Package 'VaSP'

July 12, 2025

Type Package

Version 1.21.0

- **Title** Quantification and Visualization of Variations of Splicing in Population
- **Description** Discovery of genome-wide variable alternative splicing events from short-read RNA-seq data and visualizations of gene splicing information for publication-quality multi-panel figures in a population. (Warning: The visualizing function is removed due to the dependent package Sushi deprecated. If you want to use it, please change back to an older version.)
- URL https://github.com/yuhuihui2011/VaSP

BugReports https://github.com/yuhuihui2011/VaSP/issues

License GPL (>= 2.0)

Depends R (>= 4.0), ballgown

Imports IRanges, GenomicRanges, S4Vectors, parallel, matrixStats, GenomicAlignments, GenomeInfoDb, Rsamtools, cluster, stats, graphics, methods

Suggests knitr, rmarkdown

VignetteBuilder knitr

biocViews RNASeq, AlternativeSplicing, DifferentialSplicing, StatisticalMethod, Visualization, Preprocessing, Clustering, DifferentialExpression, KEGG, ImmunoOncology

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/VaSP

git_branch devel

git_last_commit 745d63e

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-11

Author Huihui Yu [aut, cre] (ORCID: <https://orcid.org/0000-0003-2725-1937>), Qian Du [aut] (ORCID: <https://orcid.org/0000-0003-3864-8745>), Chi Zhang [aut] (ORCID: <https://orcid.org/0000-0002-1827-8137>)

Maintainer Huihui Yu <yuhuihui2011@foxmail.com>

Contents

BMfinder	. 2
getDepth	. 3
getGeneinfo	. 3
rice.bg	. 4
spliceGene	. 5
spliceGenome	. 6
	8

Index

```
BMfinder
```

Discover bimodal distrubition features

Description

Find bimodal distrubition features and divide the samples into 2 groups by k-means clustering.

Usage

Arguments

х	a numeric matrix with feature rows and sample columns, e.g., splicing score matrix from spliceGenome or spliceGene function.
p.value	p.value threshold for bimodal distrubition test
maf	minor allele frequency threshold in k-means clustering
miss	missing grouping rate threshold in k-means clustering
fold	fold change threshold between the two groups
log	whether the scores are to be logarithmic. If TRUE, all the scores are log2 tran- formed before k-means clustering: $x = log2(x+1)$.
cores	threads to be used. This value is passed to ?mclapply in parallel package

Details

The matrix contains 1, 2 and NA, and values of 'x' in group 2 are larger than group 1.

Value

a matrix with feature rows and sample columns.

Examples

```
data(rice.bg)
score<-spliceGene(rice.bg,'MSTRG.183',junc.type='score')
score<-round(score,2)
as<-BMfinder(score,cores=1) # 4 bimodal distrubition features found
##compare
as
score[rownames(score)%in%rownames(as),]</pre>
```

2

getDepth

Description

Get read depth from a BAM file (in bedgraph format)

Usage

```
getDepth(x, chrom, start, end)
```

Arguments

х	path to a BAM file
chrom	chromosome of a region to be searched
start	start position
end	end position

Value

a data.frame in bedgraph file format.

Examples

getGeneinfo Get Gene Informaton from a ballgown object

Description

Get gene informaton from a ballgown object by genes or by genomic regions

Usage

Arguments

genes	a character vector specifying gene IDs in 'bg'. Any values other than NA over- ride genomic region (chrom, start, stop)
bg	ballgown object
chrom	chromosome of a region
start	start postion
end	stop postion
samples	names of samples. The transcrpts in these samples are subjected to 'trans.select'
trans.select	logical expression-like string, indicating transcript rows to select from a matrix of transcript coverages: NA value keeps all transcripts.

Value

a data.frame in bed-like file format

Examples

```
data(rice.bg)
unique(geneIDs(rice.bg))
gene_id <- c('MSTRG.181', 'MSTRG.182', 'MSTRG.183')</pre>
geneinfo <- getGeneinfo(genes=gene_id,rice.bg)</pre>
trans <- table(geneinfo$name) # show how many exons each transcript has</pre>
trans
# library(Sushi)
# chrom = geneinfo$chrom[1]
# chromstart = min(geneinfo$start) - 1e3
# chromend = max(geneinfo$stop) + 1e3
# color = rep(SushiColors(2)(length(trans)), trans)
# par(mar=c(3,1,1,1))
# plotGenes(geneinfo, chrom, chromstart, chromend, col = color, bheight = 0.2,
            bentline = FALSE, plotgenetype = 'arrow', labeloffset = 0.5)
#
# labelgenome(chrom, chromstart , chromend, side = 1, n = 5, scale = 'Kb')
```

rice.bg

Rice ballgown object

Description

Small ballgown object created with a subset of rice RNAseq data, for demonstration purposes

Format

a ballgown object with 33 transcripts and 6 samples

Details

The raw RNA-seq data were screened and trimmed using Trimmomatic (Bolger et al., 2014) and RNA-seq mapping, transcript assembly, and quantification were conducted with HISAT, StringTie, and Ballgown by following the method described by Pertea et al. (Pertea et al., 2016). The rice.bg is a subset ballgown object with 33 transcripts and 6 samples (Yu et al., 2021).

spliceGene

Source

The raw RNA-seq data were from the project of variation in transcriptional responses to salt stress in rice (SRA Accession: SRP106054)

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667.

Examples

data(rice.bg)
rice.bg
ballgown instance with 33 transcripts and 6 samples

spliceGene

Calculate Splicing Scores for One Gene

Description

Calculate splicing Scores from ballgown object for a given gene. This function can only calculate one gene. Please use function spliceGenome to obtain genome-wide splicing scores.

Usage

Arguments

bg	ballgown object
gene	a character string specifying gene id
samples	names of samples
junc.type	type of junction estimate ('score' for junction score; 'count' for junction read count)
trans.select	logical expression-like string, indicating transcript rows to select from a matrix of transcript coverages: NA value keeps all transcripts. e.g. use trans.select='rowMaxs(x)>=1' to filter the transcripts with the maximium coverage among all the samples less than 1.
junc.select	logical expression-like string, indicating junction rows to select from a matrix of junction counts: NA value keeps all junctions. e.g. use junc.select='rowMaxs(x)>=5' to filter the junctions with the maximium read count among all the samples less than 5.

Details

score = junction count/gene-level per base read coverage. Row functions for matrices are useful to select transcripts and junctions. See matrixStats package.

Value

a matrix of junction scores with intron rows and sample columns.

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

See Also

spliceGenome, which calculates splicing scores in whole genome.

Examples

```
data(rice.bg)
rice.bg
head(geneIDs(rice.bg))
score<-spliceGene(rice.bg,'MSTRG.183',junc.type='score')
count<-spliceGene(rice.bg,'MSTRG.183',junc.type='count')
## compare
tail(score)
tail(count)
## get intron structrue
intron<-structure(rice.bg)$intron
intron[intron$id%in%rownames(score)]</pre>
```

spliceGenome

```
Calculate Genome-wide Splicing Scores
```

Description

Calculate splicing scores from ballgown objects for all genes.

Usage

spliceGenome

Arguments

bg	ballgown object
gene.select	logical expression-like string, indicating genes to select from a matrix of gene- level coverages: NA value keeps all genes. e.g. gene.select = 'rowQuantiles(x,probs = 0.05)>=1' keeps the genes with the read coverage greater than or equal to 1 in at least 95 (0.05 quantile). Used to filter low expressed genes.
intron.select	logical expression-like string, indicating introns to select from a matrix of junction counts: NA value keeps all introns. e.g. intron.select = 'rowQuantiles(x,probs = 0.95)>=5' keeps the introns with the read count greater than or euqal to 5 in at least 5 (0.95 quantile). Used to filter introns with very few junction reads supporting.

Details

score = junction count/gene-level per base read coverage. Row functions for matrixStats package are useful to select genes and introns.

Value

a list of two elelments: 'score' is matrix of intron splicing scores with intron rows and sample columns and 'intron' is a GRanges object of intron structure. See structure in **ballgown** package

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

See Also

spliceGene, which calculates splicing scores in one gene.

Examples

```
data(rice.bg)
rice.bg
```

```
splice<-spliceGenome(rice.bg,gene.select=NA,intron.select=NA)
names(splice)</pre>
```

head(splice\$score)
splice\$intron

Index

* **datasets** rice.bg, 4

 ${\tt BMfinder, 2}$

getDepth, 3 getGeneinfo, 3 GRanges, 7

matrixStats, 6, 7

rice.bg,4

spliceGene, 2, 5, 7
spliceGenome, 2, 5, 6, 6
structure, 7