter methylation of any gene in fetal germ cells

Description

Plots a heatmap of mean promoter methylation levels of any genes in fetal germ cells, using WGSB data from "Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution" (Li et al. 2021). Methylation levels in tissues correspond to the mean methylation of CpGs located in range of 1000 pb upstream and 500 pb downstream from gene TSS.

Usage

```
fetal_germcells_mean_methylation(
  genes = NULL,
  include_CTP = FALSE,
  values_only = FALSE
)
```

Arguments

genes character naming the selected genes. The default value, NULL, takes all CT

(specific) genes.

include_CTP logical(1) If TRUE, CTP genes are included. (FALSE by default).

values_only logical(1), FALSE by default. If TRUE, the function will return the methylation

values in all samples instead of the heatmap.

Value

Heatmap of mean promoter methylation of any gene in normal tissues. If values_only = TRUE, a SummarizeExperiment with methylation values is returned instead.

Examples

```
fetal_germcells_mean_methylation()
fetal_germcells_mean_methylation(c("MAGEA1", "MAGEA3", "MAGEA4", "MAGEC2"))
```

GTEX_expression

Gene expression in normal tissues (GTEx)

Description

Plots an expression heatmap of genes in normal tissues (GTEx database).

hESC_expression 11

Usage

```
GTEX_expression(
  genes = NULL,
  units = c("TPM", "log_TPM"),
  include_CTP = FALSE,
  values_only = FALSE
)
```

Arguments

character naming the selected genes. The default value, NULL, takes all CT (specific) genes.

units character(1) with expression values unit. Can be "TPM" (default) or "log_TPM" (log(TPM + 1)).

include_CTP logical(1) If TRUE, CTP genes are included. (FALSE by default).

values_only logical(1). If TRUE, the function will return the expression values in all samples instead of the heatmap. Default is FALSE.

Value

A heatmap of selected genes expression in normal tissues. If values_only = TRUE, expression values are returned instead.

Examples

```
GTEX_expression(units = "log_TPM")
GTEX_expression(genes = c("MAGEA1", "MAGEA3"), units = "log_TPM")
```

hESC_expression

Gene expression in human embryonic stem cells

Description

Plots a heatmap of genes expression in human embryonic stem cells, using RNAseq data downloaded from Encode database.

```
hESC_expression(
  genes = NULL,
  include_CTP = FALSE,
  units = c("TPM"),
  scale_lims = NULL,
  values_only = FALSE
)
```

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
units	character(1) with expression values unit. Can be "TPM" (default) or " log_TPM " ($log(TPM + 1)$).
scale_lims	vector of length 2 setting the lower and upper limits of the heatmap colorbar. By default, the lower limit is 0, and the upper limit corresponds to the third quartile of the logcounts values.
values_only	logical(1). If TRUE, the function will return the SingleCellExperiment instead of the heatmap. Default is FALSE.

Value

A heatmap of selected CT genes expression in single cells from human embryonic stem cells. If values_only = TRUE, a SummarizedExperiment is returned instead.

Examples

 $\verb|hESC_mean_methylation|| \textit{Promoter methylation of any gene in hESC}|$

Description

Plots a heatmap of mean promoter methylation levels of any genes in human embryonic cell lines. WGBS methylation data was downloaded from Encode. Methylation levels in tissues correspond to the mean methylation of CpGs located in range of 1000 pb upstream and 200 pb downstream from gene TSS.

```
hESC_mean_methylation(
  genes = NULL,
  include_CTP = FALSE,
  values_only = FALSE,
  na.omit = TRUE
)
```

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
values_only	logical(1), FALSE by default. If TRUE, the function will return the methylation values in all samples instead of the heatmap.
na.omit	logical(1) specifying if genes with missing methylation values in some tissues should be removed (TRUE by default). Note that no gene clustering will be done when methylation values are missing.

Value

Heatmap of mean promoter methylation of any gene in hESC. If values_only = TRUE, a SummarizedExperiment cobtaining methylation values is returned instead.

Examples

```
## Not run:
hESC_mean_methylation()
## End(Not run)
```

```
HPA_cell_type_expression
```

Gene expression in different human cell types

Description

Plots a heatmap of genes expression in the different human cell types based on scRNAseq data obtained from the Human Protein Atlas (https://www.proteinatlas.org)

```
HPA_cell_type_expression(
  genes = NULL,
  units = c("scaled", "TPM", "log_TPM"),
  include_CTP = FALSE,
  scale_lims = NULL,
  values_only = FALSE
)
```

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
units	character(1) with expression values unit. Can be "TPM", "log_TPM" (log(TPM + 1)) or "scaled" (scaled TPM values). Default is "scaled".
include_CTP scale_lims	logical(1) If TRUE, CTP genes are included. (FALSE by default). vector of length 2 setting the lower and upper limits of the heatmap colorbar.
values_only	logical(1). If TRUE, the function will return the SummarizedExperiment instead of the heatmap. Default is FALSE.

Value

A heatmap of selected CT genes expression in different human cell types. If values_only = TRUE, a SummarizedExperiment instead of the heatmap is returned instead.

Examples

```
HPA_cell_type_expression(
   genes = NULL, units = "scaled", scale_lims = NULL,
   values_only = FALSE)
HPA_cell_type_expression(
   genes = c("MAGEA1", "MAGEA3", "MAGEA4"),
   units = "TPM", scale_lims = c(0, 50),
   values_only = FALSE)
```

```
normal_tissues_mean_methylation
```

Promoter methylation of any gene in normal tissues

Description

Plots a heatmap of mean promoter methylation levels of any genes in normal tissues. Methylation levels in tissues correspond to the mean methylation of CpGs located in range of 1000 pb upstream and 200 pb downstream from gene TSS.

```
normal_tissues_mean_methylation(
  genes = NULL,
  include_CTP = FALSE,
  values_only = FALSE,
  na.omit = TRUE
)
```

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
values_only	logical(1), FALSE by default. If TRUE, the function will return the methylation values in all samples instead of the heatmap.
na.omit	logical(1) specifying if genes with missing methylation values in some tissues should be removed (TRUE by default). Note that no gene clustering will be done when methylation values are missing.

Value

Heatmap of mean promoter methylation of any gene in normal tissues. If values_only = TRUE, methylation values are returned instead.

Examples

```
normal_tissues_methylation
```

Methylation of CpGs located in promoters in normal tissues

Description

Plots a heatmap of the methylation of CpGs located in a promoter, in normal tissues. X-axis corresponds to the CpGs position (related to TSS).

Usage

```
normal_tissues_methylation(
  gene,
  nt_up = 1000,
  nt_down = 200,
  values_only = FALSE
)
```

Arguments

gene	Name of selected gene
nt_up	Number of nucleotides upstream the TSS to analyse (by default 1000, maximum value 5000)

nt_down Number of nucleotides downstream the TSS to analyse (by default 200, maxi-

mum value 5000)

values_only Boolean (FALSE by default). If set to TRUE, the function will return the methy-

lation values of all cytosines in the promoter instead of the heatmap.

Value

Heatmap of the methylation of CpGs located in a promoter, in normal tissues. If values_only = TRUE, methylation values are returned instead.

Examples

```
normal_tissues_methylation(gene = "TDRD1", 1000, 0)
```

normal_tissue_expression_multimapping

Expression values (TPM) of genes in normal tissues with or without multimapping

Description

Plots a heatmap of gene expression values in a set of normal tissues. Expression values (in TPM) have been evaluated by either counting or discarding multi-mapped reads. Indeed, many CT genes belong to gene families from which members have identical or nearly identical sequences. Some CT can only be detected in RNAseq data in which multimapping reads are not discarded.

Usage

```
normal_tissue_expression_multimapping(
  genes = NULL,
  include_CTP = FALSE,
  multimapping = TRUE,
  units = c("TPM", "log_TPM"),
  values_only = FALSE
)
```

Arguments

genes character naming the selected genes. The default value, NULL, takes all CT

(specific) genes.

include_CTP logical(1) If TRUE, CTP genes are included. (FALSE by default).

multimapping logical(1) that specifies if returned expression values must take into account

or not multi-mapped reads. TRUE by default.

units character(1) with expression values unit. Can be "TPM" (default) or "log_TPM"

 $(\log(\text{TPM} + 1)).$

values_only logical(1). If TRUE, the function will return the expression values in all sam-

ples instead of the heatmap. Default is FALSE.

oocytes_expression 17

Details

RNAseq data from a set of normal tissues were downloaded from Encode. (see inst/scripts/make_CT_normal_tissues_multim for fastq references) Fastq files were processed using a standard RNAseq pipeline including FastQC for the quality control of the raw data, and trimmomatic to remove low quality reads and trim the adapter from the sequences. hisat2 was used to align reads to grch38 genome. featurecounts was used to assign reads to genes using Homo_sapiens.GRCh38.105.gtf.

Two different pipelines were run in order to remove or not multi-mapping reads. When multimapping was allowed, hisat2 was run with -k 20 parameter (reports up to 20 alignments per read), and featurecounts was run with -M parameter (multi-mapping reads are counted).

Value

A heatmap of selected gene expression values in a set of normal tissues calculated by counting or discarding multi-mapped reads. If values_only = TRUE, gene expression values are returned instead.

Examples

```
normal_tissue_expression_multimapping(
   genes = c("GAGE13", "CT45A6", "NXF2", "SSX2", "CTAG1A",
   "MAGEA3", "MAGEA6"), multimapping = FALSE)
normal_tissue_expression_multimapping(
   genes = c("GAGE13", "CT45A6", "NXF2", "SSX2", "CTAG1A",
   "MAGEA3", "MAGEA6"), multimapping = TRUE)
```

oocytes_expression

Gene expression in oocytes

Description

Plots a heatmap of genes expression in oocytes, using scRNAseq data from "Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing" (Yan et al. Cell Stem Cell 2021)

```
oocytes_expression(
  genes = NULL,
  include_CTP = FALSE,
  ncells_max = 200,
  scale_lims = NULL,
  values_only = FALSE
)
```

18 set_fontsize

Arguments

genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
ncells_max	integer (1) Sets the number of each cell type to represent on the heatmap (these cells will be randomly selected among each cell type) (set to 200 by default). If NULL, all cells are displayed.
scale_lims	vector of length 2 setting the lower and upper limits of the heatmap colorbar. By default, the lower limit is 0, and the upper limit corresponds to the third quartile of the logcounts values.
values_only	logical(1). If TRUE, the function will return the SingleCellExperiment instead of the heatmap. Default is FALSE.

Value

A heatmap of selected CT genes expression in single cells from human oocytes. If values_only = TRUE, a SingleCellExperiment is returned instead.

Examples

 $set_fontsize$

Determine font size

Description

Gives the fontsize to use for the heatmap based on the matrix's dimension.

Usage

```
set_fontsize(matrix)
```

Arguments

matrix

matrix containing the data to visualise

Value

A logical number that is the fontsize to use

```
CTexploreR:::set_fontsize(matrix(1:3, 9,8))
```

TCGA_expression 19

TCGA_expression Gene expression in TCGA tumors	TCGA_expression	Gene expression in TCGA tumors	
--	-----------------	--------------------------------	--

Description

Plots a heatmap of genes expression in TCGA samples (peritumoral and tumor samples when a specific tumor type is specified, or tumor samples only when tumor option is set to "all")

Usage

```
TCGA_expression(
  tumor = "all",
  genes = NULL,
  include_CTP = FALSE,
  units = c("TPM", "log_TPM"),
  values_only = FALSE
)
```

Arguments

tumor	character defining the TCGA tumor type. Can be one of "SKCM", "LUAD", "LUSC", "COAD", "ESCA", "BRCA", "HNSC", or "all" (default).
genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP	logical(1) If TRUE, CTP genes are included. (FALSE by default).
units	character(1) with expression values unit. Can be "TPM" (default) or "log_TPM" (log(TPM + 1)).
values_only	logical(1). If TRUE, the function will return the expression values in all samples instead of the heatmap. Default is FALSE.

Value

A heatmap of selected CT genes expression in TCGA samples. If values_only = TRUE, TPM expression data is returned instead.

```
## Not run:
TCGA_expression(
    tumor = "LUAD", genes = c("MAGEA1", "MAGEA3"),
    units = "log_TPM")
## End(Not run)
```

TCGA_methylation_expression_correlation

Methylation-Expression correlation of any genes in TCGA samples

Description

Plots the correlation between methylation and expression values of a gene in TCGA samples.

Usage

```
TCGA_methylation_expression_correlation(
  tumor = "all",
  gene = NULL,
  nt_up = 1000,
  nt_down = 200,
  min_probe_number = 3,
  include_normal_tissues = FALSE,
  values_only = FALSE
)
```

Arguments

tumor	character defining the TCGA tumor type. Can be one of "SKCM", "LUAD", "LUSC", "COAD", "ESCA", "BRCA", "HNSC", or "all" (default).		
gene	character selected gene.		
nt_up	numeric(1) indicating the number of nucleotides upstream the TSS to define the promoter region (1000 by default)		
nt_down	numeric(1) indicating the number of nucleotides downstream the TSS to define the promoter region (200 by default)		
min_probe_number			
	numeric(1) indicating the minimum number of probes (with methylation values) within the selected region to calculate its mean methylation level. Default is 3.		
include_normal_tissues			
	logical(1). If TRUE, the function will include normal peritumoral tissues in addition to tumoral samples. Default is FALSE.		
values_only	logical(1). If TRUE, the function will return the methylation and expression values in TCGA samples instead of the heatmap. Default is FALSE.		

Details

The coefficient of correlation is set to NA if no probes are found in promoter regions or if less than 1% of tumors are positive (TPM >= 1) for the gene.

testis_expression 21

Value

A scatter plot representing for each TCGA sample, gene expression and mean methylation values of probe(s) located in its promoter region (defined as 1000 nucleotides upstream TSS and 200 nucleotides downstream TSS by default). If values_only = TRUE, methylation and expression values are returned in a tibble instead.

Examples

```
## Not run:
TCGA_methylation_expression_correlation("LUAD", gene = "TDRD1")
## End(Not run)
```

testis_expression

Gene expression in testis cells

Description

Plots a heatmap of genes expression in the different types of testis cells, using scRNAseq data from "The adult human testis transcriptional cell atlas" (Guo et al. 2018)

Usage

```
testis_expression(
  cells = c("all", "germ_cells", "somatic_cells", "SSC", "Spermatogonia",
    "Early_spermatocyte", "Late_spermatocyte", "Round_spermatid", "Elongated_spermatid",
    "Sperm1", "Sperm2", "Macrophage", "Endothelial", "Myoid", "Sertoli", "Leydig"),
    genes = NULL,
    include_CTP = FALSE,
    scale_lims = NULL,
    values_only = FALSE
)
```

Arguments

cells	character defining the testis cell types to be plotted. Can be "germ_cells", "so-matic_cells", "all" (default), or any or a combination of "SSC", "Spermatogonia", "Early_spermatocyte", "Late_spermatocyte", "Round_spermatid", "Elongated_spermatid", "Sperm1", "Sperm2", "Macrophage", "Endothelial", "Myoid", "Sertoli", "Leydig".
genes	character naming the selected genes. The default value, NULL, takes all CT (specific) genes.
include_CTP scale_lims	logical(1) If TRUE, CTP genes are included. (FALSE by default). vector of length 2 setting the lower and upper limits of the heatmap colorbar. By default, the lower limit is 0, and the upper limit corresponds to the third quartile of the logcounts values.
values_only	logical(1). If TRUE, the function will return the SingleCellExperiment instead of the heatmap. Default is FALSE.

22 testis_expression

Value

A heatmap of selected CT genes expression in single cells from adult testis. If values_only = TRUE, a SingleCellExperiment is returned instead.

Index

```
* datasets
    all_genes, 2
    CT_genes, 5
all_genes, 2
CCLE_expression, 3
CT_correlated_genes, 4
CT_genes, 5
DAC_induction, 6
embryo_expression, 8
embryos_mean_methylation, 7
fetal_germcells_expression, 9
fetal_germcells_mean_methylation, 10
GTEX_expression, 10
hESC_expression, 11
hESC_mean_methylation, 12
HPA_cell_type_expression, 13
{\tt normal\_tissue\_expression\_multimapping},
        16
normal\_tissues\_mean\_methylation, 14
normal\_tissues\_methylation, 15
oocytes_expression, 17
set_fontsize, 18
TCGA_expression, 19
{\tt TCGA\_methylation\_expression\_correlation},
        20
testis\_expression, 21
```