Package ‘beer’

October 31, 2025
Type Package

Title Bayesian Enrichment Estimation in R
Version 1.15.0

Description BEER implements a Bayesian model for analyzing
phage-immunoprecipitation sequencing (PhIP-seq) data. Given a PhIPData
object, BEER returns posterior probabilities of enriched antibody responses,
point estimates for the relative fold-change in comparison to negative
control samples, and more. Additionally, BEER provides a convenient
implementation for using edgeR to identify enriched antibody responses.

License MIT + file LICENSE

Encoding UTF-8

LazyData false

Depends R (>=4.2.0), PhIPData (>= 1.1.1), rjags

Imports cli, edgeR, BiocParallel, methods, progresst, stats,
SummarizedExperiment, utils

Suggests testthat (>= 3.0.0), BiocStyle, covr, codetools, knitr,
rmarkdown, dplyr, ggplot2, spelling

SystemRequirements JAGS (4.3.0)

biocViews Software, StatisticalMethod, Bayesian, Sequencing, Coverage
URL https://github.com/athchen/beer/

BugReports https://github.com/athchen/beer/issues
Config/testthat/edition 3

VignetteBuilder knitr

RoxygenNote 7.2.0

Language en-US

git_url https://git.bioconductor.org/packages/beer
git_branch devel

git_last_commit 4749fe5

git_last_commit_date 2025-10-29

https://github.com/athchen/beer/
https://github.com/athchen/beer/issues

Repository Bioconductor 3.23
Date/Publication 2025-10-31

Author Athena Chen [aut, cre] (ORCID: <https://orcid.org/0000-0001-6900-2264>),
Rob Scharpf [aut],
Ingo Ruczinski [aut]

Maintainer Athena Chen <achen70@jhu.edu>

Contents

beer-package L
JbeadsRRBeer oL
JbeadsRREdgeR o
JbrewSamples . . .o
.checkCounts oL e
checkOverwrite L.
.edgeRBeads L
.edgeRBeadsQLF
.getABEdgeR
LetABMLE . . L L
LetABMLEProp oL
LetABMOM . . L e
LetABMOMProp oL
.guessEnrichedEdgeR L
.guessEnrichedMLE
didyAssayNames L. e e e e e
AidyInputsJAGS . . . oL
tidylnputsPrior L oL L
AidylnputsSE © . L oL
beadsRR

edgeROne e

getAB . . e
getBFE . . e
getExpected
guessEnriched
guessInitsl
runEdgeRo
summarizeRun oL L
summarizeRunOne

Index

Contents

https://orcid.org/0000-0001-6900-2264

beer-package 3

beer-package beer: an R package for quantifying antibody reactivities for PhIP-Seq
data

Description

The core functions of beer are brew and runEdgeR. To learn more about beer, see the vignette using
browseVignettes(package = "beer").

Author(s)

Maintainer: Athena Chen <achen70@jhu.edu> (ORCID)
Authors:

* Rob Scharpf <rscharpf@jhu.edu>
* Ingo Ruczinski <ingo@jhu.edu>

See Also

Useful links:

e https://github.com/athchen/beer/
* Report bugs at https://github.com/athchen/beer/issues

.beadsRRBeer Function to run the beads-only round robin using BEER

Description

Each sample is run in comparison to all other beads-only samples to approximate the false positive
rate of detecting enrichments.

Usage

.beadsRRBeer (

object,

prior.params = list(method = "edgeR", a_pi = 2, b_pi = 300, a_phi = 1.25, b_phi =
0.1, a_c = 80, b_c = 20, fc = 1),

beads.args = list(lower = 1),

jags.params = list(n.chains = 1, n.adapt = 1000, n.iter = 10000, thin =1, na.rm =

TRUE, burn.in =@, post.thin =1, seed = as.numeric(format(Sys.Date(), "%Y%m%d"))),

sample.dir = NULL,

assay.names = c(phi = NULL, phi_Z = "logfc”, Z = "prob"”, ¢ = "sampleInfo”, pi =
"sampleInfo"),

summarize = TRUE,

BPPARAM = bpparam()

https://orcid.org/0000-0001-6900-2264
https://github.com/athchen/beer/
https://github.com/athchen/beer/issues

Arguments

object
prior.params

beads.args

jags.params

sample.dir

assay.names

summarize

BPPARAM

Value

.beadsRREdgeR

PhIPData object
named list of prior parameters

named list of parameters supplied to estimating beads-only prior parameters
(a_0,b_0)

named list of parameters for running MCMC using JAGS

path to temporarily store RDS files for each sample run, if NULL then [base: : tempdir]
is used to temporarily store MCMC output and cleaned afterwards.

named vector indicating where MCMC results should be stored in the PhIPData
object

logical indicating whether to return a PhIPData object.

[BiocParallel: :BiocParallelParam] passed to BiocParallel functions.

vector of process IDs or a PhIPData object

.beadsRREdgeR

Function to run the beads-only round robin using edgeR

Description

Each sample is run in comparison to all other beads-only samples to approximate the false positive
rate of detecting enrichments.

Usage

.beadsRREdgeR (

object,

threshold.cpm = 0,

threshold.prevalence = 0,

assay.names = c(logfc = "logfc", prob = "prob"),
de.method = "exactTest",

BPPARAM = BiocParallel: :bpparam()

Arguments

object

threshold.cpm

A PhIPData object of only beads-only samples.
CPM threshold to be considered present in a sample

threshold.prevalence

proportion of beads-only samples that surpass threshold. cpm.

.brewSamples

assay.names

de.method

BPPARAM

Value

named vector specifying the assay names for the log2(fold-change) and exact
test p-values. If the vector is not names, the first and second entries are used as
defaults.

character describing which edgeR test for differential expression should be used.
Must be one of ‘exactTest® or ‘glmQLFTest .

[BiocParallel: :BiocParallelParam] passed to BiocParallel functions

vector of process IDs

.brewSamples

Run BEER for all samples

Description

Encapsulated function to run each sample against all beads-only samples. The code is wrapped
in this smaller function to (1) modularize the code and (2) make sure the cli output colors don’t

change.

Usage

.brewSamples(
object,
sample.id,
beads.id,
se.matrix,
prior.params,
beads.prior,
beads.args,
jags.params,
tmp.dir,
BPPARAM

Arguments

object
sample.id
beads.id
se.matrix
prior.params
beads.prior

beads.args

PhIPData object

vector of sample IDs to iterate over

vector of IDs corresponding to beads-only samples
matrix indicating which peptides are clearly enriched
list of prior parameters

data frame of beads-only prior parameters

named list of parameters supplied to estimating beads-only prior parameters
(a_0,b_0)

6 .checkOverwrite

jags.params list of JAGS parameters

tmp.dir directory to store JAGS samples

BPPARAM [BiocParallel: :BiocParallelParam] passed to BiocParallel functions.
Value

vector of process id’s for internal checking of whether functions were parallelized correctly.

.checkCounts Function to check that the counts matrix only contains integers

Description

Function to check that the counts matrix only contains integers

Usage

.checkCounts(object)
Arguments

object PhIPData object
Value

nothing if all counts are integers, and error otherwise

.checkOverwrite Function to check whether an assay will be overwritten

Description
If the an assay is not specified (e.g. with NA), then .checkOverwrite() will return FALSE (rather
than NA).

Usage

.checkOverwrite(object, assay.names)

Arguments

object PhIPData object

assay.names character vector of assay names
Value

logical vector indicating whether data in an assay will be overwritten

.edgeRBeads 7

.edgeRBeads Estimate edgeR dispersion parameters from the beads-only data using
qCML

Description

Wrapper function to estimate edgeR dispersion parameters from beads-only samples. Peptides can
be pre-filtered based on a minimum read count per million (cpm) and the proportion of beads-only
samples that surpass the cpm threshold.

Usage
.edgeRBeads(object, threshold.cpm = @, threshold.prevalence = 0)

Arguments

object PhIPData object (can have actual serum samples)

threshold.cpm CPM threshold to be considered present in a sample
threshold.prevalence
proportion of beads-only samples that surpass threshold.cpm.

Value

a DGEList object with common, trended, and tagwise dispersion estimates

.edgeRBeadsQLF Estimate edgeR dispersion parameters from the beads-only samples
using Cox-Reid profile adjusted likelihood method for estimating dis-
persions.

Description

Wrapper function to estimate edgeR dispersion parameters from beads-only samples. Peptides can
be pre-filtered based on a minimum read count per million (cpm) and the proportion of beads-only
samples that surpass the cpm threshold.

Usage
.edgeRBeadsQLF (object, threshold.cpm = @, threshold.prevalence = 0)

Arguments

object PhIPData object (can have actual serum samples)
threshold.cpm CPM threshold to be considered present in a sample
threshold.prevalence

proportion of beads-only samples that surpass threshold. cpm.

8 .getABEdgeR

Value

a DGEList object with common, trended, and tagwise dispersion estimates

.getABEdgeR Derive beta shape parameters using edgeR dispersion estimates

Description

Given a PhIPData object, beads-only shape parameters are estimated by first deriving the peptide-
specific edgeR dispersion estimate ¢4, $e@9¢R corresponds to the squared coefficient of varia-
tion for the proportion of reads pulled for a given peptide. Using ¢?9¢% to derive an estimate of the
variance for the proportion of reads pulled by a single peptide, the mean and variance are converted
to shape parameters of a beta distribution.

Usage

.getABEdgeR(
object,
threshold.cpm = 0,
threshold.prevalence = 0,

lower =1,
upper = Inf
)
Arguments
object a PhIPData object.

threshold.cpm CPM threshold to be considered present in a sample.
threshold.prevalence
proportion of beads-only samples that surpass threshold. cpm.

lower minimum value of the beta shape parameters.
upper maximum value of the beta shape parameters.
Value

dataframe with rows corresponding to peptides and columns corresponding to estimated shape pa-
rameters of the beta distribution.

See Also

[.edgeRBeads()] for estimating ¢¢49¢%

.getABMLE

.getABMLE Wrapper function to derive MLE estimates of a, b from beads-only

samples

Description

Wrapper function to derive MLE estimates of a, b from beads-only samples

Usage

.getABMLE(
object,
prop.offset = 1e-08,
optim.method = "default”,

lower =1,
upper = Inf
)
Arguments
object a PhIPData object
prop.offset offset to use when the proportion of reads is 0.

optim.method optimization method passed to [stats: :optim].

lower lower bound for the shape parameters.
upper upper bound for the shape parameters.
Value

a data frame of MLE estimates of a, b

See Also

[stats::optim] for available optimization methods

.getABMLEProp Helper function to derive MLE estimates of a, b from a vector of pro-

portions

Description

Helper function to derive MLE estimates of a, b from a vector of proportions

10 .getABMOM

Usage

.getABMLEProp(
prop,
prop.offset = 1e-08,
optim.method = "default”,

lower =1,
upper = Inf
)
Arguments
prop vector of proportions.
prop.offset offset to use when the proportion of reads is 0.

optim.method optimization method passed to [stats: :optim].

lower lower bound for the shape parameters.
upper upper bound for the shape parameters.
Value

a data frame of MLE estimates of a, b

See Also

[stats::optim] for available optimization methods

. getABMOM Wrapper function to derive MOM estimates of a, b from beads-only
samples

Description

Wrapper function to derive MOM estimates of a, b from beads-only samples

Usage
. getABMOM(
object,
offsets = c(mean = 1e-08, var = 1e-08),
lower =1,
upper = Inf,

.getABMOMProp 11

Arguments
object a PhIPData object.
offsets vector defining the offset to use when the mean and/or variance are zero.
lower lower bound for the shape parameters.
upper upper bound for the shape parameters.
parameters passed to [base: :mean] and [stats: :varl.
Value

a data frame with MOM estimates of a, b

.getABMOMProp Helper function to derive MOM estimates of a, b from a vector of
proportions

Description

Helper function to derive MOM estimates of a, b from a vector of proportions

Usage
.getABMOMProp(
prop,
offsets = c(mean = 1e-08, var = 1e-08),
lower =1,
upper = Inf,
)
Arguments
prop vector of proportions.
offsets vector defining the offset to use when the mean and/or variance are zero.
lower lower bound for the shape parameters.
upper upper bound for the shape parameters.
parameters passed to [base: :mean] and [stats::varl.
Value

a data frame with MOM estimates of a, b

12 .guessEnrichedMLE

.guessEnrichedEdgeR Guess super-enriched peptides based on edgeR fold-change estimates

Description

Guess super-enriched peptides based on edgeR fold-change estimates

Usage
.guessEnrichedEdgeR(object, threshold = 15, fc.name = "logfc")

Arguments
object PhIPData object.
threshold minimum estimated fc for a peptide to be considered super-enriched.
fc.name assay name corresponding to the assay that stores the edgeR estimated log2
fold-changes.
Value

logical matrix of the with the same dimensions as object indicating which peptides are considered
super-enriched.

.guessEnrichedMLE Guess enriched peptides based on MLE estimates of the true fold-
change

Description

Guess enriched peptides based on MLE estimates of the true fold-change

Usage
.guessEnrichedMLE (object, beads.prior, threshold = 15)

Arguments

object PhIPData object.

beads.prior data.frame of prior parameters for beads-only samples.

threshold minimum estimated fc for a peptide to be considered super-enriched.
Value

logical matrix of the with the same dimensions as object indicating which peptides are considered
super-enriched.

.tidyAssayNames 13

.tidyAssayNames Clean-up specified assay names

Description

Tidy inputs related to ‘assay.names‘. Supplies default values for missing parameters and ensures
that all required parameters are present.

Usage

.tidyAssayNames(assay.names)

Arguments

assay.names named list specifying where to store each assay.

Value

tidied list of assay.names

.tidyInputsJAGS Clean inputs for JAGS parameters

Description

Tidy inputs related to ‘jags.params‘. Supplies default values for missing parameters and ensures
that all required parameters are present.

Usage

.tidyInputsJAGS(jags.params)

Arguments

jags.params named list of JAGS parameters

Value

tidied list of JAGS parameters.

14 .tidyInputsSE

.tidyInputsPrior Clean up inputs for prior estimation

Description
Tidy inputs related to ‘prior.parameters‘. Supplies default values for missing parameters and ensures
that all required parameters are present.

Usage

.tidyInputsPrior(prior.params, object, beads.args)

Arguments

prior.params named list of prior parameters

object PhIPData object
beads.args parameters used to estimate a_0, b_0
Value

tidied list of prior parameters.

.tidyInputsSE Clean up inputs for identifying super-enriched peptides

Description
Tidy inputs related to ‘se.params‘. Supplies default values for missing parameters and ensures that
all required parameters are present.

Usage

.tidyInputsSE(se.params, beads.prior)

Arguments
se.params named list of parameters for super-enriched estimation
beads.prior data.frame with beads-only parameters

Value

tidied list of parameters for identifying super-enriched peptides.

beadsRR 15

beadsRR Beads-only round robin

Description

To approximate the false positive rate of each approach, each beads-only sample is run individually
against all other samples. For BEER, this means that the sample to be compared is encoded as an
actual sample, and prior parameters for beads-only samples are re-estimated. Thus, the beads-only
round robin also serves to assess how similar the beads-only samples are to one another.

Usage
beadsRR(object, method, BPPARAM = BiocParallel::bpparam(), ...)
Arguments

object PhIPData object

method one of 'beer' or 'edgeR' specifying which method to use.

BPPARAM [BiocParallel: :BiocParallelParam] passed to BiocParallel functions.
parameters passed to the method specific functions. See the Details section
below for additional information.

Details
If method == "beer’, then valid parameters include prior.params, beads.args, jags.params,

sample.dir, assay.names, and summarize. A description of the first four parameters can be
found in brew. summarize is a logical value indicating whether a PhIPData object with the summa-
rized results should be returned. When running beadsRR, summarize typically does not need to be
changed.

When method == ’edgeR’, threshold.cpm, threshold.prevalence, and assay.names are valid
additional parameters that can be supplied to beadsRR. See edgeR for additional details on each of
these parameters.

Value

a PhIPData object

See Also

brew for BEER parameters, edgeR for edgeR parameters, and [BiocParallel: :BiocParallelParam]
for parallelization.

16 brew

Examples
sim_data <- readRDS(system.file("extdata”, "sim_data.rds"”, package = "beer"))
beadsRR(sim_data, method = "beer")

beadsRR(sim_data, method = "edgeR")
beadsRR(sim_data, method = "edgeR"”, de.method = "glmQLFTest")

brew Bayesian Enrichment Estimation in R (BEER)

Description

Run BEER to estimate posterior probabilities of enrichment, sample-specific attenuation constants,
relative fold-changes in comparison to beads-only samples, and proportion of peptides enriched per
sample as described in Chen et. al. See Details for more information on input parameters.

Usage

brew(

object,

prior.params = list(method = "edgeR", a_pi = 2, b_pi = 300, a_phi = 1.25, b_phi =
0.1, a_c = 80, b_c = 20, fc = 1),

beads.args = list(lower = 1),

se.params = list(method = "mle"),

jags.params = list(n.chains = 1, n.adapt = 1000, n.iter = 10000, thin =1, na.rm =

TRUE, burn.in = @, post.thin =1, seed = as.numeric(format(Sys.Date(), "%Y%m%d"))),

sample.dir = NULL,

assay.names = c(phi = NULL, phi_Z = "logfc”, Z = "prob"”, c = "sampleInfo”, pi =
"sampleInfo”),

beadsRR = FALSE,

BPPARAM = bpparam()

)
Arguments
object PhIPData object
prior.params named list of prior parameters
beads.args named list of parameters supplied to estimating beads-only prior parameters
(a_0,b_0)
se.params named list of parameters specific to identifying clearly enriched peptides

jags.params named list of parameters for running MCMC using JAGS

sample.dir path to temporarily store RDS files for each sample run, if NULL then [base: : tempdir]
is used to temporarily store MCMC output and cleaned afterwards.

assay.names named vector indicating where MCMC results should be stored in the PhIPData
object

brew 17

beadsRR logical value specifying whether each beads-only sample should be compared
to all other beads-only samples.
BPPARAM [BiocParallel: :BiocParallelParam] passed to BiocParallel functions.
Details

prior.params. List of prior parameters. Parameters include,

* method: method used to estimate beads-only prior parameters a_0, b_0. Valid methods include
"custom’ or any of the methods specified in getAB. If method = 'custom' is specified, a_0 and
b_0 must be included in the list of prior parameters. 'edgeR' is used as the default method
for estimating a_0, b_0.

* a_pi, b_pi: prior shape parameters for the proportion of peptides enriched in a sample. De-
faults to 2 and 300, respectively.

* a_phi, b_phi: prior shape parameters of the gamma distribution that describe the valid range
of enriched-fold changes. The shift is specified by fc. The default values of a_phi and b_phi
are 1.25 and 0.1, respectively.

* a_c, b_c: prior shape parameters for the attenuation constant. Default values for a_c and b_c
are 80 and 20.

* fc: minimum fold change for an enriched-peptide. fc describes the shift in the gamma distri-
bution.

beads.args. Named list of parameters supplied to getAB. The estimation method used is spec-
ified in prior.params, but other valid parameters include lower and upper bounds for elicited
parameters. As JAGS recommends that a,b > 1 for the beta distribution, beads. args defaults to
list(lower =1).

se.params. Named list of parameters supplied to guessEnriched. By default 1ist(method =
'mle') is used to identify clearly enriched peptides.

jags.params. Named list of parameters for MCMC sampling. By default, BEER only runs one
chain with 1,000 adaptation iteration and 10,000 sampling iterations. If unspecified, BEER uses the
current date as the seed.

sample.dir. Path specifying where to store the intermediate results. If NULL, then results are
stored in the default temporary directory. Otherwise, the MCMC samples for running BEER on
each sample is stored as a single RDS file in the specified directory.

assay.names. Named list specifying where to store the point estimates. If NULL, estimates are not
added to the PhIPData object. Valid exported estimates include,

* phi: fold-change estimate after marginalizing over the posterior probability of enrichment.
By default point estimates are not exported.

phi_z: fold-change estimate presuming the peptide is enriched. By default phi_Z estimates
are stored in 'logfc' assay.

e Z: posterior probability of enrichment. Estimates are stored in the 'prob' assay by default.
* c: attenuation constant estimates. Stored in 'sampleInfo' by default.

* pi: point estimates for the proportion of peptides enriched in a sample. Stored in ' sampleInfo'
by default.

18 brewOne

Value

A PhIPData object with BEER results stored in the locations specified by assay.names.

See Also

[BiocParallel: :BiocParallelParam] for subclasses, beadsRR for running each beads-only sam-
ple against all remaining samples, getAB for more information about valid parameters for estimat-
ing beads-only prior parameters, guessEnriched for more information about how clearly enriched
peptides are identified, and [rjags: : jags.model] for MCMC sampling parameters.

Examples

sim_data <- readRDS(system.file("extdata”, "sim_data.rds"”, package = "beer"))

Default back-end evaluation
brew(sim_data)

Serial
brew(sim_data, BPPARAM = BiocParallel::SerialParam())

Snow
brew(sim_data, BPPARAM = BiocParallel::SnowParam())

brewOne Run BEER for one sample

Description

This function is not really for external use. It’s exported for parallelization purposes. For more
detailed descriptions see brew.

Usage

brewOne(
object,
sample,
prior.params,
n.chains = 1,
n.adapt = 1000,

n.iter = 10000,
thin = 1,
na.rm = TRUE,

D

seed = as.numeric(format(Sys.Date(), "%Y%m%d"))

edgeROne 19

Arguments
object PhIPData object
sample sample name

prior.params vector of prior parameters

n.chains number of chains to run
n.adapt number of iterations to use as burn-in.
n.iter number of iterations for the MCMC chain to run (after n.adapt)
thin thinning parameter
na.rm what to do with NA values (for JAGS)
extra parameters for JAGS
seed number/string for reproducibility purposes.
Value

nothing, saves the the results to an RDS in either a temp directory or the specified directory.

Examples

sim_data <- readRDS(system.file("extdata”, "sim_data.rds”, package = "beer"))

beads_prior <- getAB(subsetBeads(sim_data), "edgeR")
brewOne(sim_data, "9", list(

a_0 = beads_prior[["a_0"1],

b_0 = beads_prior[["b_0"11,

a_pi = 2, b_pi = 300,

a_phi = 1.25, b_phi = 0.1,

a_c = 80, b_c = 20,

fc =1
))

edgeROne Run edgeR for one sample against all the beads-only samples.

Description

This function is not really for external use. It’s exported for parallelization purposes. For more
detailed descriptions see runEdgeR.

Usage

edgeROne(object, sample, beads, common.disp, tagwise.disp, trended.disp)

20 edgeROneQLF

Arguments
object PhIPData object
sample sample name of the sample to compare against beads-only samples
beads sample names for beads-only samples
common.disp edgeR estimated common dispersion parameter

tagwise.disp edgeR estimated tagwise dispersion parameter

trended.disp edgeR estimated trended dispersion parameter

Value

list with sample name, log?2 fc estimate, and log10 p-value

Examples

"

sim_data <- readRDS(system.file("extdata”, "sim_data.rds"”, package = "beer"))

beads_disp <- beer:::.edgeRBeads(sim_data)

edgeR0ne(
sim_data, "9", colnames(sim_data)[sim_data$group == "beads"],
beads_disp$common.dispersion, beads_disp$tagwise.disp,
beads_disp$trended.disp

)
edgeROneQLF Run edgeR for one sample against all the beads-only samples using
edgeR’s QLF Test for differential expression.
Description

This function is not really for external use. It’s exported for parallelization purposes. For more
detailed descriptions see runEdgeR.

Usage

edgeROneQLF (object, sample, beads, common.disp, tagwise.disp, trended.disp)

Arguments
object PhIPData object
sample sample name of the sample to compare against beads-only samples
beads sample names for beads-only samples
common.disp edgeR estimated common dispersion parameter

tagwise.disp edgeR estimated tagwise dispersion parameter

trended.disp edgeR estimated trended dispersion parameter

getAB 21

Value

list with sample name, log?2 fc estimate, and log10 p-value

Examples

n

sim_data <- readRDS(system.file("extdata"”, "sim_data.rds”, package = "beer"))

beads_disp <- beer:::.edgeRBeadsQLF(sim_data)

edgeROneQLF (
sim_data, "9", colnames(sim_data)[sim_data$group == "beads"],
beads_disp$common.dispersion, beads_disp$tagwise.disp,
beads_disp$trended.disp

getAB Estimate beads-only shape parameters

Description

Beta shape parameters are estimated using the proportion of reads-pulled per peptide across the
beads-only samples. Currently, only three estimation methods are supported: edgeR, method of
moments (MOM), maximum likelihood (MLE). Note that edgeR can only be used on PhIPData
objects while MOM and MLE methods can also be applied to vectors of values between 0 and 1.
Parameters that can be passed to each method are listed in the details.

Usage
getAB(object, method = "mom”, ...)
Arguments
object a PhIPData object or a vector
method one of c("edgeR"”, "mle”, "mom") designating which method to use to estimate
beads-only prior parameters. MOM is the default method used to estimate shape
parameters.
parameters passed to specific estimating functions. See details for more infor-
mation
Details

edgeR derived estimates rely on edgeR’s peptide-specific dispersion estimates, denoted ¢9¢%,
¢°%9¢E corresponds to the squared coefficient of variation for the proportion of reads pulled for
a given peptide. Using ¢°#9°% to derive an estimate of the variance for the proportion of reads
pulled by a single peptide, the mean and variance are transformed into shape parameters satisfying
the lower and upper bounds. When method = "edgeR", the following additional parameters can be
specified.

22 getAB

threshold. cpm: CPM threshold to be considered present in a sample.

threshold.prevalence: proportion of beads-only samples that surpass threshold. cpm.
* lower: minimum value of the beta shape parameters.

e upper: maximum value of the beta shape parameters.

Method of Moments (MOM) estimates are derived by transforming the sample mean and variance
to shape parameters of the beta distribution. For method = "mom”, the following parameters can be
adjusted:

» offsets: vector defining the offset to use when the mean and/or variance are zero.
* lower: lower bound for the shape parameters.
* upper: upper bound for the shape parameters.

e ...: parameters passed to [base: :mean] and [stats::var].

Maximum Likelihood (MLE) estimates rely on [stats::optim] to derive shape parameters that
maximize the likelihood of observed data. By default the L-BFGS-B optimization method is used.
Parameters for MLE estimates include:

* prop.offset: offset to use when the proportion of reads is 0.
e optim.method: optimization method passed to [stats: :optim].
* lower: lower bound for the shape parameters.

* upper: upper bound for the shape parameters.

Value

a data frame of beta shape parameters where each row corresponds to a peptide.

Examples

PhIPData object
sim_data <- readRDS(system.file("extdata"”, "sim_data.rds”, package = "beer"))

getAB(sim_data, method = "edgeR")
getAB(sim_data, method = "mle")
getAB(sim_data, method = "mom")

Vector of proportions
prop <- rbeta(100, 2, 8)
getAB(prop, method = "mle")
getAB(prop, method = "mom")

getBF

23

getBF Calculate Bayes Factors

Description

Calculate Bayes Factors

Usage
getBF (
object,
assay.postprob = "prob”,
assay.name = "bayes_factors”,
prior.params = list(a_pi = 2, b_pi = 300)
)
Arguments
object PhIPData object

assay.postprob string indicating the assay where posterior probabilities are stored.
assay.name name indicating where the results should be stored in the PhIPData object

prior.params prior parameters for the probability of enrichment (a_pi, b_pi)

Value

PhIPData object with the results stored in the location specified by assay . name.

Examples
sim_data <- readRDS(system.file("extdata"”, "sim_data.rds”, package = "beer"))

Calculate Bayes Factors
getBF (sim_data, "prob"”, "bayes_factor")

getExpected Calculate expected read counts or proportion of reads

Description

Calculate expected read counts or proportion of reads

24 guessEnriched

Usage
getExpected(
object,
type = c("rc”, "prop"),
assay.names = c("expected_rc", "expected_prop")
)
Arguments
object PhIPData object
type any of ‘rc‘ or ‘prop‘ indicating whether the function should return the expected
read counts or expected proportion of reads, respectively
assay.names name(s) indicating where the results should be stored in the PhIPData object
Value

PhIPData object with the results stored in the location specified by assay . name.

Examples

sim_data <- readRDS(system.file("extdata"”, "sim_data.rds”, package = "beer"))

Calculate expected read counts
getExpected(sim_data, "rc”, "expected_rc")
Calculate expected proportion of reads
getExpected(sim_data, "prop”, "expected_prop")

Calculate both
getExpected(sim_data)

guessEnriched Identifying clearly enriched peptides

Description

As clearly enriched peptides will always have a 100% posterior probability of enrichment, BEER
removes these peptides a priori to running the model. Clearly enriched peptides can be identified
using edgeR estimated fold-changes or maximum likelihood estimates based on the specified prior
parameters. Additional parameters for each method can be found in the details below.

Usage

guessEnriched(object, method = "mle"”, ...)

guessEnriched 25

Arguments
object a PhIPData object
method one of "mle" or "edgeR", specifying which method to use to identify clearly
enriched peptides
additional parameters dependent on the method used. See details for more in-
formation
Details

edgeR. Identification of clearly enriched peptides relies on edgeR fold-change estimates, so edgeR
must be run on the PhIPData object beforehand. Additional parameters for identifying clearly
enriched peptides based on edgeR estimated fold-changes are listed below:

* object: a PhIPData object.

* threshold: minimum estimated fc for a peptide to be considered super-enriched. The default
value is 15.

* fc.name: assay name corresponding to the assay that stores the edgeR estimated log2 fold-
changes.

MLE. As the number of reads tends to be quite large, the estimates for the proportion of reads
pulled are generally accurate. Clearly enriched peptides are identified by first comparing the ob-
served read count to the expected read count based on the beads-only prior parameters. Peptides
with observed read counts larger than 5 times the expected read counts are temporarily labeled as
enriched, and attenuation constants are estimated by regressing the observed read counts on the
expected read counts for all non-enriched peptides. Using this attenuation constant, peptides with
fold-changes above some predefined threshold after adjusting for the attenuation constant are con-
sidered enriched. Parameters for identifying clearly enriched peptides using the MLE approach are
listed below.

* object: a PhIPData object.

* threshold: minimum estimated fc for a peptide to be considered super-enriched.

* beads.prior: data.frame of prior parameters for beads-only samples.

Value

alogical matrix of the with the same dimensions as object indicating which peptides are considered
super-enriched.

Examples

sim_data <- readRDS(system.file("extdata"”, "sim_data.rds”, package = "beer"))
edgeR_out <- runkEdgeR(sim_data)

guessEnriched(edgeR_out, method = "edgeR"”, threshold = 15, fc.name = "logfc")
guessEnriched(edgeR_out,

method = "mle”,

beads.prior = getAB(edgeR_out, method = "edgeR"),

threshold = 15

26 guesslnits

guessInits Derive initial estimates of unknown model parameters

Description

To reduce converge time and to reduce the likelihood of the slice sampler getting stuck, we use
maximum likelihood to derive initial estimates for unknown model parameters.

Usage

guessInits(object, beads.prior)

Arguments
object a PhIPData object
beads.prior a data frame with two columns (named a_0, b_0) containing estimated shape
parameters from beads-only samples.
Details

Briefly initial values are defined as follows:

1. theta_guess[i, j1=Y[i, j1/n[j], or the the MLE for theta.

2. Z_guess[i, j1=11if j is a serum sample, and the observed read count is >2x the expected
read count assuming c[j] = 1.

3. pi_guess[j] is the mean of column j in Z_guess.

4. c_guess[j] is the estimated slope from regressing the observed read counts against the ex-
pected read counts (without adjusting for the attenuation constant) for non-enriched peptides
only.

5. phi_guess[i, j] is the ratio of the observed read counts to the expected read counts multi-
plied by the attenuation constant.

Value

a list of estimated initial values.

See Also

Methods in [Chen et. al 2022](https://www.biorxiv.org/content/10.1101/2022.01.19.476926v1)

runEdgeR 27

runEdgeR Run edgeR on PhIP-Seq data

Description

Run edgeR on PhIP-Seq data

Usage

runEdgeR (
object,
threshold.cpm = 0,
threshold.prevalence = 0,
assay.names = c(logfc = "logfc", prob = "prob"),
beadsRR = FALSE,

de.method = "exactTest"”,
BPPARAM = BiocParallel: :bpparam()
)
Arguments
object PhIPData object

threshold.cpm CPM threshold to be considered present in a sample

threshold.prevalence
proportion of beads-only samples that surpass threshold. cpm.

assay.names named vector specifying the assay names for the log2(fold-change) and exact
test p-values. If the vector is not names, the first and second entries are used as
defaults

beadsRR logical value specifying whether each beads-only sample should be compared

to all other beads-only samples.

de.method character describing which edgeR test for differential expression should be used.
Must be one of ‘exactTest* or ‘glmQLFTest*

BPPARAM [BiocParallel: :BiocParallelParam] passed to BiocParallel functions.

Value
PhIPData object with log2 estimated fold-changes and p-values for enrichment stored in the assays
specified by ‘assay.names".

See Also

[BiocParallel::BiocParallelParam], beadsRR

28 summarizeRun

Examples

sim_data <- readRDS(system.file("extdata”, "sim_data.rds"”, package = "beer"))

Default back-end evaluation
runEdgeR(sim_data)

Serial
runEdgeR(sim_data, BPPARAM = BiocParallel::SerialParam())

Snow
runEdgeR(sim_data, BPPARAM = BiocParallel::SnowParam())

With glmQLFTest
runEdgeR(sim_data, de.method = "glmQLFTest")

summarizeRun Summarize MCMC chain and return point estimates for BEER param-
eters

Description

Posterior means are used as point estimates for ¢, 7, ¢, and Z. As super-enriched peptides are tossed
out before MCMC sampling, super-enriched peptides return NA for the ¢ and Z point estimates.
Indices corresponding to a particular peptide in the MCMC sampler are mapped back to the original
peptide names.

Usage

summarizeRun(
object,
jags.files,
se.matrix,
burn.in = 0,
post.thin = 1,
assay.names = c(phi = NULL, phi_Z = "logfc", Z = "prob”, c = "sampleInfo”, pi =
"sampleInfo”),
BPPARAM = BiocParallel: :bpparam()

)
Arguments
object a PhIPData object
jags.files list of files containing MCMC sampling results
se.matrix logical matrix indicating which peptides were identified as super-enriched pep-

tides

burn.in number of iterations to be burned

summarizeRunOne 29

post.thin thinning parameter

assay.names named vector of specifying where to store point estimates

BPPARAM [BiocParallel: :BiocParallelParam] passed to BiocParallel functions.
Value

PhIPData object with point estimates stored in the assays specified by ‘assay.names®.

summarizeRunOne Derive point estimates for c, pi, phi, and Z for a particular sample

Description

Posterior means are used as point estimates for ¢, 7, ¢, and Z. As super-enriched peptides are tossed
out before MCMC sampling, super-enriched peptides return NA for the ¢ and Z point estimates.
Indices corresponding to a particular peptide in the MCMC sampler are mapped back to the original
peptide names.

Usage

summarizeRunOne(object, file, se.matrix, burn.in = @, post.thin = 1)

Arguments
object a PhIPData object
file path to rds file
se.matrix logical matrix indicating which peptides were identified as super-enriched pep-
tides
burn.in number of iterations to be burned
post.thin thinning parameter
Value

list of point estimates for c, pi, phi and Z

Index

* internal summarizeRun, 28
beer-package, 3 summarizeRunOne, 29

.beadsRRBeer, 3

.beadsRREdgeR, 4

.brewSamples, 5

.checkCounts, 6

.checkOverwrite, 6

.edgeRBeads, 7

.edgeRBeadsQLF, 7

.getABEdgeR, 8

.getABMLE, 9

.getABMLEProp, 9

.getABMOM, 10

.getABMOMProp, 11

.guessEnrichedEdgeR, 12

.guessEnrichedMLE, 12

.tidyAssayNames, 13

.tidyInputsJAGS, 13

.tidyInputsPrior, 14

.tidyInputsSE, 14

beadsRR, 15, 18, 27
beer (beer-package), 3
beer-package, 3
brew, 3, 15, 16, 18
brewOne, 18

edgeR, 15, 25
edgeROne, 19
edgeROneQLF, 20

getAB, 17, 18,21
getBF, 23
getExpected, 23

guessEnriched, 17, 18,24
guesslnits, 26

PhIPData, 7-9, 11, 12, 20, 21, 25-29
runkdgeR, 3, 19, 20, 27

30

	beer-package
	.beadsRRBeer
	.beadsRREdgeR
	.brewSamples
	.checkCounts
	.checkOverwrite
	.edgeRBeads
	.edgeRBeadsQLF
	.getABEdgeR
	.getABMLE
	.getABMLEProp
	.getABMOM
	.getABMOMProp
	.guessEnrichedEdgeR
	.guessEnrichedMLE
	.tidyAssayNames
	.tidyInputsJAGS
	.tidyInputsPrior
	.tidyInputsSE
	beadsRR
	brew
	brewOne
	edgeROne
	edgeROneQLF
	getAB
	getBF
	getExpected
	guessEnriched
	guessInits
	runEdgeR
	summarizeRun
	summarizeRunOne
	Index

