
Package ‘flowCore’
June 30, 2025

Title flowCore: Basic structures for flow cytometry data

Version 2.21.0

Maintainer Mike Jiang <mike@ozette.com>

Description Provides S4 data structures and basic functions to deal with flow
cytometry data.

Depends R (>= 3.0.2)

Imports Biobase, BiocGenerics (>= 0.29.2), grDevices, graphics,
methods, stats, utils, stats4, Rcpp, matrixStats, cytolib (>=
2.13.1), S4Vectors

Suggests Rgraphviz, flowViz, flowStats (>= 3.43.4), testthat,
flowWorkspace, flowWorkspaceData, openCyto, knitr, ggcyto,
gridExtra

Collate AllGenerics.R AllClasses.R flowFrame-accessors.R
flowSet-accessors.R transform_gate-methods.R coerce.R
logicalFilterResult-accessors.R summarizeFilter-methods.R
filterSummary-accessors.R manyFilterResult-accessors.R
summary-methods.R multipleFilterResult-accessors.R on-methods.R
transformList-accessors.R identifier-methods.R
parameters-methods.R initialize-methods.R
filterResult-accessors.R in-methods.R rectangleGate-accessors.R
filterResultList-accessors.R IO.R show-methods.R
length-methods.R names-methods.R split-methods.R eval-methods.R
gatingML.R FCSTransTransform.R median-logicle-transform.R
utils.R flowCore.R GvHD.R CytoExploreR_wrappers.R cpp11.R

License Artistic-2.0

biocViews ImmunoOncology, Infrastructure, FlowCytometry,
CellBasedAssays

LinkingTo cpp11, BH(>= 1.81.0.0), cytolib, RProtoBufLib

VignetteBuilder knitr

SystemRequirements GNU make, C++11

RoxygenNote 7.2.3

Encoding UTF-8

git_url https://git.bioconductor.org/packages/flowCore

git_branch devel

git_last_commit 082a8af

1

2 Contents

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-06-30

Author B Ellis [aut],
Perry Haaland [aut],
Florian Hahne [aut],
Nolwenn Le Meur [aut],
Nishant Gopalakrishnan [aut],
Josef Spidlen [aut],
Mike Jiang [aut, cre],
Greg Finak [aut],
Samuel Granjeaud [ctb]

Contents
flowCore-package . 4
arcsinhTransform . 5
asinht-class . 6
asinhtGml2-class . 7
biexponentialTransform . 9
boundaryFilter-class . 10
characterOrNumeric-class . 12
characterOrParameters-class . 12
characterOrTransformation-class . 13
checkOffset . 13
coerce . 14
collapse_desc . 14
compensatedParameter-class . 15
compensation-class . 16
complementFilter-class . 19
concreteFilter-class . 19
CytoExploreR_exports . 20
decompensate . 20
dg1polynomial-class . 21
each_col . 22
EHtrans-class . 23
ellipsoidGate-class . 24
estimateMedianLogicle . 26
exponential-class . 27
expressionFilter-class . 28
FCSTransTransform . 30
filter-and-methods . 31
filter-class . 31
filter-in-methods . 33
filter-methods . 33
filter-on-methods . 35
filterDetails-methods . 35
filterList-class . 36
filterReference-class . 37
filterResult-class . 37
filterResultList-class . 38

Contents 3

filters-class . 40
filterSummary-class . 41
filterSummaryList-class . 43
flowFrame-class . 44
flowSet-class . 50
flowSet_to_list . 55
fr_append_cols . 56
fsApply . 57
getChannelMarker . 58
getIndexSort . 58
GvHD . 59
hyperlog-class . 60
hyperlogtGml2-class . 61
identifier-methods . 63
intersectFilter-class . 64
inverseLogicleTransform . 65
invsplitscale-class . 66
keyword-methods . 68
kmeansFilter-class . 69
linearTransform . 71
lintGml2-class . 72
lnTransform . 74
logarithm-class . 75
logicalFilterResult-class . 76
logicletGml2-class . 77
logicleTransform . 79
logtGml2-class . 81
logTransform . 82
manyFilterResult-class . 83
markernames . 84
multipleFilterResult-class . 85
normalization-class . 86
nullParameter-class . 88
parameterFilter-class . 88
parameters-class . 89
parameters-methods . 89
parameterTransform-class . 90
polygonGate-class . 91
polytopeGate-class . 92
quadGate-class . 94
quadratic-class . 96
quadraticTransform . 97
randomFilterResult-class . 98
ratio-class . 98
ratiotGml2-class . 99
read.FCS . 101
read.FCSheader . 104
read.flowSet . 105
rectangleGate-class . 107
rotate_gate . 109
sampleFilter-class . 110
scaleTransform . 112

4 flowCore-package

scale_gate . 113
setOperationFilter-class . 114
shift_gate . 114
singleParameterTransform-class . 116
sinht-class . 116
split-methods . 117
splitscale-class . 120
splitScaleTransform . 121
squareroot-class . 123
Subset-methods . 124
subsetFilter-class . 125
summarizeFilter-methods . 126
timeFilter-class . 126
transform . 128
transform-class . 129
transformation-class . 130
transformFilter-class . 131
transformList-class . 132
transformMap-class . 133
transformReference-class . 134
transform_gate . 134
truncateTransform . 136
unionFilter-class . 137
unitytransform-class . 138
updateTransformKeywords . 139
validFilters . 139
write.FCS . 140
write.flowSet . 141

Index 143

flowCore-package flowCore: Basic structures for flow cytometry data

Description

Provides S4 data structures and basic infrastructure and functions to deal with flow cytometry data.

Details

Define important flow cytometry data classes: flowFrame, flowSet and their accessors.

Provide important transformation, filter, gating, workflow, and summary functions for flow cytom-
etry data analysis.

Most of flow cytometry related Bioconductor packages (such as flowStats, flowFP, flowQ, flowViz,
flowMerge, flowClust) are heavily dependent on this package.

Package: flowCore
Type: Package
Version: 1.11.20
Date: 2009-09-16
License: Artistic-2.0

arcsinhTransform 5

Author(s)

Maintainer: Florian Hahne <fhahne@fhcrc.org>

Authors: B. Ellis, P. Haaland, F. Hahne, N. Le Meur, N. Gopalakrishnan

arcsinhTransform Create the definition of an arcsinh transformation function (base spec-
ified by user) to be applied on a data set

Description

Create the definition of the arcsinh Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x<-asinh(a+b*x)+c). The trans-
formation would normally be used to convert to a linear valued parameter to the natural logarithm
scale. By default a and b are both equal to 1 and c to 0.

Usage

arcsinhTransform(transformationId="defaultArcsinhTransform", a=1, b=1, c=0)

Arguments

transformationId

character string to identify the transformation
a positive double that corresponds to a shift about 0.
b positive double that corresponds to a scale factor.
c positive double

Value

Returns an object of class transform.

Author(s)

B. Ellis

See Also

transform-class, transform, asinh

Other Transform functions: biexponentialTransform(), inverseLogicleTransform(), linearTransform(),
lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
asinhTrans <- arcsinhTransform(transformationId="ln-transformation", a=1, b=1, c=1)
translist <- transformList('FSC-H', asinhTrans)
dataTransform <- transform(samp, translist)

6 asinht-class

asinht-class Class "asinht"

Description

Inverse hyperbolic sine transform class, which represents a transformation defined by the function:

f(parameter, a, b) = sinh−1(a ∗ parameter) ∗ b

This definition is such that it can function as an inverse of sinht using the same definitions of the
constants a and b.

Slots

.Data Object of class "function".
a Object of class "numeric" – non-zero constant.
b Object of class "numeric" – non-zero constant.
parameters Object of class "transformation" – flow parameter to be transformed
transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor asinht(parameter,a,b,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing
the data frame as an argument.The transformed parameters are returned as a matrix with a single
column. (See example below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

sinht

Other mathematical transform classes: EHtrans-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

asinhtGml2-class 7

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
asinh1<-asinht(parameters="FSC-H",a=2,b=1,transformationId="asinH1")
transOut<-eval(asinh1)(exprs(dat))

asinhtGml2-class Class asinhtGml2

Description

Inverse hyperbolic sin transformation as parameterized in Gating-ML 2.0.

Details

asinhtGml2 is defined by the following function:

bound(f, boundMin, boundMax) = max(min(f, boundMax), boundMin))

where

f(parameter, T,M,A) = (asinh(parameter∗sinh(M∗ln(10))/T)+A∗ln(10))/((M+A)∗ln(10))

This transformation is equivalent to Logicle(T, 0, M, A) (i.e., with W=0). It provides an inverse
hyperbolic sine transformation that maps a data value onto the interval [0,1] such that:

• The top of scale value (i.e., T) is mapped to 1.

• Large data values are mapped to locations similar to an (M + A)-decade logarithmic scale.

• A decades of negative data are brought on scale.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the f function be less than boundMin, then let the result of this transformation be boundMin.
Analogically, should the result of the f function be more than boundMax, then let the result of this
transformation be boundMax. The boundMin parameter shall not be greater than the boundMax
parameter.

Slots

.Data Object of class function.

T Object of class numeric – positive constant (top of scale value).

M Object of class numeric – positive constant (desired number of decades).

A Object of class numeric – non-negative constant that is less than or equal to M (desired number
of additional negative decades).

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

boundMin Object of class numeric – lower bound of the transformation, default -Inf.

boundMax Object of class numeric – upper bound of the transformation, default Inf.

8 asinhtGml2-class

Objects from the Class

Objects can be created by calls to the constructor

asinhtGml2(parameter, T, M, A, transformationId, boundMin, boundMax)

Extends

Class singleParameterTransform, directly.

Class transform, by class singleParameterTransform, distance 2.

Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

Note

The inverse hyperbolic sin transformation object can be evaluated using the eval method by passing
the data frame as an argument. The transformed parameters are returned as a matrix with a single
column. (See example below)

Author(s)

Spidlen, J.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

asinht, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myASinH1 <- asinhtGml2(parameters = "FSC-H", T = 1000, M = 4.5,
A = 0, transformationId="myASinH1")

transOut <- eval(myASinH1)(exprs(myDataIn))

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

biexponentialTransform 9

biexponentialTransform

Compute a transform using the ’biexponential’ function

Description

The ’biexponential’ is an over-parameterized inverse of the hyperbolic sine. The function to be
inverted takes the form biexp(x) = a*exp(b*(x-w))-c*exp(-d*(x-w))+f with default parameters se-
lected to correspond to the hyperbolic sine.

Usage

biexponentialTransform(transformationId="defaultBiexponentialTransform",
a = 0.5, b = 1, c = 0.5, d = 1, f = 0, w = 0,
tol = .Machine$double.eps^0.25, maxit = as.integer(5000))

Arguments

transformationId

A name to assign to the transformation. Used by the transform/filter integration
routines.

a See the function description above. Defaults to 0.5

b See the function description above. Defaults to 1.0

c See the function description above. Defaults to 0.5 (the same as a)

d See the function description above. Defaults to 1 (the same as b)

f A constant bias for the intercept. Defaults to 0.

w A constant bias for the 0 point of the data. Defaults to 0.

tol A tolerance to pass to the inversion routine (uniroot usually)

maxit A maximum number of iterations to use, also passed to uniroot

Value

Returns values giving the inverse of the biexponential within a certain tolerance. This function
should be used with care as numerical inversion routines often have problems with the inversion
process due to the large range of values that are essentially 0. Do not be surprised if you end up
with population splitting about w and other odd artifacts.

Author(s)

B. Ellis, N Gopalakrishnan

See Also

transform

Other Transform functions: arcsinhTransform(), inverseLogicleTransform(), linearTransform(),
lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

10 boundaryFilter-class

Examples

Construct some "flow-like" data which tends to be hetereoscedastic.
data(GvHD)
biexp <- biexponentialTransform("myTransform")

after.1 <- transform(GvHD, transformList('FSC-H', biexp))

biexp <- biexponentialTransform("myTransform",w=10)
after.2 <- transform(GvHD, transformList('FSC-H', biexp))

opar = par(mfcol=c(3, 1))
plot(density(exprs(GvHD[[1]])[, 1]), main="Original")
plot(density(exprs(after.1[[1]])[, 1]), main="Standard Transform")
plot(density(exprs(after.2[[1]])[, 1]), main="Shifted Zero Point")

boundaryFilter-class Class "boundaryFilter"

Description

Class and constructor for data-driven filter objects that discard margin events.

Usage

boundaryFilter(x, tolerance=.Machine$double.eps, side=c("both", "lower",
"upper"), filterId="defaultBoundaryFilter")

Arguments

x Character giving the name(s) of the measurement parameter(s) on which the
filter is supposed to work. Note that all events on the margins of ay of the
channels provided by x will be discarded, which is often not desired. Such
events may not convey much information in the particular channel on which
their value falls on the margin, however they may well be informative in other
channels.

tolerance Numeric vector, used to set the tolerance slot of the object. Can be set sepa-
rately for each element in x. R’s recycling rules apply.

side Character vector, used to set the side slot of the object. Can be set separately
for each element in x. R’s recycling rules apply.

filterId An optional parameter that sets the filterId slot of this filter. The object can
later be identified by this name.

Details

Flow cytomtery instruments usually operate on a given data range, and the limits of this range are
stored as keywords in the FSC files. Depending on the amplification settings and the dynamic range
of the measured signal, values can occur that are outside of the measurement range, and most instru-
ments will simply pile those values at the minimum or maximum range limit. The boundaryFilter
removes these values, either for a single parameter, or for a combination of parameters. Note that

boundaryFilter-class 11

it is often desirable to treat boundary events on a per-parameter basis, since their values might be
uninformative for one particular channel, but still be useful in all of the other channels.

The constructor boundaryFilter is a convenience function for object instantiation. Evaluating a
boundaryFilter results in a single sub-populations, an hence in an object of class filterResult.

Value

Returns a boundaryFilter object for use in filtering flowFrames or other flow cytometry objects.

Slots

tolerance Object of class "numeric". The machine tolerance used to decide whether an event is
on the measurement boundary. Essentially, this is done by evaluating x>minRange+tolerance
& x<maxRange-tolerance.

side Object of class "character". The margin on which to evaluate the filter. Either upper for
the upper margin or lower for the lower margin or both for both margins.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("boundaryFilter",...) or using the constructor
boundaryFilter. Using the constructor is the recommended way.

Methods

%in% signature(x = "flowFrame", table = "boundaryFilter"): The workhorse used to eval-
uate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "boundaryFilter"): Print information about the filter.

Author(s)

Florian Hahne

See Also

flowFrame, flowSet, filter for evaluation of boundaryFilters and Subset for subsetting of
flow cytometry data sets based on that.

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
boundaryFilter("FSC-H", filterId="myBoundaryFilter")

12 characterOrParameters-class

To facilitate programmatic construction we also have the following
bf <- boundaryFilter(filterId="myBoundaryFilter", x=c("FSC-H"))

Filtering using boundaryFilter
fres <- filter(dat, bf)
fres
summary(fres)

We can subset the data with the result from the filtering operation.
Subset(dat, fres)

A boundaryFilter on the lower margins of several channels
bf2 <- boundaryFilter(x=c("FSC-H", "SSC-H"), side="lower")

characterOrNumeric-class

Class "characterOrNumeric"

Description

A simple union class of character and numeric. Objects will be created internally whenever
necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrNumeric")

characterOrParameters-class

Class "characterOrParameters"

Description

A simple union class of character and parameters. Objects will be created internally whenever
necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrParameters")

characterOrTransformation-class 13

characterOrTransformation-class

Class "characterOrTransformation"

Description

A simple union class of character and transformation. Objects will be created internally when-
ever necessary and the user should not need to explicitly interact with this class.

Objects from the Class

A virtual Class: No objects may be created from it.

Examples

showClass("characterOrTransformation")

checkOffset Fix the offset when its values recorded in header and TEXT don’t agree

Description

Fix the offset when its values recorded in header and TEXT don’t agree

Usage

checkOffset(offsets, x, ignore.text.offset = FALSE, ...)

Arguments

offsets the named vector returned by findOffsets

x the text segmented returned by readFCStext

ignore.text.offset

whether to ignore the offset info stored in TEXT segment

... not used.

Value

the updated offsets

14 collapse_desc

coerce Convert an object to another class

Description

These functions manage the relations that allow coercing an object to a given class.

Arguments

from, to The classes between which def performs coercion. (In the case of the coerce
function, these are objects from the classes, not the names of the classes, but
you’re not expected to call coerce directly.)

Details

The function supplied as the third argument is to be called to implement as(x, to) when x has
class from. Need we add that the function should return a suitable object with class to.

Author(s)

F. Hahne, B. Ellis

Examples

samp1 <- read.FCS(system.file("extdata","0877408774.E07", package="flowCore"))
samp2 <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
samples <-list("sample1"=samp1,"sample2"=samp2)
experiment <- as(samples,"flowSet")

collapse_desc Coerce the list of the keywords into a character Also flatten spillover
matrix into a string

Description

Coerce the list of the keywords into a character Also flatten spillover matrix into a string

Usage

collapse_desc(d, collapse.spill = TRUE)

Arguments

d a named list of keywords

collapse.spill whether to flatten spillover matrix to a string

Value

a list of strings

compensatedParameter-class 15

Examples

data(GvHD)
fr <- GvHD[[1]]
collapse_desc(keyword(fr))

compensatedParameter-class

Class "compensatedParameter"

Description

Emission spectral overlap can be corrected by subtracting the amount of spectral overlap from the
total detected signals. This compensation process can be described by using spillover matrices.

Details

The compensatedParameter class allows for compensation of specific parameters the user is inter-
ested in by creating compensatedParameter objects and evaluating them. This allows for use of
compensatedParameter in gate definitions.

Slots

.Data Object of class "function".

parameters Object of class "character" – the flow parameters to be compensated.

spillRefId Object of class "character" – the name of the compensation object (The compensa-
tion object contains the spillover Matrix).

searchEnv Object of class "environment" -environment in which the compensation object is de-
fined.

transformationId Object of class "character" – a unique Id to reference the compensatedPa-
rameter object.

Objects from the Class

Objects can be created by calls to the constructor of the form compensatedParameter(parameters,spillRefId,transformationId,searchEnv).

Extends

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class
"characterOrTransformation", by class "transform", distance 3.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument. The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)

Gopalakrishnan N,F.Hahne

16 compensation-class

See Also

compensation

Examples

samp <- read.flowSet(path=system.file("extdata", "compdata", "data", package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat

create a compensation object
comp <- compensation(comp.mat,compensationId="comp1")
create a compensated parameter object
cPar1<-compensatedParameter(c("FL1-H","FL3-H"),"comp",searchEnv=.GlobalEnv)
compOut<-eval(cPar1)(exprs(samp[[1]]))

compensation-class Class "compensation"

Description

Class and methods to compensate for spillover between channels by applying a spillover matrix to
a flowSet or a flowFrame assuming a simple linear combination of values.

Usage

compensation(..., spillover, compensationId="defaultCompensation")

compensate(x, spillover, ...)

Arguments

spillover The spillover or compensation matrix.

compensationId The identifier for the compensation object.

x An object of class flowFrame or flowSet.

... Further arguments.
The constructor is designed to be useful in both programmatic and interactive
settings, and . . . serves as a container for possible arguments. The following
combinations of values are allowed:
Elements in . . . are character scalars of parameter names or transform objects
and the colnames in spillover match to these parameter names.
The first element in . . . is a character vector of parameter names or a list of
character scalars or transform objects and the colnames in spillover match
to these parameter names.
Argument spillover is missing and the first element in . . . is a matrix, in which
case it is assumed to be the spillover matrix.
. . . is missing, in which case all parameter names are taken from the colnames
of spillover.

compensation-class 17

Details

The essential premise of compensation is that some fluorochromes may register signals in detectors
that do not correspond to their primary detector (usually a photomultiplier tube). To compensate for
this fact, some sort of standard is used to obtain the background signal (no dye) and the amount of
signal on secondary channels for each fluorochrome relative to the signal on their primary channel.

To calculate the spillover percentage we use either the mean or the median (more often the latter)
of the secondary signal minus the background signal for each dye to obtain n by n matrix, S, of
so-called spillover values, expressed as a percentage of the primary channel. The observed values
are then considered to be a linear combination of the true fluorescence and the spillover from each
other channel so we can obtain the true values by simply multiplying by the inverse of the spillover
matrix.

The spillover matrix can be obtained through several means. Some flow cytometers provide a
spillover matrix calculated during acquisition, possibly by the operator, that is made available in
the metadata of the flowFrame. While there is a theoretical standard keyword $SPILL it can also
be found in the SPILLOVER or SPILL keyword depending on the cytometry. More commonly the
spillover matrix is calculated using a series of compensation cells or beads collected before the
experiment. If you have set of FCS files with one file per fluorochrome as well as an unstained FCS
file you can use the spillover method for flowSets to automatically calculate a spillover matrix.

The compensation class is essentially a wrapper around a matrix that allows for transformed
parameters and method dispatch.

Value

A compensation object for the constructor.

A flowFrame or flowSet for the compensate methods.

Slots

spillover Object of class matrix; the spillover matrix.

compensationId Object of class character. An identifier for the object.

parameters Object of class parameters. The flow parameters for which the compensation is
defined. This can also be objects of class transform, in which case the compensation is
performed on the compensated parameters.

Objects from the Class

Objects should be created using the constructor compensation(). See the Usage and Arguments
sections for details.

Methods

compensate signature(x = "flowFrame", spillover = "compensation"): Apply the compen-
sation defined in a compensation object on a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, compensation)

compensate signature(x = "flowFrame", spillover = "matrix"): Apply a compensation ma-
trix to a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, matrix)

18 compensation-class

compensate signature(x = "flowFrame", spillover = "data.frame"):Try to coerce the data.frame
to a matrix and apply that to a flowFrame. This returns a compensated flowFrame.
Usage:
compensate(flowFrame, data.frame)

identifier, identifier<- signature(object = "compensation"): Accessor and replacement meth-
ods for the compensationId slot.
Usage:
identifier(compensation)

identifier(compensation) <- value

parameters signature(object = "compensation"): Get the parameter names of the compensation
object. This method also tries to resolve all transforms and transformReferences before
returning the parameters as character vectors. Unresolvable references return NA.
Usage:
parameters(compensation)

show signature(object = "compensation"): Print details about the object.
Usage:
This method is automatically called when the object is printed on the screen.

Author(s)

F.Hahne, B. Ellis, N. Le Meur

See Also

spillover

Examples

Read sample data and a sample spillover matrix
samp <- read.flowSet(path=system.file("extdata", "compdata", "data",

package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat

compensate using the spillover matrix directly
summary(samp)
samp <- compensate(samp, comp.mat)
summary(samp)

create a compensation object and compensate using that
comp <- compensation(comp.mat)
compensate(samp, comp)

demo the sample-specific compensation
create a list of comps (each element could be a
different compensation tailored for the specific sample)
comps <- sapply(sampleNames(samp), function(sn)comp, simplify = FALSE)
the names of comps must be matched to sample names of the flowset
compensate(samp, comps)

complementFilter-class 19

complementFilter-class

Class complementFilter

Description

This class represents the logical complement of a single filter, which is itself a filter that can be
incorporated in to further set operations. complementFilters are constructed using the prefix
unary set operator "!" with a single filter operand.

Slots

filters Object of class "list", containing the component filters.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filter", directly.

Author(s)

B. Ellis

See Also

filter, setOperationFilter

Other setOperationFilter classes: intersectFilter-class, setOperationFilter-class, subsetFilter-class,
unionFilter-class

concreteFilter-class Class "concreteFilter"

Description

The concreteFilter serves as a base class for all filters that actually implement a filtering process.
At the moment this includes all filters except filterReference, the only non-concrete filter at
present.

Slots

filterId The identifier associated with this class.

Objects from the Class

Objects of this class should never be created directly. It serves only as a point of inheritance.

Extends

Class "filter", directly.

20 decompensate

Author(s)

B. Ellis

See Also

parameterFilter

CytoExploreR_exports CytoExploreR exports

Description

Exported wrappers of internal functions for use by CytoExploreR

Usage

CytoExploreR_.estimateLogicle(x, channels, ...)

decompensate Decompensate a flowFrame

Description

Reverse the application of a compensation matrix on a flowFrame

Usage

S4 method for signature 'flowFrame,matrix'
decompensate(x, spillover)

S4 method for signature 'flowFrame,compensation'
decompensate(x, spillover)

Arguments

x flowFrame.

spillover matrix or data.frame or a compensation object

Value

a decompensated flowFrame

dg1polynomial-class 21

Examples

library(flowCore)
f = list.files(system.file("extdata",

"compdata",
"data",
package="flowCore"),

full.name=TRUE)[1]
f = read.FCS(f)
spill = read.csv(system.file("extdata",

"compdata", "compmatrix",
package="flowCore"),
,sep="\t",skip=2)

colnames(spill) = gsub("\\.","-",colnames(spill))
f.comp = compensate(f,spill)
f.decomp = decompensate(f.comp,as.matrix(spill))
sum(abs(f@exprs-f.decomp@exprs))
all.equal(decompensate(f.comp,spill)@exprs,decompensate(f.comp,as.matrix(spill))@exprs)
all.equal(f@exprs,decompensate(f.comp,spill)@exprs)

dg1polynomial-class Class "dg1polynomial"

Description

dg1polynomial allows for scaling,linear combination and translation within a single transformation
defined by the function

f(parameter1, ..., parametern, a1, ..., an, b) = b+Σn
i=1ai ∗ parameteri

Slots

.Data Object of class "function".

parameters Object of class "parameters" –the flow parameters that are to be transformed.

a Object of class "numeric" – coefficients of length equal to the number of flow parameters.

b Object of class "numeric" – coefficient of length 1 that performs the translation.

transformationId Object of class "character" unique ID to reference the transformation.

Objects from the Class

Objects can be created by using the constructor dg1polynomial(parameter,a,b,transformationId).

Extends

Class "transform", directly.

Class "transformation", by class "transform", distance 2.

Class "characterOrTransformation", by class "transform", distance 3.

22 each_col

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column.(See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

ratio,quadratic,squareroot

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, exponential-class,
hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
dg1<-dg1polynomial(c("FSC-H","SSC-H"),a=c(1,2),b=1,transformationId="dg1")
transOut<-eval(dg1)(exprs(dat))

each_col Methods to apply functions over flowFrame margins

Description

Returns a vector or array of values obtained by applying a function to the margins of a flowFrame.
This is equivalent of running apply on the output of exprs(flowFrame).

Usage

each_col(x, FUN, ...)
each_row(x, FUN, ...)

Arguments

x Object of class flowFrame.

FUN the function to be applied. In the case of functions like ’+’, ’%*%’, etc., the
function name must be backquoted or quoted.

... optional arguments to ’FUN’.

Author(s)

B. Ellis, N. LeMeur, F. Hahne

EHtrans-class 23

See Also

apply

Examples

samp <- read.FCS(system.file("extdata", "0877408774.B08", package="flowCore"),
transformation="linearize")
each_col(samp, summary)

EHtrans-class Class "EHtrans"

Description

EH transformation of a parameter is defined by the function

EH(parameter, a, b) = 10(
parameter

a) +
b ∗ parameter

a
− 1, parameter >= 0

−10(
−parameter

a) +
b ∗ parameter

a
+ 1, parameter < 0

Slots

.Data Object of class "function".

a Object of class "numeric" – numeric constant greater than zero.

b Object of class "numeric" – numeric constant greater than zero.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor EHtrans(parameters,a,b,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

24 ellipsoidGate-class

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

hyperlog

Other mathematical transform classes: asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

eh1<-EHtrans("FSC-H",a=1250,b=4,transformationId="eh1")
transOut<-eval(eh1)(exprs(dat))

ellipsoidGate-class Class "ellipsoidGate"

Description

Class and constructor for n-dimensional ellipsoidal filter objects.

Usage

ellipsoidGate(..., .gate, mean, distance=1, filterId="defaultEllipsoidGate")

Arguments

filterId An optional parameter that sets the filterId of this gate.

.gate A definition of the gate via a covariance matrix.

mean Numeric vector of equal length as dimensions in .gate.

distance Numeric scalar giving the Mahalanobis distance defining the size of the ellipse.
This mostly exists for compliance reasons to the gatingML standard as mean and
gate should already uniquely define the ellipse. Essentially, distance is merely
a factor that gets applied to the values in the covariance matrix.

... You can also directly describe the covariance matrix through named arguments,
as described below.

Details

A convenience method to facilitate the construction of a ellipsoid filter objects. Ellipsoid gates
in n dimensions (n >= 2) are specified by a a covarinace matrix and a vector of mean values giving
the center of the ellipse.

This function is designed to be useful in both direct and programmatic usage. In the first case,
simply describe the covariance matrix through named arguments. To use this function programmat-
ically, you may pass a covarince matrix and a mean vector directly, in which case the parameter
names are the colnames of the matrix.

ellipsoidGate-class 25

Value

Returns a ellipsoidGate object for use in filtering flowFrames or other flow cytometry objects.

Slots

mean Objects of class "numeric". Vector giving the location of the center of the ellipse in n di-
mensions.

cov Objects of class "matrix". The covariance matrix defining the shape of the ellipse.

distance Objects of class "numeric". The Mahalanobis distance defining the size of the ellipse.

parameters Object of class "character", describing the parameter used to filter the flowFrame.

filterId Object of class "character", referencing the filter.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("ellipsoidGate",...) or by using the constructor
ellipsoidGate. Using the constructor is the recommended way.

Methods

%in% signature(x = "flowFrame", table = "ellipsoidGate"): The workhorse used to eval-
uate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "ellipsoidGate"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of ellipsoidGates.

Author(s)

F.Hahne, B. Ellis, N. LeMeur

See Also

flowFrame, polygonGate, rectangleGate, polytopeGate, filter for evaluation of rectangleGates
and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

Other Gate classes: polygonGate-class, polytopeGate-class, quadGate-class, rectangleGate-class

26 estimateMedianLogicle

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

Defining the gate
cov <- matrix(c(6879, 3612, 3612, 5215), ncol=2,
dimnames=list(c("FSC-H", "SSC-H"), c("FSC-H", "SSC-H")))
mean <- c("FSC-H"=430, "SSC-H"=175)
eg <- ellipsoidGate(filterId= "myEllipsoidGate", .gate=cov, mean=mean)

Filtering using ellipsoidGates
fres <- filter(dat, eg)
fres
summary(fres)

The result of ellipsoid filtering is a logical subset
Subset(dat, fres)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

##ellipsoidGate can be converted to polygonGate by interpolation
pg <- as(eg, "polygonGate")
pg

estimateMedianLogicle Estimates a common logicle transformation for a flowSet.

Description

Of the negative values for each channel specified, the median of the specified quantiles are used.

Usage

estimateMedianLogicle(flow_set, channels, m = 4.5, q = 0.05)

Arguments

flow_set object of class ’flowSet’

channels character vector of channels to transform

m TODO – default value from .lgclTrans

q quantile

Value

TODO

exponential-class 27

exponential-class Class "exponential"

Description

Exponential transform class, which represents a transformation given by the function

f(parameter, a, b) = eparameter/b ∗ 1

a

Slots

.Data Object of class "function".

a Object of class "numeric" – non-zero constant.

b Object of class "numeric"- non-zero constant.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation

Objects from the Class

Objects can be created by calls to the constructorexponential(parameters,a,b).

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The exponential transformation object can be evaluated using the eval method by passing the data
frame as an argument.The transformed parameters are returned as a matrix with a single column

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

logarithm

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

28 expressionFilter-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
exp1<-exponential(parameters="FSC-H",a=1,b=37,transformationId="exp1")
transOut<-eval(exp1)(exprs(dat))

expressionFilter-class

Class "expressionFilter"

Description

A filter holding an expression that can be evaluated to a logical vector or a vector of factors.

Usage

expressionFilter(expr, ..., filterId="defaultExpressionFilter")
char2ExpressionFilter(expr, ..., filterId="defaultExpressionFilter")

Arguments

filterId An optional parameter that sets the filterId of this filter. The object can
later be identified by this name.

expr A valid R expression or a character vector that can be parsed into an expression.

... Additional arguments that are passed to the evaluation environment of the ex-
pression.

Details

The expression is evaluated in the environment of the flow cytometry values, hence the param-
eters of a flowFrame can be accessed through regular R symbols. The convenience function
char2ExpressionFilter exists to programmatically construct expressions.

Value

Returns a expressionFilter object for use in filtering flowFrames or other flow cytometry ob-
jects.

Slots

expr The expression that will be evaluated in the context of the flow cytometry values.

args An environment providing additional parameters.

deparse A character scalar of the deparsed expression.

filterId The identifier of the filter.

Extends

Class "concreteFilter", directly.

Class "filter", by class concreteFilter, distance 2.

expressionFilter-class 29

Objects from the Class

Objects can be created by calls of the form new("expressionFilter", ...), using the expressionFilter
constructor or, programmatically, from a character string using the char2ExpressionFilter func-
tion.

Methods

%in% signature(x = "flowFrame", table = "expressionFilter"): The workhorse used to
evaluate the gate on data. This is usually not called directly by the user, but internally by calls
to the filter methods.

show signature(object = "expressionFilter"): Print information about the gate.

Author(s)

F. Hahne, B. Ellis

See Also

flowFrame, filter for evaluation of sampleFilters and split and Subsetfor splitting and sub-
setting of flow cytometry data sets based on that.

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

#Create the filter
ef <- expressionFilter(`FSC-H` > 200, filterId="myExpressionFilter")
ef

Filtering using sampeFilters
fres <- filter(dat, ef)
fres
summary(fres)

The result of sample filtering is a logical subset
newDat <- Subset(dat, fres)
all(exprs(newDat)[,"FSC-H"] > 200)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

Programmatically construct an expression
dat <- dat[,-8]
r <- range(dat)
cn <- paste("`", colnames(dat), "`", sep="")
exp <- paste(cn, ">", r[1,], "&", cn, "<", r[2,], collapse=" & ")
ef2 <- char2ExpressionFilter(exp, filterId="myExpressionFilter")
ef2
fres2 <- filter(dat, ef2)
fres2
summary(fres2)

30 FCSTransTransform

FCSTransTransform Computes a transform using the ’iplogicle’ function

Description

Transforms FCS data using the iplogicle function from FCSTrans by Quian et al. The core func-
tionality of FCSTrans has been imported to produce transformed FCS data rescaled and truncated
as produced by FCSTrans. The w parameter is estimated by iplogicle automatically, then makes
a call to iplogicore which in turn uses the logicle transform code of Wayne Moore.

Usage

FCSTransTransform(transformationId = "defaultFCSTransTransform",
channelrange = 2^18, channeldecade = 4.5,
range = 4096, cutoff = -111, w = NULL, rescale = TRUE)

Arguments

transformationId

A name to assign to the transformation. Used by the transform/filter routines.

channelrange is the range of the data. By default, 2^18 = 262144.

channeldecade is the number of logarithmic decades. By default, it is set to 4.5.

range the target resolution. The default value is 2^12 = 4096.

cutoff a threshold below which the logicle transformation maps values to 0.

w the logicle width. This is estimated by iplogicle by default. Details can be
found in the Supplementary File from Quian et al.

rescale logical parameter whether or not the data should be rescaled to the number of
channels specified in range. By default, the value is TRUE but can be set to
FALSE if you want to work on the transformed scale.

Details

For the details of the FCSTrans transformation, we recommend the excellent Supplementary File
that accompanies Quian et al. (2012): http://onlinelibrary.wiley.com/doi/10.1002/cyto.
a.22037/suppinfo

Author(s)

Wayne Moore, N Gopalakrishnan

References

Y Quian, Y Liu, J Campbell, E Thompson, YM Kong, RH Scheuermann; FCSTrans: An open
source software system for FCS file conversion and data transformation. Cytometry A, 2012

See Also

inverseLogicleTransform, estimateLogicle , logicleTransform

http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22037/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22037/suppinfo

filter-and-methods 31

Examples

data(GvHD)
samp <- GvHD[[1]]
User defined logicle function
lgcl <- transformList(c('FL1-H', 'FL2-H'), FCSTransTransform())
after <- transform(samp, lgcl)

filter-and-methods Take the intersection of two filters

Description

There are two notions of intersection in flowCore. First, there is the usual intersection boolean
operator & that has been overridden to allow the intersection of two filters or of a filter and a list
for convenience. There is also the %&% or %subset% operator that takes an intersection, but with
subset semantics rather than simple intersection semantics. In other words, when taking a subset,
calculations from summary and other methods are taken with respect to the right hand filter. This
primarily affects calculations, which are ordinarily calculated with respect to the entire population
as well as data-driven gating procedures which will operate only on elements contained by the right
hand filter. This becomes especially important when using filters such as norm2Filter

Usage

e1 %&% e2
e1 %subset% e2

Arguments

e1, e2 filter objects or lists of filter objects

Author(s)

B. Ellis

filter-class A class for representing filtering operations to be applied to flow data.

Description

The filter class is the virtual base class for all filter/gating objects in flowCore. In general you
will want to subclass or create a more specific filter.

Slots

filterId A character vector that identifies this filter. This is typically user specified but can be
automatically deduced by certain filter operations, particularly boolean and set operations.

32 filter-class

Objects from the Class

All filter objects in flowCore should be instantiated through their constructors. These are func-
tions that share the same name with the respective filter classes. E.g., rectangleGate() is the
constructor function for rectangular gates, and kmeansFilter() creates objects of class kmeansFilter.
Usually these constructors can deal with various different inputs, allowing to utilize the same func-
tion in different programmatic or interactive settings. For all filters that operate on specific flow
parameters (i.e., those inheriting from parameterFilter), the parameters need to be passed to the
constructor, either as names or colnames of additional input arguments or explicitly as separate
arguments. See the documentation of the respective filter classes for details. If parameters are
explicitly defined as separate arguments, they may be of class character, in which case they will
be evaluated literally as colnames in a flowFrame, or of class transform, in which case the filtering
is performed on a temporarily transformed copy of the input data. See here for details.

Methods

%in% Used in the usual way this returns a vector of values that identify which events were accepted
by the filter. A single filter may encode several populations so this can return either a logical
vector, a factor vector or a numeric vector of probabilities that the event is accepted by the
filter. Minimally, you must implement this method when creating a new type of filter

&, |, ! Two filters can be composed using the usual boolean operations returning a filter class of
a type appropriate for handling the operation. These methods attempt to guess an appropriate
filterId for the new filter

%subset%, %&% Defines a filter as being a subset of another filter. For deterministic filters the results
will typically be equivalent to using an \& operation to compose the two filters, though sum-
mary methods will use subset semantics when calculating proportions. Additionally, when the
filter is data driven, such as norm2Filter, the subset semantics are applied to the data used to
fit the filter possibly resulting in quite different, and usually more desirable, results.

%on% Used in conjunction with a transformList to create a transformFilter. This filter is
similar to the subset filter in that the filtering operation takes place on transformed values
rather than the original values.

filter A more formal version of %in%, this method returns a filterResult object that can be
used in subsequent filter operations as well as providing more metadata about the results of
the filtering operation. See the documenation for filter methods for details.

summarizeFilter When implementing a new filter this method is used to update the filterDetails
slot of a filterResult. It is optional and typically only needs to be implemented for data-
driven filters.

Author(s)

B. Ellis, P.D. Haaland and N. LeMeur

See Also

transform, filter

filter-in-methods 33

filter-in-methods Filter-specific membership methods

Description

Membership methods must be defined for every object of type filter with respect to a flowFrame
object. The operation is considered to be general and may return a logical, numeric or factor
vector that will be handled appropriately. The ability to handle logical matrices as well as vectors
is also planned but not yet implemented.

Usage

x %in% table

Arguments

x a flowFrame

table an object of type filter or filterResult or one of their derived classes, rep-
resenting a gate, filter, or result to check for the membership of x

Value

Vector of type logical, numeric or factor depending on the arguments

Author(s)

F.Hahne, B. Ellis

filter-methods Filter FCS files

Description

These methods link filter descriptions to a particular set of flow cytometry data allowing for the
lightweight calculation of summary statistics common to flow cytometry analysis.

Usage

filter(x, filter, method = c("convolution", "recursive"),
sides = 2L, circular = FALSE, init = NULL)

Arguments

x Object of class flowFrame or flowSet.

filter An object of class filter or a named list filters.
method, sides, circular, init

These arguments are not used.

34 filter-methods

Details

The filter method conceptually links a filter description, represented by a filter object, to a
particular flowFrame. This is accomplished via the filterResult object, which tracks the linked
frame as well as caching the results of the filtering operation itself, allowing for fast calculation of
certain summary statistics such as the percentage of events accepted by the filter. This method ex-
ists chiefly to allow the calculation of these statistics without the need to first Subset a flowFrame,
which can be quite large.

When applying on a flowSet, the filter argument can either be a single filter object, in which
case it is recycled for all frames in the set, or a named list of filter objects. The names are
supposed to match the frame identifiers (i.e., the output of sampleNames(x) of the flowSet. If
some frames identifiers are missing, the particular frames are skipped during filtering. Accordingly,
all filters in the filter list that can’t be mapped to the flowSet are ignored. Note that all filter
objects in the list must be of the same type, e.g. rectangleGates.

Value

A filterResult object or a filterResultList object if x is a flowSet. Note that filterResult
objects are themselves filters, allowing them to be used in filter expressions or Subset operations.

Author(s)

F Hahne, B. Ellis, N. Le Meur

See Also

Subset, filter, filterResult

Examples

Filtering a flowFrame
samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
rectGate <- rectangleGate(filterId="nonDebris","FSC-H"=c(200,Inf))
fr <- filter(samp,rectGate)
class(fr)
summary(fr)

filtering a flowSet
data(GvHD)
foo <- GvHD[1:3]
fr2 <- filter(foo, rectGate)
class(fr2)
summary(fr2)

filtering a flowSet using different filters for each frame
rg2 <- rectangleGate(filterId="nonDebris","FSC-H"=c(300,Inf))
rg3 <- rectangleGate(filterId="nonDebris","FSC-H"=c(400,Inf))
flist <- list(rectGate, rg2, rg3)
names(flist) <- sampleNames(foo)
fr3 <- filter(foo, flist)

filter-on-methods 35

filter-on-methods Methods for Function %on% in Package ‘flowCore’

Description

This operator is used to construct a transformFilter that first applies a transformList to the
data before applying the filter operation. You may also apply the operator to a flowFrame or
flowSet to obtain transformed values specified in the list.

Usage

e1 %on% e2

Arguments

e1 a filter, transform, or transformList object
e2 a transform, transformList, flowFrame, or flowSet object

Author(s)

B. Ellis

Examples

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
plot(transform("FSC-H"=log, "SSC-H"=log) %on% samp)

rectangle <- rectangleGate(filterId="rectangleGateI","FSC-H"=c(4.5, 5.5))
sampFiltered <- filter(samp, rectangle %on% transform("FSC-H"=log, "SSC-H"=log))
res <- Subset(samp, sampFiltered)

plot(transform("FSC-H"=log, "SSC-H"=log) %on% res)

filterDetails-methods Obtain details about a filter operation

Description

A filtering operation captures details about its metadata and stores it in a filterDetails slot in a
filterResult object that is accessed using the filterDetails method. Each set of metadata is
indexed by the filterId of the filter allowing for all the metadata in a complex filtering operation
to be recovered after the final filtering.

Methods

filterDetails(result = "filterResult", filterId = "missing") When no particular filterId is spec-
ified all the details are returned

filterDetails(result = "filterResult", filterId = "ANY") You can also obtain a particular subset of
details

36 filterList-class

Author(s)

B. Ellis, P.D. Haaland and N. LeMeur

filterList-class Class "filterList"

Description

Container for a list of filter objects. The class mainly exists for method dispatch.

Usage

filterList(x, filterId=identifier(x[[1]]))

Arguments

x A list of filter objects.

filterId The global identifier of the filter list. As default, we take the filterId of the first
filter object in x.

Value

A filterList object for the constructor.

Slots

.Data Object of class "list". The class directly extends list, and this slot holds the list data.

filterId Object of class "character". The identifier for the object.

Objects from the Class

Objects are created from regular lists using the constructor filterList.

Extends

Class "list", from data part.

Methods

show signature(object = "filterList"): Print details about the object.

identifier, identifier<- signature(object = "filterList"): Accessor and replacement method
for the object’s filterId slot.

Author(s)

Florian Hahne

See Also

filter,

filterReference-class 37

Examples

f1 <- rectangleGate(FSC=c(100,200), filterId="testFilter")
f2 <- rectangleGate(FSC=c(200,400))
fl <- filterList(list(a=f1, b=f2))
fl
identifier(fl)

filterReference-class Class filterReference

Description

A reference to another filter inside a reference. Users should generally not be aware that they are
using this class.

Slots

name The R name of the referenced filter.

env The environment where the filter must live.

filterId The filterId, not really used since you always resolve.

Objects from the Class

Objects are generally not created by users so there is no constructor function.

Extends

Class "filter", directly.

Author(s)

B. Ellis

filterResult-class Class "filterResult"

Description

Container to store the result of applying a filter on a flowFrame object

Slots

frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity
checking.

filterDetails Object of class "list" describing the filter applied.

filterId Object of class "character" referencing the filter applied.

38 filterResultList-class

Extends

Class "filter", directly.

Methods

== test equality

Author(s)

B. Ellis, N. LeMeur

See Also

filter, "logicalFilterResult", "multipleFilterResult", "randomFilterResult"

Examples

showClass("filterResult")

filterResultList-class

Class "filterResultList"

Description

Container to store the result of applying a filter on a flowSet object

Slots

.Data Object of class "list". The class directly extends list, and this slot holds the list data.

frameId Object of class "character" The IDs of the flowFrames in the filtered flowSet.

filterDetails Object of class "list". Since filterResultList inherits from filterResult,
this slot has to be set. It contains only the input filter.

filterId Object of class "character". The identifier for the object.

Objects from the Class

Objects are created by applying a filter on a flowSet. The user doesn’t have to deal with manual
object instantiation.

Extends

Class "list", from data part. Class "filterResult", directly. Class "concreteFilter", by class
"filterResult", distance 2. Class "filter", by class "filterResult", distance 3.

filterResultList-class 39

Methods

[signature(x = "filterResultList", i = "ANY"): Subset to filterResultList.

[[signature(x = "filterResultList", i = "ANY"): Subset to individual filterResult.

names signature(x = "filterResultList"): Accessor to the frameId slot.

parameters signature(object = "filterResultList"): Return parameters on which data has
been filtered.

show signature(object = "filterResultList"): Print details about the object.

split signature(x = "flowSet", f = "filterResultList"): Split a flowSet based on the re-
sults in the filterResultlIst. See split for details.

summary signature(object = "filterResultList"): Summarize the filtering operation. This
creates a filterSummaryList object.

Author(s)

Florian Hahne

See Also

filter, filterResult, logicalFilterResult, multipleFilterResult, randomFilterResult

Examples

library(flowStats)
Loading example data and creating a curv1Filter
data(GvHD)
dat <- GvHD[1:3]
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)

applying the filter
fres <- filter(dat, c1f)
fres

subsetting the list
fres[[1]]
fres[1:2]

details about the object
parameters(fres)
names(fres)
summary(fres)

splitting based on the filterResults
split(dat, fres)

40 filters-class

filters-class Class "filters" and "filtersList"

Description

The filters class is the container for a list of filter objects.

The filtersList class is the container for a list of filters objects.

Usage

filters(x)

filtersList(x)

Arguments

x A list of filter or filters objects.

Details

The filters class mainly exists for displaying multiple filters/gates on one single panel(flowFrame)
of xyplot. Note that it is different from filterList class which is to be applied to a flowSet. In
other words, filter objects of a fliterList are to be applied to different flowFrames. How-
ever,all of filter objects of a filters object are for one single flowFrame, more specifically for
one pair of projections(parameters).So these filters should share the common parameters.

And filtersList is a list of filters objects, which are to be applied to a flowSet.

Value

A filters or filtersList object from the constructor

Slots

.Data Object of class "list". The class directly extends list, and this slot holds the list data.

Extends

Class "list"

Objects from the Class

Objects are created from regular lists using the constructors filters and filtersList:

filters(x)

filtersList(x)

Author(s)

Mike Jiang

filterSummary-class 41

See Also

filter, filterList

filterSummary-class Class "filterSummary"

Description

Class and methods to handle the summary information of a gating operation.

Usage

S4 method for signature 'filterResult'
summary(object, ...)

Arguments

object An object inheriting from class filterResult which is to be summarized.

... Further arguments that are passed to the generic.

Details

Calling summary on a filterResult object prints summary information on the screen, but also
creates objects of class filterSummary for computational access.

Value

An object of class filterSummary for the summary constructor, a named list for the subsetting
operators. The $ operator returns a named vector of the respective value, where each named element
corresponds to one sub-population.

Slots

name Object of class "character" The name(s) of the populations created in the filtering operation.
For a logicalFilterResult this is just a single value; the name of the link{filter}.

true Object of class "numeric". The number of events within the population(s).

count Object of class "numeric". The total number of events in the gated flowFrame.

p Object of class "numeric" The percentage of cells in the population(s).

Objects from the Class

Objects are created by calling summary on a link{filterResult} object. The user doesn’t have
to deal with manual object instantiation.

42 filterSummary-class

Methods

[[signature(x = "filterSummary", i = "numeric"): Subset the filterSummary to a single
population. This only makes sense for multipleFilterResults. The output is a list of
summary statistics.

[[signature(x = "filterSummary", i = "character"): see above

$ signature(x = "filterSummary", name = "ANY"): A list-like accessor to the slots and more.
Valid values are n and count (those are identical), true and in (identical), false and out
(identical), name, p and q (1-p).

coerce signature(from = "filterSummary", to = "data.frame"): Coerce object to data.frame.

length signature(x = "filterSummary"): The number of populations in the fitlerSummary.

names signature(x = "filterSummary"): The names of the populations in the filterSummary.

print signature(x = "filterSummary"): Print details about the object.

show signature(object = "filterSummary"): Print details about the object.

toTable signature(x = "filterSummary"): Coerce object to data.frame.

Author(s)

Florian Hahne, Byron Ellis

See Also

filterResult, logicalFilterResult, multipleFilterResult, flowFrame filterSummaryList

Examples

library(flowStats)

Loading example data, creating and applying a curv1Filter
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)
fres <- filter(dat, c1f)

creating and showing the summary
summary(fres)
s <- summary(fres)

subsetting
s[[1]]
s[["peak 2"]]

##accessing details
s$true
s$n
toTable(s)

filterSummaryList-class 43

filterSummaryList-class

Class "filterSummaryList"

Description

Class and methods to handle summary statistics for from filtering operations on whole flowSets.

Arguments

object An object of class. filterResultList which is to be summarized.

... Further arguments that are passed to the generic.

Details

Calling summary on a filterResultList object prints summary information on the screen, but
also creates objects of class filterSummaryList for computational access.

Value

An object of class filterSummaryList.

Slots

.Data Object of class "list". The class directly extends list, and this slot holds the list data.

Usage

summary(object, . . .)

Objects from the Class

Objects are created by calling summary on a link{filterResultList} object. The user doesn’t
have to deal with manual object instantiation.

Extends

Class "list", from .Data part.

Methods

toTable signature(x = "filterSummaryList"): Coerce object to data.frame. Additional fac-
tors are added to indicate list items in the original object.

Author(s)

Florian Hahne

See Also

filterResult, filterResultList, logicalFilterResult, multipleFilterResult, flowFrame
filterSummary

44 flowFrame-class

Examples

library(flowStats)

Loading example data, creating and applying a curv1Filter
data(GvHD)
dat <- GvHD[1:3]
c1f <- curv1Filter(filterId="myCurv1Filter", x=list("FSC-H"), bwFac=2)
fres <- filter(dat, c1f)

creating and showing the summary
summary(fres)
s <- summary(fres)

subsetting
s[[1]]

##accessing details
toTable(s)

flowFrame-class ’flowFrame’: a class for storing observed quantitative properties for
a population of cells from a FACS run

Description

This class represents the data contained in a FCS file or similar data structure. There are three parts
of the data:

1. a numeric matrix of the raw measurement values with rows=events and columns=parameters

2. annotation for the parameters (e.g., the measurement channels, stains, dynamic range)

3. additional annotation provided through keywords in the FCS file

Details

Objects of class flowFrame can be used to hold arbitrary data of cell populations, acquired in flow-
cytometry.

FCS is the Data File Standard for Flow Cytometry, the current version is FCS 3.0. See the vignette
of this package for additional information on using the object system for handling of flow-cytometry
data.

Slots

exprs Object of class matrix containing the measured intensities. Rows correspond to cells,
columns to the different measurement channels. The colnames attribute of the matrix is sup-
posed to hold the names or identifiers for the channels. The rownames attribute would usually
not be set.

parameters An AnnotatedDataFrame containing information about each column of the flowFrame.
This will generally be filled in by read.FCS or similar functions using data from the FCS key-
words describing the parameters.

description A list containing the meta data included in the FCS file.

flowFrame-class 45

Creating Objects

Objects can be created using
new("flowFrame",
exprs =, Object of class matrix
parameters =, Object of class AnnotatedDataFrame
description =, Object of class list
)

or the constructor flowFrame, with mandatory arguments exprs and optional arguments parameters
and description.

flowFrame(exprs, parameters, description=list())

To create a flowFrame directly from an FCS file, use function read.FCS. This is the recommended
and safest way of object creation, since read.FCS will perform basic data quality checks upon
import. Unless you know exactly what you are doing, creating objects using new or the constructor
is discouraged.

Methods

There are separate documentation pages for most of the methods listed here which should be con-
sulted for more details.

[Subsetting. Returns an object of class flowFrame. The subsetting is applied to the exprs slot,
while the description slot is unchanged. The syntax for subsetting is similar to that of
data.frames. In addition to the usual index vectors (integer and logical by position, character
by parameter names), flowFrames can be subset via filterResult and filter objects.
Usage:
flowFrame[i,j]

flowFrame[filter,]

flowFrame[filterResult,]

Note that the value of argument drop is ignored when subsetting flowFrames.

$ Subsetting by channel name. This is similar to subsetting of columns of data.frames, i.e.,
frame$FSC.H is equivalent to frame[, "FSC.H"]. Note that column names may have to be
quoted if they are no valid R symbols (e.g. frame$"FSC-H").

exprs, exprs<- Extract or replace the raw data intensities. The replacement value must be a nu-
meric matrix with colnames matching the parameter definitions. Implicit subsetting is allowed
(i.e. less columns in the replacement value compared to the original flowFrame, but all have
to be defined there).
Usage:
exprs(flowFrame)

exprs(flowFrame) <- value

head, tail Show first/last elements of the raw data matrix
Usage:
head(flowFrame)

tail(flowFrame)

description, description<- Extract the whole list of annotation keywords and their corresponding
values or replace values by keyword (description<- is equivalent to keyword<-). Usually
one would only be interested in a subset of keywords, in which case the keyword method is
more appropriate. The optional hideInternal parameter can be used to exclude internal FCS
parameters starting with $.

46 flowFrame-class

Usage:
description(flowFrame)

description(flowFrame) <- value

keyword, keyword<- Extract ore replace one or more entries from the description slot by key-
word. Methods are defined for character vectors (select a keyword by name), functions (select
a keyword by evaluating a function on their content) and for lists (a combination of the above).
See keyword for details.
Usage:
keyword(flowFrame)

keyword(flowFrame, character)

keyword(flowFrame, list)

keyword(flowFrame) <- list(value)

parameters, parameters<- Extract parameters and return an object of class AnnotatedDataFrame,
or replace such an object. To access the actual parameter annotation, use pData(parameters(frame)).
Replacement is only valid with AnnotatedDataFrames containing all varLabels name, desc,
range, minRange and maxRange, and matching entries in the name column to the colnames of
the exprs matrix. See parameters for more details.
Usage:
parameters(flowFrame)

parameters(flowFrame) <- value

show Display details about the flowFrame object.
summary Return descriptive statistical summary (min, max, mean and quantile) for each channel

Usage:
summary(flowFrame)

plot Basic plots for flowFrame objects. If the object has only a single parameter this produces a
histogram. For exactly two parameters we plot a bivariate density map (see smoothScatter
and for more than two parameters we produce a simple splom plot. To select specific pa-
rameters from a flowFrame for plotting, either subset the object or specify the parameters as
a character vector in the second argument to plot. The smooth parameters lets you toggle
between density-type smoothScatter plots and regular scatterplots. This simple method still
uses the legacy flowViz package. For far more sophisticated plotting of flow cytometry data,
see the ggcyto package.
Usage:
plot(flowFrame, ...)

plot(flowFrame, character, ...)

plot(flowFrame, smooth=FALSE, ...)

ncol, nrow, dim Extract the dimensions of the data matrix.
Usage:
ncol(flowFrame)

nrow(flowFrame)

dim(flowFrame)

featureNames, colnames, colnames<- . colnames and featureNames are synonyms, they extract
parameter names (i.e., the colnames of the data matrix) . For colnames there is also a replace-
ment method. This will update the name column in the parameters slot as well.
Usage:
featureNames(flowFrame)

colnames(flowFrame)

colnames(flowFrame) <- value

flowFrame-class 47

names Extract pretty formated names of the parameters including parameter descriptions.
Usage:
names(flowFrame)

identifier Extract GUID of a flowFrame. Returns the file name if no GUID is available. See
identifier for details.
Usage:
identifier(flowFrame)

range Get instrument or actual data range of the flowFame. Note that instrument dynamic range
is not necessarily the same as the range of the actual data values, but the theoretical range of
values the measurement instrument was able to capture. The values of the dynamic range will
be transformed when using the transformation methods forflowFrames.
parameters:
x: flowFrame object.
type: Range type. either "instrument" or "data". Default is "instrument"
Usage:
range(x, type = "data")

each_row, each_col Apply functions over rows or columns of the data matrix. These are conve-
nience methods. See each_col for details.
Usage:
each_row(flowFrame, function, ...)

each_col(flowFrame, function, ...)

transform Apply a transformation function on a flowFrame object. This uses R’s transform
function by treating the flowFrame like a regular data.frame. flowCore provides an addi-
tional inline mechanism for transformations (see %on%) which is strictly more limited than the
out-of-line transformation described here.
Usage:
transform(flowFrame, translist, ...)

filter Apply a filter object on a flowFrame object. This returns an object of class filterResult,
which could then be used for subsetting of the data or to calculate summary statistics. See
filter for details.
Usage:
filter(flowFrame, filter)

split Split flowFrame object according to a filter, a filterResult or a factor. For most types
of filters, an optional flowSet=TRUE parameter will create a flowSet rather than a simple list.
See split for details.
Usage:
split(flowFrame, filter, flowSet=FALSE, ...)

split(flowFrame, filterResult, flowSet=FALSE, ...)

split(flowFrame, factor, flowSet=FALSE, ...)

Subset Subset a flowFrame according to a filter or a logical vector. The same can be done using
the standard subsetting operator with a filter, filterResult, or a logical vector as first
argument.
Usage:
Subset(flowFrame, filter)

Subset(flowFrame, logical)

48 flowFrame-class

cbind2 Expand a flowFrame by the data in a numeric matrix of the same length. The matrix
must have column names different from those of the flowFrame. The additional method for
numerics only raises a useful error message.
Usage:
cbind2(flowFrame, matrix)

cbind2(flowFrame, numeric)

compensate Apply a compensation matrix (or a compensation object) on a flowFrame object.
This returns a compensated flowFrame.
Usage:
compensate(flowFrame, matrix) compensate(flowFrame, data.frame)

decompensate Reverse the application of a compensation matrix (or a compensation object) on a
flowFrame object. This returns a decompensated flowFrame.
Usage:
decompensate(flowFrame, matrix) decompensate(flowFrame, data.frame)

spillover Extract spillover matrix from description slot if present. It is equivalent to keyword(x,
c("spillover", "SPILL", "$SPILLOVER")) Thus will simply return a list of keywords value
for "spillover", "SPILL" and "$SPILLOVER".
Usage:
spillover(flowFrame)

== Test equality between two flowFrames

<, >, <=, >= These operators basically treat the flowFrame as a numeric matrix.

initialize(flowFrame): Object instantiation, used by new; not to be called directly by the user.

Author(s)

F. Hahne, B. Ellis, P. Haaland and N. Le Meur

See Also

flowSet, read.FCS

Examples

load example data
data(GvHD)
frame <- GvHD[[1]]

subsetting
frame[1:4,]
frame[,3]
frame[,"FSC-H"]
frame$"SSC-H"

accessing and replacing raw values
head(exprs(frame))
exprs(frame) <- exprs(frame)[1:3000,]
frame
exprs(frame) <- exprs(frame)[,1:6]
frame

access FCS keywords

flowFrame-class 49

head(keyword(frame))
keyword(frame, c("FILENAME", "$FIL"))

parameter annotation
parameters(frame)
pData(parameters(frame))

summarize frame data
summary(frame)

plotting
plot(frame)
if(require(flowViz)){
plot(frame)
plot(frame, c("FSC-H", "SSC-H"))
plot(frame[,1])
plot(frame, c("FSC-H", "SSC-H"), smooth=FALSE)
}

frame dimensions
ncol(frame)
nrow(frame)
dim(frame)

accessing and replacing parameter names
featureNames(frame)
all(featureNames(frame) == colnames(frame))
colnames(frame) <- make.names(colnames(frame))
colnames(frame)
parameters(frame)$name
names(frame)

accessing a GUID
identifier(frame)
identifier(frame) <- "test"

range of a frame
range(frame) #instrument range
range(frame, type = "data") #actual data range
range(frame)$FSC.H

iterators
head(each_row(frame, mean))
head(each_col(frame, mean))

transformation
opar <- par(mfcol=c(1:2))
if(require(flowViz))
plot(frame, c("FL1.H", "FL2.H"))
frame <- transform(frame, transformList(c("FL1.H", "FL2.H"), log))
if(require(flowViz))
plot(frame, c("FL1.H", "FL2.H"))
par(opar)
range(frame)

filtering of flowFrames
rectGate <- rectangleGate(filterId="nonDebris","FSC.H"=c(200,Inf))

50 flowSet-class

fres <- filter(frame, rectGate)
summary(fres)

splitting of flowFrames
split(frame, rectGate)
split(frame, rectGate, flowSet=TRUE)
split(frame, fres)
f <- cut(exprs(frame$FSC.H), 3)
split(frame, f)

subsetting according to filters and filter results
Subset(frame, rectGate)
Subset(frame, fres)
Subset(frame, as.logical(exprs(frame$FSC.H) < 300))
frame[rectGate,]
frame[fres,]

accessing the spillover matrix
try(spillover(frame))

check equality
frame2 <- frame
frame == frame2
exprs(frame2) <- exprs(frame)*2
frame == frame2

flowSet-class ’flowSet’: a class for storing flow cytometry raw data from quantita-
tive cell-based assays

Description

This class is a container for a set of flowFrame objects

Slots

frames An environment containing one or more flowFrame objects.

phenoData An AnnotatedDataFrame containing the phenotypic data for the whole data set. Each
row corresponds to one of the flowFrames in the frames slot. The sampleNames of phenoData
(see below) must match the names of the flowFrame in the frames environment.

Creating Objects

Objects can be created using
new('flowSet',
frames =, # environment with flowFrames
phenoData = # object of class AnnotatedDataFrame
colnames = # object of class character
)

flowSet-class 51

or via the constructor flowSet, which takes arbitrary numbers of flowFrames, either as a list or
directly as arguments, along with an optional AnnotatedDataFrame for the phenoData slot and a
character scalar for the name by which the object can be referenced.

flowSet(..., phenoData)

Alternatively, flowSets can be coerced from list and environment objects.

as(list("A"=frameA,"B"=frameB),"flowSet")

The safest and easiest way to create flowSets directly from FCS files is via the read.flowSet
function, and there are alternative ways to specify the files to read. See the separate documentation
for details.

Methods

[, [[Subsetting. x[i] where i is a scalar, returns a flowSet object, and x[[i]] a flowFrame
object. In this respect the semantics are similar to the behavior of the subsetting operators
for lists. x[i, j] returns a flowSet for which the parameters of each flowFrame have been
subset according to j, x[[i,j]] returns the subset of a single flowFrame for all parameters
in j. Similar to data frames, valid values for i and j are logicals, integers and characters.
Usage:
flowSet[i]

flowSet[i,j]

flowSet[[i]]

$ Subsetting by frame name. This will return a single flowFrame object. Note that names may
have to be quoted if they are no valid R symbols (e.g. flowSet$"sample 1"

colnames, colnames<- Extract or replace the colnames slot.
Usage:
colnames(flowSet)

colnames(flowSet) <- value

identifier, identifier<- Extract or replace the name item from the environment.
Usage:
identifier(flowSet)

identifier(flowSet) <- value

phenoData, phenoData<- Extract or replace the AnnotatedDataFrame from the phenoData slot.
Usage:
phenoData(flowSet)

phenoData(flowSet) <- value

pData, pData<- Extract or replace the data frame (or columns thereof) containing actual pheno-
typic information from the phenoData slot.
Usage:
pData(flowSet)

pData(flowSet)$someColumn <- value

varLabels, varLabels<- Extract and set varLabels in the AnnotatedDataFrame of the phenoData
slot.
Usage:
varLabels(flowSet)

varLabels(flowSet) <- value

52 flowSet-class

sampleNames Extract and replace sample names from the phenoData object. Sample names cor-
respond to frame identifiers, and replacing them will also replace the GUID slot for each frame.
Note that sampleName need to be unique.
Usage:
sampleNames(flowSet)

sampleNames(flowSet) <- value

keyword Extract or replace keywords specified in a character vector or a list from the description
slot of each frame. See keyword for details.
Usage:
keyword(flowSet, list(keywords))

keyword(flowSet, keywords)

keyword(flowSet) <- list(foo="bar")

length number of flowFrame objects in the set.
Usage:
length(flowSet)

show display object summary.

summary Return descriptive statistical summary (min, max, mean and quantile) for each channel
of each flowFrame

Usage:
summary(flowSet)

fsApply Apply a function on all frames in a flowSet object. Similar to sapply, but with additional
parameters. See separate documentation for details.
Usage:
fsApply(flowSet, function, ...)

fsApply(flowSet, function, use.exprs=TRUE, ...)

compensate Apply a compensation matrix on all frames in a flowSet object. See separate docu-
mentation for details.
Usage:
compensate(flowSet, matrix)

transform Apply a transformation function on all frames of a flowSet object. See separate docu-
mentation for details.
Usage:
transform(flowSet, ...)

filter Apply a filter object on a flowSet object. There are methods for filters and lists of filters.
The latter has to be a named list, where names of the list items are matching sampleNames of
the flowSet. See filter for details.
Usage:
filter(flowSet, filter)

filter(flowSet, list(filters))

split Split all flowSet objects according to a filter, filterResult or a list of such objects,
where the length of the list has to be the same as the length of the flowSet. This returns
a list of flowFrames or an object of class flowSet if the flowSet argument is set to TRUE.
Alternatively, a flowSet can be split into separate subsets according to a factor (or any vector
that can be coerced into factors), similar to the behaviour of split for lists. This will return a
list of flowSets. See split for details.
Usage:

flowSet-class 53

split(flowSet, filter)

split(flowSet, filterResult)

split(flowSet, list(filters))

split(flowSet, factor)

Subset Returns a flowSet of flowFrames that have been subset according to a filter or filterResult,
or according to a list of such items of equal length as the flowSet.
Usage:
Subset(flowSet, filter)

Subset(flowSet, filterResult)

Subset(flowSet, list(filters))

rbind2 Combine two flowSet objects, or one flowSet and one flowFrame object.
Usage:
rbind2(flowSet, flowSet)

rbind2(flowSet, flowFrame)

spillover Compute spillover matrix from a compensation set. See separate documentation for de-
tails.

Important note on storage and performance

The bulk of the data in a flowSet object is stored in an environment, and is therefore not auto-
matically copied when the flowSet object is copied. If x is an object of class flowSet, then the
code

y <- x

will create an object y that contains copies of the phenoData and administrative data in x, but refers
to the same environment with the actual fluorescence data. See below for how to create proper
copies.

The reason for this is performance. The pass-by-value semantics of function calls in R can result
in numerous copies of the same data object being made in the course of a series of nested function
calls. If the data object is large, this can result in considerable cost of memory and performance.
flowSet objects are intended to contain experimental data in the order of hundreds of Megabytes,
which can effectively be treated as read-only: typical tasks are the extraction of subsets and the
calculation of summary statistics. This is afforded by the design of the flowSet class: an object
of that class contains a phenoData slot, some administrative information, and a reference to an
environment with the fluorescence data; when it is copied, only the reference is copied, but not the
potentially large set of fluorescence data themselves.

However, note that subsetting operations, such as y <- x[i] do create proper copies, including a
copy of the appropriate part of the fluorescence data, as it should be expected. Thus, to make a
proper copy of a flowSet x, use y <- x[seq(along=x)]

Author(s)

F. Hahne, B. Ellis, P. Haaland and N. Le Meur

See Also

flowFrame, read.flowSet

54 flowSet-class

Examples

load example data and object creation
data(GvHD)

subsetting to flowSet
set <- GvHD[1:4]
GvHD[1:4,1:2]
sel <- sampleNames(GvHD)[1:2]
GvHD[sel, "FSC-H"]
GvHD[sampleNames(GvHD) == sel[1], colnames(GvHD[1]) == "SSC-H"]

subsetting to flowFrame
GvHD[[1]]
GvHD[[1, 1:3]]
GvHD[[1, "FSC-H"]]
GvHD[[1, colnames(GvHD[1]) == "SSC-H"]]
GvHD$s5a02

constructor
flowSet(GvHD[[1]], GvHD[[2]])
pd <- phenoData(GvHD)[1:2,]
flowSet(s5a01=GvHD[[1]], s5a02=GvHD[[2]],phenoData=pd)

colnames
colnames(set)
colnames(set) <- make.names(colnames(set))

object name
identifier(set)
identifier(set) <- "test"

phenoData
pd <- phenoData(set)
pd
pd$test <- "test"
phenoData(set) <- pd
pData(set)
varLabels(set)
varLabels(set)[6] <- "Foo"
varLabels(set)

sampleNames
sampleNames(set)
sampleNames(set) <- LETTERS[1:length(set)]
sampleNames(set)

keywords
keyword(set, list("transformation"))

length
length(set)

compensation
samp <- read.flowSet(path=system.file("extdata","compdata","data",
package="flowCore"))
cfile <- system.file("extdata","compdata","compmatrix", package="flowCore")

flowSet_to_list 55

comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names = FALSE)
comp.mat
summary(samp[[1]])
samp <- compensate(samp, as.matrix(comp.mat))
summary(samp[[1]])

transformation
opar <- par(mfcol=c(1:2))
plot(set[[1]], c("FL1.H", "FL2.H"))
set <- transform(set, transformList(c("FL1.H", "FL2.H"), log))
plot(set[[1]], c("FL1.H", "FL2.H"))
par(opar)

filtering of flowSets
rectGate <- rectangleGate(filterId="nonDebris", FSC.H=c(200,Inf))
fres <- filter(set, rectGate)
class(fres)
summary(fres[[1]])
rectGate2 <- rectangleGate(filterId="nonDebris2", SSC.H=c(300,Inf))
fres2 <- filter(set, list(A=rectGate, B=rectGate2, C=rectGate, D=rectGate2))

Splitting frames of a flowSet
split(set, rectGate)
split(set[1:2], rectGate, populatiuon="nonDebris2+")
split(set, c(1,1,2,2))

subsetting according to filters and filter results
Subset(set, rectGate)
Subset(set, filter(set, rectGate))
Subset(set, list(A=rectGate, B=rectGate2, C=rectGate, D=rectGate2))

combining flowSets
rbind2(set[1:2], set[3:4])
rbind2(set[1:3], set[[4]])
rbind2(set[[4]], set[1:2])

flowSet_to_list Convert a flowSet to a list of flowFrames

Description

This is a simple helper function for splitting a flowSet in to a list of its constituent flowFrames.

Usage

flowSet_to_list(fs)

Arguments

fs a flowSet

56 fr_append_cols

Value

a list of flowFrames

fr_append_cols Append data columns to a flowFrame

Description

Append data columns to a flowFrame

Usage

fr_append_cols(fr, cols)

Arguments

fr A flowFrame.

cols A numeric matrix containing the new data columns to be added. Must have
unique column names to be used as new channel names.

Details

It is used to add extra data columns to the existing flowFrame. It handles keywords and parameters
properly to ensure the new flowFrame can be written as a valid FCS through the function write.FCS
.

Value

A flowFrame

Author(s)

Mike Jiang

Examples

data(GvHD)
tmp <- GvHD[[1]]

kf <- kmeansFilter("FSC-H"=c("Pop1","Pop2","Pop3"), filterId="myKmFilter")
fres <- filter(tmp, kf)
cols <- as.integer(fres@subSet)
cols <- matrix(cols, dimnames = list(NULL, "km"))
tmp <- fr_append_cols(tmp, cols)

tmpfile <- tempfile()
write.FCS(tmp, tmpfile)

fsApply 57

fsApply Apply a Function over values in a flowSet

Description

fsApply, like many of the apply-style functions in R, acts as an iterator for flowSet objects,
allowing the application of a function to either the flowFrame or the data matrix itself. The output
can then be reconstructed as either a flowSet, a list, or a matrix depending on options and the type
of objects returned.

Usage

fsApply(x, FUN, ..., simplify=TRUE, use.exprs=FALSE)

Arguments

x flowSet to be used

FUN the function to be applied to each element of x

... optional arguments to FUN.

simplify logical (default: TRUE); if all true and all objects are flowFrame objects, a
flowSet object will be constructed. If all of the values are of the same type
there will be an attempt to construct a vector or matrix of the appropriate type
(e.g. all numeric results will return a matrix).

use.exprs logical (default: FALSE); should the FUN be applied on the flowFrame object or
the expression values.

Author(s)

B. Ellis

See Also

apply, sapply

Examples

fcs.loc <- system.file("extdata",package="flowCore")
file.location <- paste(fcs.loc, dir(fcs.loc), sep="/")
samp <- read.flowSet(file.location[1:3])

#Get summary information about each sample.
fsApply(samp,summary)

#Obtain the median of each parameter in each frame.
fsApply(samp,each_col,median)

58 getIndexSort

getChannelMarker get channel and marker information from a flowFrame that matches
to the given keyword

Description

This function tries best to guess the flow parameter based on the keyword supplied by name It first
does a complete word match(case insensitive) between name and flow channels and markers. If
there are duplcated matches, throw the error. If no matches, it will try the partial match.

Usage

getChannelMarker(frm, name, ...)

Arguments

frm flowFrame object

name character the keyword to match

... other arguments: not used.

Value

an one-row data.frame that contains "name"(i.e. channel) and "desc"(i.e. stained marker) columns.

getIndexSort Extract Index Sorted Data from an FCS File

Description

Retrieve a data frame of index sorted data and sort indices from an FCS file.

Details

The input FCS file should already be compensated. Index sorting permits association of cell-level
fluorescence intensities with downstream data collection on the sorted cells. Cells are sorted into a
plate with X,Y coordinates, and those coordinates are stored in the FCS file.

This function will extract the data frame of flow data and the X,Y coordinates for the cell-level data,
which can be written to a text file, or concatenated with sample-level information and analyzed in
R. The coordinates are names ’XLoc’,’YLoc’, and a ’name’ column is also prepended with the FCS
file name.

Value

Matrix of fluorescence intensities and sort indices for plate location. When no index sorting data is
available, invisibly returns 0. Test for 0 to check success.

Methods

getIndexSort(x = "flowFrame") Return a matrix of fluorescence intensities and indices into the
sorting plate for each cell.

GvHD 59

Author(s)

G. Finak

Examples

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
This will return a message that no index sorting data is available
getIndexSort(samp)

GvHD Extract of a Graft versus Host Disease monitoring experiment
(Rizzieri et al., 2007)

Description

A flow cytometry high throughput screening was used to identify biomarkers that would predict the
development of GvHD. The GvHD dataset is an extract of a collection of weekly peripheral blood
samples obtained from patients following allogenic blood and marrow transplant. Samples were
taken at various time points before and after graft.

Usage

data(GvHD)

Format

The format is an object of class flowSet composed of 35 flowFrames. Each flowFrame corre-
sponds to one sample at one time point. The phenodata lists:

Patient The patient Id code

Visit The number of visits to the hospital

Days The number of days since the graft. Negative values correpond to days before the graft.

Grade Grade of the cancer

Details

This GvHD dataset represents the measurements of one biomarker (leukocyte) for 5 patients over
7 visits (7 time points). The blood samples were labeled with four different fluorescent probes to
identify the biomarker and the fluorescent intensity was determined for at least ten thousand cells
per sample.

Source

Complete dataset available at http://www.ficcs.org/software.html#Data_Files, the Flow In-
formatics and Computational Cytometry Society website (FICCS)

References

Rizzieri DA et al. J Clin Oncol. 2007 Jan 16; [Epub ahead of print] PMID: 17228020

http://www.ficcs.org/software.html#Data_Files

60 hyperlog-class

hyperlog-class Class "hyperlog"

Description

Hyperlog transformation of a parameter is defined by the function

f(parameter, a, b) = rootEH(y, a, b)− parameter

where EH is a function defined by

EH(y, a, b) = 10(
y
a) +

b ∗ y
a

− 1, y >= 0

EH(y, a, b) = −10(
−y
a) +

b ∗ y
a

+ 1, y < 0

Slots

.Data Object of class "function".

a Object of class "numeric" – numeric constant treater than zero.

b Object of class "numeric" numeric constant greater than zero.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor hyperlog(parameter,a,b,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

hyperlogtGml2-class 61

See Also

EHtrans

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
hlog1<-hyperlog("FSC-H",a=1,b=1,transformationId="hlog1")
transOut<-eval(hlog1)(exprs(dat))

hyperlogtGml2-class Class hyperlogtGml2

Description

Hyperlog transformation parameterized according to Gating-ML 2.0.

Details

hyperlogtGml2 is defined by the following function:

bound(hyperlog, boundMin, boundMax) = max(min(hyperlog, boundMax), boundMin))

where
hyperlog(x, T,W,M,A) = root(EH(y, T,W,M,A)− x)

and EH is defined as:
EH(y, T,W,M,A) = aeby + cy − f

where

• x is the value that is being transformed (an FCS dimension value). Typically, x is less than or
equal to T, although the transformation function is also defined for x greater than T.

• y is the result of the transformation.

• T is greater than zero and represents the top of scale value.

• M is greater than zero and represents the number of decades that the true logarithmic scale
approached at the high end of the Hyperlog scale would cover in the plot range.

• W is positive and not greater than half of M and represents the number of such decades in the
approximately linear region.

• A is the number of additional decades of negative data values to be included. A shall be greater
than or equal to −W , and less than or equal to M − 2W

• root is a standard root finding algorithm (e.g., Newton’s method) that finds y such as B(y, T,W,M,A) =
x.

62 hyperlogtGml2-class

and a, b, c and f are defined by means of T , W , M , A, w, x0, x1, x2, e0, ca and fa as:

w = W/(M +A)

x2 = A/(M +A)

x1 = x2 + w

x0 = x2 + 2 ∗ w
b = (M +A) ∗ ln(10)

e0 = eb∗x0

ca = e0/w

fa = eb∗x1 + ca ∗ x1
a = T/(eb + ca− fa)

c = ca ∗ a
f = fa ∗ a

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the hyperlog function be less than boundMin, then let the result of this transformation be
boundMin. Analogically, should the result of the hyperlog function be more than boundMax, then
let the result of this transformation be boundMax. The boundMin parameter shall not be greater
than the boundMax parameter.

Slots

.Data Object of class function.
T Object of class numeric – positive constant (top of scale value).
M Object of class numeric – positive constant (desired number of decades).
W Object of class numeric – positive constant that is not greater than half of M (the number of such

decades in the approximately linear region)
A Object of class numeric – a constant that is greater than or equal to -W, and also less than or

equal to M-2W. (A represents the number of additional decades of negative data values to be
included.)

parameters Object of class "transformation" – flow parameter to be transformed.
transformationId Object of class "character" – unique ID to reference the transformation.
boundMin Object of class numeric – lower bound of the transformation, default -Inf.
boundMax Object of class numeric – upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

hyperlogtGml2(parameter, T, M, W, A, transformationId, boundMin,boundMax)

Extends

Class singleParameterTransform, directly.

Class transform, by class singleParameterTransform, distance 2.

Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

identifier-methods 63

Note

That hyperlogtGml2 transformation brings "reasonable" data values to the scale of [0, 1]. The
transformation is somewhat similar to logicletGml2. (See Gating-ML 2.0 for detailed comparison)

The hyperlog transformation object can be evaluated using the eval method by passing the data
frame as an argument. The transformed parameters are returned as a matrix with a single column.
(See example below)

Author(s)

Spidlen, J., Moore, W.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

hyperlog, logicleTransform, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, invsplitscale-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myHyperLg <- hyperlogtGml2(parameters = "FSC-H", T = 1023, M = 4.5,
W = 0.5, A = 0, transformationId="myHyperLg")

transOut <- eval(myHyperLg)(exprs(myDataIn))

identifier-methods Retrieve the GUID of flowCore objects

Description

Retrieve the GUID (globally unique identifier) of a flowFrame that was generated by the cytometer
or the identifier of a filter or filterResult given by the analyst.

Usage

identifier(object)

Arguments

object Object of class flowFrame, filter or filterResult.

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

64 intersectFilter-class

Details

GUID or Globally Unique Identifier is a pseudo-random number used in software applications.
While each generated GUID is not guaranteed to be unique, the total number of unique keys
(2\^128) is so large that the probability of the same number being generated twice is very small.

Note that if no GUID has been recorded along with the FCS file, the name of the file is returned.

Value

Character vector representing the GUID or the name of the file.

Methods

identifier(object = "filter") Return identifier of a filter object.

identifier(object = "filterReference") Return identifier of a filterReference object.

identifier(object = "filterResult") Return identifier of a filterResult object.

identifier(object = "transform") Return identifier of a transform object.

identifier(object = "flowFrame") Return GUID from the description slot of a flowFrame ob-
ject or, alternatively, the name of the input FCS file in case none can be found. For flowFrame
objects there also exists a replacement method.

Author(s)

N. LeMeur

Examples

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
identifier(samp)

intersectFilter-class Class intersectFilter

Description

This class represents the intersection of two filters, which is itself a filter that can be incorporated in
to further set operations. intersectFilters are constructed using the binary set operator "&" with
operands consisting of a single filter or list of filters.

Slots

filters Object of class "list", containing the component filters.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filter", directly.

inverseLogicleTransform 65

Author(s)

B. Ellis

See Also

filter, setOperationFilter

Other setOperationFilter classes: complementFilter-class, setOperationFilter-class, subsetFilter-class,
unionFilter-class

inverseLogicleTransform

Computes the inverse of the transform defined by the ’logicleTrans-
form’ function or the transformList generated by ’estimateLogicle’
function

Description

inverseLogicleTransform can be use to compute the inverse of the Logicle transformation. The
parameters w, t, m, a for calculating the inverse are obtained from the ’trans’ input passed to the
’inverseLogicleTransform’ function. (The inverseLogicleTransform method makes use of the C++
implementation of the inverse logicle transform contributed by Wayne Moore et al.)

Usage

inverseLogicleTransform(trans,transformationId,...)

Arguments

trans An object of class ’transform’ created using the ’logicleTransform’ function or
class ’transformList’ created by ’estimateLogicle’. The parameters w, t, m, a for
calculating the inverse are obtained from the ’trans’ input passed to the ’inverse-
LogicleTransform’ function.

transformationId

A name to assigned to the inverse transformation. Used by the transform rou-
tines.

... not used.

Author(s)

Wayne Moore, N. Gopalakrishnan

References

Parks D.R., Roederer M., Moore W.A.(2006) A new "logicle" display method avoids deceptive
effects of logarithmic scaling for low signals and compensated data. CytometryA, 96(6):541-51.

See Also

logicleTransform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), linearTransform(),
lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

66 invsplitscale-class

Examples

data(GvHD)
samp <- GvHD[[1]]

#########inverse the transform object###############
logicle <- logicleTransform(t = 10000, w = 0.5, m = 4.5 , a =0 ,"logicle")
transform FL1-H parameter using logicle transformation
after <- transform(samp, transformList('FL1-H', logicle))

Inverse transform the logicle transformed data to retrieve the original data
invLogicle <- inverseLogicleTransform(trans = logicle)
before <- transform (after, transformList('FL1-H', invLogicle))

#########inverse the transformList object###############
translist <- estimateLogicle(samp, c("FL1-H", "FL2-H"))
after <- transform(samp, translist)
Inverse
invLogicle <- inverseLogicleTransform(translist)
before <- transform (after, invLogicle)

invsplitscale-class Class "invsplitscale"

Description

As its name suggests, the inverse split scale transformation class represents the inverse transforma-
tion of a split scale transformation that has a logarithmic scale at high values and a linear scale at
low values.

Details

The inverse split scale transformation is defined by the function

f(parameter, r,maxV alue, transitionChannel)
(parameter − b)

a
, parameter <= t ∗ a+ b

f(parameter, r,maxV alue, transitionChannel) =
10parameter∗ d

r

c
, parameter > t ∗ a+ b

where

b =
transitionChannel

2

d =
2 ∗ log10(e) ∗ r

transitionChannel
+ log10(maxV alue)

t = 10log10t

a =
transitionChannel

2 ∗ t

log10ct =
(a ∗ t+ b) ∗ d

r

c = 10log10ct

invsplitscale-class 67

Slots

.Data Object of class "function".

r Object of class "numeric" – a positive value indicating the range of the logarithmic part of the
dispmlay.

maxValue Object of class "numeric" – a positive value indicating the maximum value the trans-
formation is applied to.

transitionChannel Object of class "numeric" – non negative value that indicates where to split
the linear vs. logarithmic transformation.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor invsplitscale(parameters,r,maxValue,transitionChannel,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)

Gopalakrishnan N,F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

See Also

splitscale

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, lintGml2-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
sp1<-invsplitscale("FSC-H",r=512,maxValue=2000,transitionChannel=512)
transOut<-eval(sp1)(exprs(dat))

68 keyword-methods

keyword-methods Methods to retrieve keywords of a flowFrame

Description

Accessor and replacement methods for items in the description slot (usually read in from a FCS
file header). It lists the keywords and its values for a flowFrame specified by a character vector.
Additional methods for function and lists exists for more programmatic access to the keywords.

Usage

keyword(object, keyword, ...)

Arguments

object Object of class flowFrame.

keyword Character vector or list of potential keywords or function. If missing all key-
words are returned.

... compact: logical scaler to indicate whether to hide all the cytometer instrument
and laser settings from keywords.

Details

The keyword methods allow access to the keywords stored in the FCS files, either for a flowFrame
or for a list of frames in a flowSet. The most simple use case is to provide a character vector or
a list of character strings of keyword names. A more sophisticated version is to provide a function
which has to take one mandatory argument, the value of this is the flowFrame. This can be used
to query arbitrary information from the flowFrames description slot or even the raw data. The
function has to return a single character string. The list methods allow to combine functional and
direct keyword access. The replacement method takes a named character vector or a named list as
input.

Methods

keyword(object = "flowFrame", keyword = "character") Return values for all keywords from
the description slot in object that match the character vector keyword.

keyword(object = "flowFrame", keyword = "function") Apply the function in keyword on the
flowFrame object. The function needs to be able to cope with a single argument and it needs
to return a single character string. A typical use case is for instance to paste together values
from several different keywords or to compute some statistic on the flowFrame and combine
it with one or several other keywords.

keyword(object = "flowFrame", keyword = "list") Combine characters and functions in a list to
select keyword values.

keyword(object = "flowFrame", keyword = "missing") This is essentially an alias for description
and returns all keyword-value pairs.

keyword(object = "flowSet", keyword = "list") This is a wrapper around fsApply(object, keyword,
keyword) which essentially iterates over the frames in the flowSet.

keyword(object = "flowSet", keyword = "ANY") This first coerces the keyword (mostly a char-
acter vector) to a list and then calls the next applicable method.

kmeansFilter-class 69

Author(s)

N LeMeur,F Hahne,B Ellis

See Also

description

Examples

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
keyword(samp)
keyword(samp, compact = TRUE)

keyword(samp, "FCSversion")

keyword(samp, function(x,...) paste(keyword(x, "SAMPLE ID"), keyword(x,
"GUID"), sep="_"))

keyword(samp)[["foo"]] <- "bar"

data(GvHD)
keyword(GvHD, list("GUID", cellnumber=function(x) nrow(x)))

kmeansFilter-class Class "kmeansFilter"

Description

A filter that performs one-dimensional k-means (Lloyd-Max) clustering on a single flow parameter.

Usage

kmeansFilter(..., filterId="defaultKmeansFilter")

Arguments

... kmeansFilter are defined by a single flow parameter and an associated list
of k population names. They can be given as a character vector via a named
argument, or as a list with a single named argument. In both cases the name will
be used as the flow parameter and the content of the list or of the argument will
be used as population names, after coercing to character. For example
kmeansFilter(FSC=c("a", "b", "c"))

or
kmeansFilter(list(SSC=1:3))

If the parameter is not fully realized, but instead is the result of a transformation
operation, two arguments need to be passed to the constructor: the first one be-
ing the transform object and the second being a vector of population names
which can be coerced to a character. For example
kmeansFilter(tf, c("D", "E"))

filterId An optional parameter that sets the filterId of the object. The filter can later
be identified by this name.

70 kmeansFilter-class

Details

The one-dimensional k-means filter is a multiple population filter capable of operating on a single
flow parameter. It takes a parameter argument associated with two or more populations and results
in the generation of an object of class multipleFilterResult. Populations are considered to be
ordered such that the population with the smallest mean intensity will be the first population in the
list and the population with the highest mean intensity will be the last population listed.

Value

Returns a kmeansFilter object for use in filtering flowFrames or other flow cytometry objects.

Slots

populations Object of class character. The names of the k populations (or clusters) that will be
created by the kmeansFilter. These names will later be used for the respective subpopula-
tions in split operations and for the summary of the filterResult.

parameters Object of class parameters, defining a single parameter for which the data in the
flowFrame is to be clustered. This may also be a transformation object.

filterId Object of class character, an identifier or name to reference the kmeansFilter object
later on.

Extends

Class parameterFilter, directly.

Class concreteFilter, by class parameterFilter, distance 2.

Class filter, by class parameterFilter, distance3.

Objects from the Class

Like all other filter objects in flowCore, kmeansFilter objects should be instantiated through
their constructor kmeansFilter(). See the Usage section for details.

Methods

%in% signature(x = "flowFrame", table = "kmeansFilter"): The workhorse used to evalu-
ate the filter on data.
Usage:
This is usually not called directly by the user, but internally by the filter methods.

show signature(object = "kmeansFilter"): Print information about the filter.
Usage:
The method is called automatically whenever the object is printed on the screen.

Note

See the documentation in the flowViz package for plotting of kmeansFilters.

Author(s)

F. Hahne, B. Ellis, N. LeMeur

linearTransform 71

See Also

flowFrame, flowSet, filter for evaluation of kmeansFilters and split for splitting of flow
cytometry data sets based on the result of the filtering operation.

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

Create the filter
kf <- kmeansFilter("FSC-H"=c("Pop1","Pop2","Pop3"), filterId="myKmFilter")

Filtering using kmeansFilters
fres <- filter(dat, kf)
fres
summary(fres)
names(fres)

The result of quadGate filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="Pop1")
split(dat, fres, population=list(keep=c("Pop1","Pop2")))

linearTransform Create the definition of a linear transformation function to be applied
on a data set

Description

Create the definition of the linear Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x <- a*x+b

Usage

linearTransform(transformationId="defaultLinearTransform", a = 1, b = 0)

Arguments

transformationId

character string to identify the transformation

a double that corresponds to the multiplicative factor in the equation

b double that corresponds to the additive factor in the equation

Value

Returns an object of class transform.

72 lintGml2-class

Author(s)

N. LeMeur

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
lnTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
linearTrans <- linearTransform(transformationId="Linear-transformation", a=2, b=0)
dataTransform <- transform(samp, transformList('FSC-H' ,linearTrans))

lintGml2-class Class lintGml2

Description

Linear transformation as parameterized in Gating-ML 2.0.

Details

lintGml2 is defined by the following function:

bound(f, boundMin, boundMax) = max(min(f, boundMax), boundMin))

where
f(parameter, T,A) = (parameter +A)/(T +A)

This transformation provides a linear display that maps scale values from the [−A, T] interval to
the [0, 1] interval. However, it is defined for all xinR including outside of the [−A, T] interval.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the f function be less than boundMin, then let the result of this transformation be boundMin.
Analogically, should the result of the f function be more than boundMax, then let the result of this
transformation be boundMax. The boundMin parameter shall not be greater than the boundMax
parameter.

Slots

.Data Object of class function.

T Object of class numeric – positive constant (top of scale value).

A Object of class numeric – non-negative constant that is less than or equal to T; it is determining
the bottom end of the transformation.

parameters Object of class "transformation" – flow parameter to be transformed.

lintGml2-class 73

transformationId Object of class "character" – unique ID to reference the transformation.

boundMin Object of class numeric – lower bound of the transformation, default -Inf.

boundMax Object of class numeric – upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

lintGml2(parameter, T, A, transformationId, boundMin, boundMax)

Extends

Class singleParameterTransform, directly.

Class transform, by class singleParameterTransform, distance 2.

Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

Note

The linear transformation object can be evaluated using the eval method by passing the data frame
as an argument. The transformed parameters are returned as a matrix with a single column. (See
example below)

Author(s)

Spidlen, J.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

linearTransform, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, logarithm-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myLinTr1 <- lintGml2(parameters = "FSC-H", T = 1000, A = 0,
transformationId="myLinTr1")

transOut <- eval(myLinTr1)(exprs(myDataIn))

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

74 lnTransform

lnTransform Create the definition of a ln transformation function (natural loga-
rthim) to be applied on a data set

Description

Create the definition of the ln Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x<-log(x)*(r/d). The transforma-
tion would normally be used to convert to a linear valued parameter to the natural logarithm scale.
Typically r and d are both equal to 1.0. Both must be positive.

Usage

lnTransform(transformationId="defaultLnTransform", r=1, d=1)

Arguments

transformationId

character string to identify the transformation

r positive double that corresponds to a scale factor.

d positive double that corresponds to a scale factor

Value

Returns an object of class transform.

Author(s)

B. Ellis and N. LeMeur

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), logTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

data(GvHD)
lnTrans <- lnTransform(transformationId="ln-transformation", r=1, d=1)
ln1 <- transform(GvHD, transformList('FSC-H', lnTrans))

opar = par(mfcol=c(2, 1))
plot(density(exprs(GvHD[[1]])[,1]), main="Original")
plot(density(exprs(ln1[[1]])[,1]), main="Ln Transform")

logarithm-class 75

logarithm-class Class "logarithm"

Description

Logartithmic transform class, which represents a transformation defined by the function

Details

f(parameter, a, b) = ln(a ∗ prarameter) ∗ b a ∗ parameter > 0

0 a ∗ parameter <= 0

Slots

.Data Object of class "function"

a Object of class "numeric" – non-zero multiplicative constant.

b Object of class "numeric" – non-zero multiplicative constant.

parameters Object of class "transformation" – flow parameters to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor logarithm(parameters,a,b,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The logarithm transformation object can be evaluated using the eval method by passing the data
frame as an argument.The transformed parameters are returned as a matrix with a single column.
(See example below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

76 logicalFilterResult-class

See Also

exponential, quadratic

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logicletGml2-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
lg1<-logarithm(parameters="FSC-H",a=2,b=1,transformationId="lg1")
transOut<-eval(lg1)(exprs(dat))

logicalFilterResult-class

Class "logicalFilterResult"

Description

Container to store the result of applying a filter on a flowFrame object

Slots

subSet Object of class "numeric", which is a logical vector indicating the population membership
of the data in the gated flowFrame.

frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity
checking.

filterDetails Object of class "list" describing the filter applied.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

Author(s)

B. Ellis

See Also

filter

Examples

showClass("logicalFilterResult")

logicletGml2-class 77

logicletGml2-class Class logicletGml2

Description

Logicle transformation as published by Moore and Parks.

Details

logicletGml2 is defined by the following function:

bound(logicle, boundMin, boundMax) = max(min(logicle, boundMax), boundMin))

where
logicle(x, T,W,M,A) = root(B(y, T,W,M,A)− x)

and B is a modified biexponential function:

B(y, T,W,M,A) = aeby − ce−dy − f

where

• x is the value that is being transformed (an FCS dimension value). Typically, x is less than or
equal to T, although the transformation function is also defined for x greater than T.

• y is the result of the transformation.

• T is greater than zero and represents the top of scale value.

• M is greater than zero and represents the number of decades that the true logarithmic scale
approached at the high end of the Logicle scale would cover in the plot range.

• W is non-negative and not greater than half of M and represents the number of such decades in
the approximately linear region. The choice of W = M/2 specifies a scale that is essentially
linear over the whole range except for a small region of large data values. For situations in
which values of W approaching M/2 might be chosen, ordinary linear display scales will
usually be more appropriate. The choice of W = 0 gives essentially the hyperbolic sine
function.

• A is the number of additional decades of negative data values to be included. A shall be greater
than or equal to −W , and less than or equal to M − 2W

• root is a standard root finding algorithm (e.g., Newton’s method) that finds y such as B(y, T,W,M,A) =
x.

and a, b, c, d and f are defined by means of T , W , M , A, w, x0, x1, x2, ca and fa as:

w = W/(M +A)

x2 = A/(M +A)

x1 = x2 + w

x0 = x2 + 2 ∗ w

b = (M +A) ∗ ln(10)

and d is a constant so that

2 ∗ (ln(d)− ln(b)) + w ∗ (d+ b) = 0

78 logicletGml2-class

given b and w, and
ca = ex0∗(b+d)

fa = eb∗x1 − (ca/(ed∗x1))

a = T/(eb − fa− (ca/ed))

c = ca ∗ a

f = fa ∗ a

The Logicle scale is the inverse of a modified biexponential function. It provides a Logicle display
that maps scale values onto the [0, 1] interval such that the data value T is mapped to 1, large data
values are mapped to locations similar to an (M + A)-decade logarithmic scale, and A decades
of negative data are brought on scale. For implementation purposes, it is recommended to follow
guidance in Moore and Parks publication.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the logicle function be less than boundMin, then let the result of this transformation be
boundMin. Analogically, should the result of the logicle function be more than boundMax, then let
the result of this transformation be boundMax. The boundMin parameter shall not be greater than
the boundMax parameter.

Slots

.Data Object of class function.

T Object of class numeric – positive constant (top of scale value).

M Object of class numeric – positive constant (desired number of decades).

W Object of class numeric – non-negative constant that is not greater than half of M (the number of
such decades in the approximately linear region).

A Object of class numeric – a constant that is greater than or equal to -W, and also less than or
equal to M-2W. (A represents the number of additional decades of negative data values to be
included.)

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

boundMin Object of class numeric – lower bound of the transformation, default -Inf.

boundMax Object of class numeric – upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

logicletGml2(parameter, T, M, W, A, transformationId, boundMin,boundMax)

Extends

Class singleParameterTransform, directly.

Class transform, by class singleParameterTransform, distance 2.

Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

logicleTransform 79

Note

Please note that logicletGml2 and logicleTransform are similar transformations; however, the
Gating-ML 2.0 compliant logicletGml2 brings "reasonable" data values to the scale of [0, 1] while
the logicleTransform scales these values to [0,M].

The logicle transformation object can be evaluated using the eval method by passing the data frame
as an argument. The transformed parameters are returned as a matrix with a single column. (See
example below)

Author(s)

Spidlen, J., Moore, W.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

Moore, WA and Parks, DR. Update for the logicle data scale including operational code implemen-
tations. Cytometry A., 2012:81A(4):273-277.

Parks, DR and Roederer, M and Moore, WA. A new "Logicle" display method avoids deceptive
effects of logarithmic scaling for low signals and compensated data. Cytometry A., 2006:69(6):541-
551.

See Also

logicleTransform, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logtGml2-class, quadratic-class, ratio-class, ratiotGml2-class, sinht-class,
splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myLogicle <- logicletGml2(parameters = "FSC-H", T = 1023, M = 4.5,
W = 0.5, A = 0, transformationId="myLogicle")

transOut <- eval(myLogicle)(exprs(myDataIn))

logicleTransform Computes a transform using the ’logicle_transform’ function

Description

Logicle transformation creates a subset of biexponentialTransform hyperbolic sine transforma-
tion functions that provides several advantages over linear/log transformations for display of flow
cytometry data. (The logicleTransform method makes use of the C++ implementation of the logicle
transform contributed by Wayne Moore et al.)

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

80 logicleTransform

Usage

logicleTransform(transformationId="defaultLogicleTransform", w = 0.5, t = 262144,
m = 4.5, a = 0)
estimateLogicle(x, channels,...)

Arguments

transformationId

A name to assign to the transformation. Used by the transform/filter routines.

w w is the linearization width in asymptotic decades. w should be > 0 and deter-
mines the slope of transformation at zero. w can be estimated using the equation
w=(m-log10(t/abs(r)))/2, where r is the most negative value to be included in the
display

t Top of the scale data value, e.g, 10000 for common 4 decade data or 262144 for
a 18 bit data range. t should be greater than zero

m m is the full width of the transformed display in asymptotic decades. m should
be greater than zero

a Additional negative range to be included in the display in asymptotic decades.
Positive values of the argument brings additional negative input values into the
transformed display viewing area. Default value is zero corresponding to a Stan-
dard logicle function.

x Input flow frame for which the logicle transformations are to be estimated.

channels channels or markers for which the logicle transformation is to be estimated.

... other arguments:
q: a numeric type specifying quantile value, default is 0.05

Author(s)

Wayne Moore, N Gopalakrishnan

References

Parks D.R., Roederer M., Moore W.A.(2006) A new "logicle" display method avoids deceptive
effects of logarithmic scaling for low signals and compensated data. CytometryA, 96(6):541-51.

See Also

inverseLogicleTransform, estimateLogicle

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

data(GvHD)
samp <- GvHD[[1]]
User defined logicle function
lgcl <- logicleTransform(w = 0.5, t= 10000, m =4.5)
trans <- transformList(c("FL1-H", "FL2-H"), lgcl)
after <- transform(samp, trans)
invLgcl <- inverseLogicleTransform(trans = lgcl)

logtGml2-class 81

trans <- transformList(c("FL1-H", "FL2-H"), invLgcl)
before <- transform (after, trans)

Automatically estimate the logicle transformation based on the data
lgcl <- estimateLogicle(samp, channels = c("FL1-H", "FL2-H", "FL3-H", "FL2-A", "FL4-H"))
transform parameters using the estimated logicle transformation
after <- transform(samp, lgcl)

logtGml2-class Class logtGml2

Description

Log transformation as parameterized in Gating-ML 2.0.

Details

logtGml2 is defined by the following function:

bound(f, boundMin, boundMax) = max(min(f, boundMax), boundMin))

where
f(parameter, T,M) = (1/M) ∗ log10(x/T) + 1

This transformation provides a logarithmic display that maps scale values from the (0, T] interval to
the (−Inf, 1] interval such that the data value T is mapped to 1 and M decades of data are mapped
into the interval. Also, the limit for x going to 0 is -Inf.

In addition, if a boundary is defined by the boundMin and/or boundMax parameters, then the result
of this transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the
result of the f function be less than boundMin, then let the result of this transformation be boundMin.
Analogically, should the result of the f function be more than boundMax, then let the result of this
transformation be boundMax. The boundMin parameter shall not be greater than the boundMax
parameter.

Slots

.Data Object of class function.

T Object of class numeric – positive constant (top of scale value).

M Object of class numeric – positive constant (number of decades).

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

boundMin Object of class numeric – lower bound of the transformation, default -Inf.

boundMax Object of class numeric – upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

logtGml2(parameter, T, M, transformationId, boundMin, boundMax)

82 logTransform

Extends

Class singleParameterTransform, directly.

Class transform, by class singleParameterTransform, distance 2.

Class transformation, by class singleParameterTransform, distance 3.

Class characterOrTransformation, by class singleParameterTransform, distance 4.

Note

The log transformation object can be evaluated using the eval method by passing the data frame
as an argument. The transformed parameters are returned as a matrix with a single column. (See
example below)

Author(s)

Spidlen, J.

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

logTransform, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, quadratic-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myLogTr1 <- logtGml2(parameters = "FSC-H", T = 1023, M = 4.5,
transformationId="myLogTr1")

transOut <- eval(myLogTr1)(exprs(myDataIn))

logTransform Create the definition of a log transformation function (base specified
by user) to be applied on a data set

Description

Create the definition of the log Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x<-log(x,logbase)*(r/d). The trans-
formation would normally be used to convert to a linear valued parameter to the natural logarithm
scale. Typically r and d are both equal to 1.0. Both must be positive. logbase = 10 corresponds to
base 10 logarithm.

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

manyFilterResult-class 83

Usage

logTransform(transformationId="defaultLogTransform", logbase=10, r=1, d=1)

Arguments

transformationId

character string to identify the transformation
logbase positive double that corresponds to the base of the logarithm.
r positive double that corresponds to a scale factor.
d positive double that corresponds to a scale factor

Value

Returns an object of class transform.

Author(s)

B. Ellis, N. LeMeur

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logicleTransform(), quadraticTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))

logTrans <- logTransform(transformationId="log10-transformation", logbase=10, r=1, d=1)
trans <- transformList('FSC-H', logTrans)
dataTransform <- transform(samp, trans)

manyFilterResult-class

Class "manyFilterResult"

Description

The result of a several related, but possibly overlapping filter results. The usual creator of this object
will usually be a filter operation on a flowFrame object.

Slots

subSet Object of class "matrix".
frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity

checking.
filterDetails Object of class "list" describing the filter applied.
filterId Object of class "character" referencing the filter applied.
dependency Any dependencies between the filters. Currently not used.

84 markernames

Extends

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

Methods

[, [[subsetting. If x is manyFilterResult, then x[[i]] a filterResult object. The semantics is
similar to the behavior of the subsetting operators for lists.

length number of filterResult objects in the set.

names names of the filterResult objects in the set.

summary summary filterResult objects in the set.

Author(s)

B. Ellis

See Also

filterResult

Examples

showClass("manyFilterResult")

markernames get or update the marker names

Description

marker names corresponds to the ’desc’ column of the phenoData of the flowFrame.

Usage

markernames(object, ...)

S4 method for signature 'flowFrame'
markernames(object)

markernames(object) <- value

S4 replacement method for signature 'flowFrame'
markernames(object) <- value

S4 method for signature 'flowSet'
markernames(object)

S4 replacement method for signature 'flowSet'
markernames(object) <- value

multipleFilterResult-class 85

Arguments

object flowFrame or flowSet

... not used

value a named list or character vector. the names corresponds to the name(channel)
and actual values are the desc(marker).

Details

When extract marker names from a flowSet, it throws the warning if the marker names are not all
the same across samples.

Value

marker names as a character vector. The marker names for FSC,SSC and Time channels are auto-
matically excluded in the returned value. When object is a flowSet and the marker names are not
consistent across flowFrames, it returns a list of unique marker sets.

Examples

data(GvHD)
fr <- GvHD[[1]]
markernames(fr)

chnls <- c("FL1-H", "FL3-H")
markers <- c("CD15", "CD14")
names(markers) <- chnls
markernames(fr) <- markers
markernames(fr)

fs <- GvHD[1:3]
markernames(fs)

multipleFilterResult-class

Class "multipleFilterResult"

Description

Container to store the result of applying filter on set of flowFrame objects

Slots

subSet Object of class "factor" indicating the population membership of the data in the gated
flowFrame.

frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity
checking.

filterDetails Object of class "list" describing the filter applied.

filterId Object of class "character" referencing the filter applied.

86 normalization-class

Extends

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

Methods

[, [[subsetting. If x is multipleFilterResult, then x[[i]] a FilterResult object. The seman-
tics is similar to the behavior of the subsetting operators for lists.

length number of FilterResult objects in the set.

names names of the FilterResult objects in the set.

summary summary FilterResult objects in the set.

Author(s)

B. Ellis

See Also

filterResult

Examples

showClass("multipleFilterResult")

normalization-class Class "normalization"

Description

Class and methods to normalize a a flowSet using a potentially complex normalization function.

Usage

normalization(parameters, normalizationId="defaultNormalization",
normFunction, arguments=list())

normalize(data, x,...)

Arguments

parameters Character vector of parameter names.
normalizationId

The identifier for the normalization object.

x An object of class flowSet.

normFunction The normalization function

arguments The list of additional arguments to normFunction

data The flowSet to normalize.

... other arguments: see normalize-methodsfor details.

normalization-class 87

Details

Data normalization of a flowSet is a rather fuzzy concept. The idea is to have a rather general func-
tion that takes a flowSet and a list of parameter names as input and applies any kind of normaliza-
tion to the respective data columns. The output of the function has to be a flowSet again. Although
we don’t formally check for it, the dimensions of the input and of the output set should remain
the same. Additional arguments may be passed to the normalization function via the arguments
list. Internally we evaluate the function using do.call and one should check its documentation for
details.

Currently, the most prominent example for a normalization function is warping, as provided by the
flowStats package.

Value

A normalization object for the constructor.

A flowSet for the normalize methods.

Slots

parameters Object of class "character". The flow parameters that are supposed to be normalized
by the normalization function.

normalizationId Object of class "character". An identifier for the object.

normFunction Object of class "function" The normalization function. It has to take two manda-
tory arguments: x, the flowSet, and parameters, a character of parameter names that are to
be normalized by the function. Additional arguments have to be passed in via arguments.

arguments Object of class "list" A names list of additional arguments. Can be NULL.

Objects from the Class

Objects should be created using the constructor normalization(). See the Usage and Arguments
sections for details.

Methods

identifier<- signature(object = "normalization", value = "character"): Set method for the
identifier slot.

identifier signature(object = "normalization"): Get method for the identifier slot.

normalize signature(data = "flowSet", x = "normalization"): Apply a normalization to a
flowSet.

parameters signature(object = "normalization"): The more generic constructor.

Author(s)

F. Hahne

88 parameterFilter-class

nullParameter-class Class "nullParameter"

Description

A class used internally for coercing transforms to characters for a return value when a coercion
cannot be performed. The user should never need to interact with this class.

Objects from the Class

Objects will be created internally whenever necessary and this should not be of any concern to the
user.

parameterFilter-class Class "parameterFilter"

Description

A concrete filter that acts on a set of parameters.

Slots

parameters The names of the parameters employed by this filter.

filterId The filter identifier.

Objects from the Class

parameterFilter objects are never created directly. This class serves as an inheritance point for
filters that depends on particular parameters.

Extends

Class "concreteFilter", directly. Class "filter", by class "concreteFilter", distance 2.

Author(s)

B. Ellis

parameters-class 89

parameters-class Class "parameters"

Description

A representation of flow parameters that allows for referencing.

Slots

.Data A list of the individual parameters.

Objects from the Class

Objects will be created internally whenever necessary and this should not be of any concern to the
user.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Author(s)

Nishant Gopalakrishnan

parameters-methods Obtain information about parameters for flow cytometry objects.

Description

Many different objects in flowCore are associated with one or more parameters. This includes
filter, flowFrame and parameterFilter objects that all either describe or use parameters.

Usage

parameters(object, ...)

Arguments

object Object of class filter, flowFrame or parameterFilter.

... Further arguments that get passed on to the methods.

Value

When applied to a flowFrame object, the result is an AnnotatedDataFrame describing the param-
eters recorded by the cytometer. For other objects it will usually return a vector of names used by
the object for its calculations.

90 parameterTransform-class

Methods

parameters(object = "filter") Returns for all objects that inherit from filter a vector of param-
eters on which a gate is defined.

parameters(object = "parameterFilter") see above
parameters(object = "setOperationFilter") see above
parameters(object = "filterReference") see above
parameters(object = "flowFrame") Returns an AnnotatedDataFrame containing detailed descrip-

tions about the measurement parameters of the flowFrame. For flowFrame objects there also
exists a replacement method.

Author(s)

B. Ellis, N. Le Meur, F. Hahne

Examples

samp <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
parameters(samp)
print(samp@parameters@data)

parameterTransform-class

Class "parameterTransform"

Description

Link a transformation to particular flow parameters

Slots

.Data Object of class "function", the transformation function.
parameters Object of class "character" The parameters the transformation is applied to.
transformationId Object of class "character". The identifier for the object.

Objects from the Class

Objects are created by using the %on% operator and are usually not directly instantiated by the user.

Extends

Class "transform", directly. Class "function", by class "transform", distance 2.

Methods

%on% signature(e1 = "filter", e2 = "parameterTransform"): Apply the transformation.
%on% signature(e1 = "parameterTransform", e2 = "flowFrame"): see above
parameters signature(object = "parameterTransform"): Accessor to the parameters slot

Author(s)

Byron Ellis

polygonGate-class 91

polygonGate-class Class "polygonGate"

Description

Class and constructor for 2-dimensional polygonal filter objects.

Usage

polygonGate(..., .gate, boundaries, filterId="defaultPolygonGate")

Arguments

filterId An optional parameter that sets the filterId of this gate.
.gate, boundaries

A definition of the gate. This can be either a list or a named matrix as described
below. Note the argument boundaries is deprecated and will go away in the next
release.

... You can also directly describe a gate without wrapping it in a list or matrix, as
described below.

Details

Polygons are specified by the coordinates of their vertices in two dimensions. The constructor is
designed to be useful in both direct and programmatic usage. It takes either a list or a named matrix
with 2 columns and at least 3 rows containing these coordinates. Alternatively, vertices can be given
as named arguments, in which case the function tries to convert the values into a matrix.

Value

Returns a polygonGate object for use in filtering flowFrames or other flow cytometry objects.

Slots

boundaries Object of class "matrix". The vertices of the polygon in two dimensions. There need
to be at least 3 vertices specified for a valid polygon.

parameters Object of class "character", describing the parameter used to filter the flowFrame.

filterId Object of class "character", referencing the filter.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("polygonGate",...) or by using the constructor
polygonGate. Using the constructor is the recommended way.

92 polytopeGate-class

Methods

%in% signature(x = "flowFrame", table = "polygonGate"): The workhorse used to evalu-
ate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "polygonGate"): Print information about the filter.

Note

See the documentation in the flowViz package for plotting of polygonGates.

Author(s)

F.Hahne, B. Ellis N. Le Meur

See Also

flowFrame, rectangleGate, ellipsoidGate, polytopeGate, filter for evaluation of rectangleGates
and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

Other Gate classes: ellipsoidGate-class, polytopeGate-class, quadGate-class, rectangleGate-class

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

Defining the gate
sqrcut <- matrix(c(300,300,600,600,50,300,300,50),ncol=2,nrow=4)
colnames(sqrcut) <- c("FSC-H","SSC-H")
pg <- polygonGate(filterId="nonDebris", boundaries= sqrcut)
pg

Filtering using polygonGates
fres <- filter(dat, pg)
fres
summary(fres)

The result of polygon filtering is a logical subset
Subset(dat, fres)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

polytopeGate-class Define filter boundaries

Description

Convenience methods to facilitate the construction of filter objects

polytopeGate-class 93

Usage

polytopeGate(..., .gate, b, filterId="defaultPolytopeGate")

Arguments

filterId An optional parameter that sets the filterId of this gate.

.gate A definition of the gate. This can be either a list, vector or matrix, described
below.

b Need documentation

... You can also directly describe a gate without wrapping it in a list or matrix, as
described below.

Details

These functions are designed to be useful in both direct and programmatic usage.

For rectangle gate in n dimensions, if n=1 the gate correspond to a range gate. If n=2, the gate is a
rectangle gate. To use this function programmatically, you may either construct a list or you may
construct a matrix with n columns and 2 rows. The first row corresponds to the minimal value for
each parameter while the second row corresponds to the maximal value for each parameter. The
names of the parameters are taken from the column names as in the third example.

Rectangle gate objects can also be multiplied together using the * operator, provided that both gate
have orthogonal axes.

For polygon gate, the boundaries are specified as vertices in 2 dimensions, for polytope gate objects
as vertices in n dimensions.

Polytope gate objects will represent the convex polytope determined by the vertices and parameter
b which together specify the polytope as an intersection of half-spaces represented as a system of
linear inequalities, Ax ≤ b

For quadrant gates, the boundaries are specified as a named list or vector of length two.

Value

Returns a rectangleGate or polygonGate object for use in filtering flowFrames or other flow
cytometry objects.

Author(s)

F.Hahne, B. Ellis N. Le Meur

See Also

flowFrame, filter

Other Gate classes: ellipsoidGate-class, polygonGate-class, quadGate-class, rectangleGate-class

94 quadGate-class

quadGate-class Class "quadGate"

Description

Class and constructors for quadrant-type filter objects.

Usage

quadGate(..., .gate, filterId="defaultQuadGate")

Arguments

filterId An optional parameter that sets the filterId of this filter. The object can
later be identified by this name.

.gate A definition of the gate for programmatic access. This can be either a named list
or a named numeric vector, as described below.

... The parameters of quadGates can also be directly described using named func-
tion arguments, as described below.

Details

quadGates are defined by two parameters, which specify a separation of a two-dimensional param-
eter space into four quadrants. The quadGate function is designed to be useful in both direct and
programmatic usage.

For the interactive use, these parameters can be given as additional named function arguments,
where the names correspond to valid parameter names in a flowFrame or flowSet. For a more
programmatic approach, a named list or numeric vector of the gate boundaries can be passed on to
the function as argument .gate.

Evaluating a quadGate results in four sub-populations, and hence in an object of class multipleFilterResult.
Accordingly, quadGates can be used to split flow cytometry data sets.

Value

Returns a quadGate object for use in filtering flowFrames or other flow cytometry objects.

Slots

boundary Object of class "numeric", length 2. The boundaries of the quadrant regions.

parameters Object of class "character", describing the parameter used to filter the flowFrame.

filterId Object of class "character", referencing the gate.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

quadGate-class 95

Objects from the Class

Objects can be created by calls of the form new("quadGate",...) or using the constructor quadGate.
The latter is the recommended way.

Methods

%in% signature(x = "flowFrame", table = "quadGate"): The workhorse used to evaluate the
gate on data. This is usually not called directly by the user, but internally by calls to the filter
methods.

show signature(object = "quadGate"): Print information about the gate.

Note

See the documentation in the flowViz package for plotting of quadGates.

Author(s)

F.Hahne, B. Ellis N. Le Meur

See Also

flowFrame, flowSet, filter for evaluation of quadGates and split for splitting of flow cytome-
try data sets based on that.

Other Gate classes: ellipsoidGate-class, polygonGate-class, polytopeGate-class, rectangleGate-class

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

Create directly. Most likely from a command line
quadGate(filterId="myQuadGate1", "FSC-H"=100, "SSC-H"=400)

To facilitate programmatic construction we also have the following
quadGate(filterId="myQuadGate2", list("FSC-H"=100, "SSC-H"=400))
FIXME: Do we want this?
##quadGate(filterId="myQuadGate3", .gate=c("FSC-H"=100, "SSC-H"=400))

Filtering using quadGates
qg <- quadGate(filterId="quad", "FSC-H"=600, "SSC-H"=400)
fres <- filter(dat, qg)
fres
summary(fres)
names(fres)

The result of quadGate filtering are multiple sub-populations
and we can split our data set accordingly
split(dat, fres)

We can limit the splitting to one or several sub-populations
split(dat, fres, population="FSC-H-SSC-H-")
split(dat, fres, population=list(keep=c("FSC-H-SSC-H-",
"FSC-H-SSC-H+")))

96 quadratic-class

quadratic-class Class "quadratic"

Description

Quadratic transform class which represents a transformation defined by the function

f(parameter, a) = a ∗ parameter2

Slots

.Data Object of class "function".

a Object of class "numeric" – non-zero multiplicative constant.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor quadratic(parameters,a,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The quadratic transformation object can be evaluated using the eval method by passing the data
frame as an argument.The transformed parameters are returned as a column vector. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

dg1polynomial,ratio,squareroot

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, ratio-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

quadraticTransform 97

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
quad1<-quadratic(parameters="FSC-H",a=2,transformationId="quad1")
transOut<-eval(quad1)(exprs(dat))

quadraticTransform Create the definition of a quadratic transformation function to be ap-
plied on a data set

Description

Create the definition of the quadratic Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x <- a*x\^2 + b*x + c

Usage

quadraticTransform(transformationId="defaultQuadraticTransform", a = 1, b = 1, c = 0)

Arguments

transformationId

character string to identify the transformation

a double that corresponds to the quadratic coefficient in the equation

b double that corresponds to the linear coefficient in the equation

c double that corresponds to the intercept in the equation

Value

Returns an object of class transform.

Author(s)

N. Le Meur

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logTransform(), logicleTransform(), scaleTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))

quadTrans <- quadraticTransform(transformationId="Quadratic-transformation", a=1, b=1, c=0)
dataTransform <- transform(samp, transformList('FSC-H', quadTrans))

98 ratio-class

randomFilterResult-class

Class "randomFilterResult"

Description

Container to store the result of applying a filter on a flowFrame object, with the population
membership considered to be stochastic rather than absolute. Currently not utilized.

Slots

subSet Object of class "numeric", which is a logical vector indicating the population membership
of the data in the gated flowFrame.

frameId Object of class "character" referencing the flowFrame object filtered. Used for sanity
checking.

filterDetails Object of class "list" describing the filter applied.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filterResult", directly. Class "filter", by class "filterResult", distance 2.

Author(s)

B. Ellis

See Also

filter

ratio-class Class "ratio"

Description

ratio transform calculates the ratio of two parameters defined by the function

f(parameter1, parameter2) =
parameter1
parameter2

Slots

.Data Object of class "function".

numerator Object of class "transformation" – flow parameter to be transformed

denominator Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

ratiotGml2-class 99

Objects from the Class

Objects can be created by calls to the constructor ratio(parameter1,parameter2,transformationId)
.

Extends

Class "transform", directly.

Class "transformation", by class "transform", distance 2.

Class "characterOrTransformation", by class "transform", distance 3.

Note

The ratio transformation object can be evaluated using the eval method by passing the data frame
as an argument.The transformed parameters are returned as matrix with one column. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

dg1polynomial,quadratic,squareroot

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratiotGml2-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
rat1<-ratio("FSC-H","SSC-H",transformationId="rat1")
transOut<-eval(rat1)(exprs(dat))

ratiotGml2-class Class "ratiotGml2"

Description

Ratio transformation as parameterized in Gating-ML 2.0.

100 ratiotGml2-class

Details

ratiotGml2 is defined by the following function:

bound(f, boundMin, boundMax) = max(min(f, boundMax), boundMin))

where
f(p1, p2, A,B,C) = A ∗ (p1−B)/(p2− C)

If a boundary is defined by the boundMin and/or boundMax parameters, then the result of this
transformation is restricted to the [boundMin,boundMax] interval. Specifically, should the result
of the f function be less than boundMin, then let the result of this transformation be boundMin.
Analogically, should the result of the f function be more than boundMax, then let the result of this
transformation be boundMax. The boundMin parameter shall not be greater than the boundMax
parameter.

Slots

.Data Object of class function.

numerator Object of class "transformation" – flow parameter to be used as numerator in the
transformation function.

denominator Object of class "transformation" – flow parameter to be used as denominator in
the transformation function.

pA Object of class numeric constant A.

pB Object of class numeric constant B.

pC Object of class numeric constant C.

transformationId Object of class "character" – unique ID to reference the transformation.

boundMin Object of class numeric – lower bound of the transformation, default -Inf.

boundMax Object of class numeric – upper bound of the transformation, default Inf.

Objects from the Class

Objects can be created by calls to the constructor

ratiotGml2(p1, p2, A, B, C, transformationId, boundMin, boundMax)

Extends

Class "transform", directly.

Class "transformation", by class "transform", distance 2.

Class "characterOrTransformation", by class "transform", distance 3.

Note

The ratiotGml2 transformation object can be evaluated using the eval method by passing the data
frame as an argument. The transformed parameters are returned as matrix with one column. (See
example below)

Author(s)

Spidlen, J.

read.FCS 101

References

Gating-ML 2.0: International Society for Advancement of Cytometry (ISAC) standard for rep-
resenting gating descriptions in flow cytometry. http://flowcyt.sourceforge.net/gating/
20141009.pdf

See Also

ratio, transform-class, transform

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
sinht-class, splitscale-class, squareroot-class, unitytransform-class

Examples

myDataIn <- read.FCS(system.file("extdata", "0877408774.B08",
package="flowCore"))

myRatioT <- ratiotGml2("FSC-H", "SSC-H", pA = 2, pB = 3,
pC = -10, transformationId = "myRatioT")

transOut <- eval(myRatioT)(exprs(myDataIn))

read.FCS Read an FCS file

Description

Check validity and Read Data File Standard for Flow Cytometry

Usage

isFCSfile(files)

read.FCS(filename, transformation="linearize", which.lines=NULL,
alter.names=FALSE, column.pattern=NULL, invert.pattern = FALSE,
decades=0, ncdf = FALSE, min.limit=NULL,
truncate_max_range = TRUE, dataset=NULL, emptyValue=TRUE,
channel_alias = NULL, ...)

Arguments

filename Character of length 1: filename

transformation An character string that defines the type of transformation. Valid values are
linearize (default), linearize-with-PnG-scaling, or scale. The linearize
transformation applies the appropriate power transform to the data. The linearize-with-PnG-scaling
transformation applies the appropriate power transform for parameters stored
on log scale, and also a linear scaling transformation based on the ’gain’ (FCS
\$PnG keywords) for parameters stored on a linear scale. The scale transforma-
tion scales all columns to $[0,10^decades]$. defaulting to decades=0 as in the
FCS4 specification. A logical can also be used: TRUE is equal to linearize and
FALSE(or NULL) corresponds to no transformation. Also when the transformation

http://flowcyt.sourceforge.net/gating/20141009.pdf
http://flowcyt.sourceforge.net/gating/20141009.pdf

102 read.FCS

keyword of the FCS header is set to "custom" or "applied", no transformation
will be used.

which.lines Numeric vector to specify the indices of the lines to be read. If NULL all
the records are read, if of length 1, a random sample of the size indicated by
which.lines is read in. It’s used to achieve partial disk IO for the large FCS
that can’t fit the full data into memory. Be aware the potential slow read (es-
pecially for the large size of random sampling) due to the frequent disk seek
operations.

alter.names boolean indicating whether or not we should rename the columns to valid R
names using make.names. The default is FALSE.

column.pattern An optional regular expression defining parameters we should keep when load-
ing the file. The default is NULL.

invert.pattern logical. By default, FALSE. If TRUE, inverts the regular expression specified in
column.pattern. This is useful for indicating the channel names that we do
not want to read. If column.pattern is set to NULL, this argument is ignored.

decades When scaling is activated, the number of decades to use for the output.

ncdf Deprecated. Please use ’ncdfFlow’ package for cdf based storage.

min.limit The minimum value in the data range that is allowed. Some instruments produce
extreme artifactual values. The positive data range for each parameter is com-
pletely defined by the measurement range of the instrument and all larger values
are set to this threshold. The lower data boundary is not that well defined, since
compensation might shift some values below the original measurement range of
the instrument. This can be set to an arbitrary number or to NULL (the default
value), in which case the original values are kept. When the transformation key-
word of the FCS header is set (typically to "custom" or "applied"), no shift up
to min.limit will occur.

truncate_max_range

logical type. Default is TRUE. can be optionally turned off to avoid truncat-
ing the extreme positive value to the instrument measurement range .i.e.’$PnR’.
When the transformation keyword of the FCS header is set (typically to "cus-
tom" or "applied"), no truncation will occur.

dataset The FCS file specification allows for multiple data segments in a single file.
Since the output of read.FCS is a single flowFrame we can’t automatically read
in all available sets. This parameter allows to chose one of the subsets for import.
Its value is supposed to be an integer in the range of available data sets. This
argument is ignored if there is only a single data segment in the FCS file.

emptyValue boolean indicating whether or not we allow empty value for keyword values in
TEXT segment. It affects how the double delimiters are treated. IF TRUE, The
double delimiters are parsed as a pair of start and end single delimiter for an
empty value. Otherwise, double delimiters are parsed one part of string as the
keyword value. default is TRUE.

channel_alias an optional data.frame used to provide the alias of the channels to standardize
and solve the discrepancy across FCS files. It is expected to contain ’alias’ and
’channels’ column of ’channel_alias’. Each row/entry specifies the common
alias name for a collection of channels (comma separated). See examples for
details.
For each channel in the FCS file, read.FCS will first attempt to find an exact
match in the ’channels’ column. If no exact match is found, it will check for par-
tial matches. That is, if "V545" is in the ’channels’ column of ’channel_alias’

read.FCS 103

and "V545-A" is present in the FCS file, this partial match will allow the corre-
sponding ’alias’ to be assigned. This partial matching only works in this direc-
tion ("V545-A" in the ’channels’ column will not match "V545" in the FCS file)
and care should be exercised to ensure no unintended partial matching of other
channel names. If no exact or partial match is found, the channel is unchanged
in the resulting flowFrame.

... ignore.text.offset: whether to ignore the keyword values in TEXT segment when
they don’t agree with the HEADER. Default is FALSE, which throws the error
when such discrepancy is found. User can turn it on to ignore TEXT segment
when he is sure of the accuracy of HEADER so that the file still can be read.

files A vector of filenames

Details

The function isFCSfile determines whether its arguments are valid FCS files.

The function read.FCS works with the output of the FACS machine software from a number of
vendors (FCS 2.0, FCS 3.0 and List Mode Data LMD). However, the FCS 3.0 standard includes
some options that are not yet implemented in this function. If you need extensions, please let me
know. The output of the function is an object of class flowFrame.

For specifications of FCS 3.0 see http://www.isac-net.org and the file ../doc/fcs3.html in
the doc directory of the package.

The which.lines arguments allow you to read a subset of the record as you might not want to
read the thousands of events recorded in the FCS file. It is mainly used when there is not enough
memory to read one single FCS (which probably will not happen). It will probably take more time
than reading the entire FCS (due to the multiple disk IO).

Value

isFCSfile returns a logical vector.

read.FCS returns an object of class flowFrame that contains the data in the exprs slot, the param-
eters monitored in the parameters slot and the keywords and value saved in the header of the FCS
file.

Author(s)

F. Hahne, N.Le Meur

See Also

read.flowSet

Examples

a sample file
fcsFile <- system.file("extdata", "0877408774.B08", package="flowCore")

read file and linearize values
samp <- read.FCS(fcsFile, transformation="linearize")
exprs(samp[1:3,])
keyword(samp)[3:6]
class(samp)

http://www.isac-net.org
../doc/fcs3.html

104 read.FCSheader

Only read in lines 2 to 5
subset <- read.FCS(fcsFile, which.lines=2:5, transformation="linearize")
exprs(subset)

Read in a random sample of 100 lines
subset <- read.FCS(fcsFile, which.lines=100, transformation="linearize")
nrow(subset)

#manually supply the alias vs channel options mapping as a data.frame
map <- data.frame(alias = c("A", "B")

, channels = c("FL2", "FL4")
)
fr <- read.FCS(fcsFile, channel_alias = map)
fr

read.FCSheader Read the TEXT section of a FCS file

Description

Read (part of) the TEXT section of a Data File Standard for Flow Cytometry that contains FACS
keywords.

Usage

read.FCSheader(files, path = ".", keyword = NULL, ...)

Arguments

files Character vector of filenames.

path Directory where to look for the files.

keyword An optional character vector that specifies the FCS keyword to read.

... other arguments passed to link[flowCore]{read.FCS}

Details

The function read.FCSheader works with the output of the FACS machine software from a number
of vendors (FCS 2.0, FCS 3.0 and List Mode Data LMD). The output of the function is the TEXT
section of the FCS files. The user can specify some keywords to limit the output to the information
of interest.

Value

A list of character vectors. Each element of the list correspond to one FCS file.

Author(s)

N.Le Meur

See Also

link[flowCore]{read.flowSet}, link[flowCore]{read.FCS}

read.flowSet 105

Examples

samp <- read.FCSheader(system.file("extdata",
"0877408774.B08", package="flowCore"))

samp

samp <- read.FCSheader(system.file("extdata",
"0877408774.B08", package="flowCore"), keyword=c("$DATE", "$FIL"))

samp

read.flowSet Read a set of FCS files

Description

Read one or several FCS files: Data File Standard for Flow Cytometry

Usage

read.flowSet(files=NULL, path=".", pattern=NULL, phenoData,
descriptions,name.keyword, alter.names=FALSE,
transformation = "linearize", which.lines=NULL,
column.pattern = NULL, invert.pattern = FALSE, decades=0, sep="\t",
as.is=TRUE, name, ncdf=FALSE, dataset=NULL, min.limit=NULL,
truncate_max_range = TRUE, emptyValue=TRUE,
ignore.text.offset = FALSE, channel_alias = NULL, ...)

Arguments

files Optional character vector with filenames.

path Directory where to look for the files.

pattern This argument is passed on to dir, see details.

phenoData An object of class AnnotatedDataFrame, character or a list of values to be
extracted from the flowFrame object, see details.

descriptions Character vector to annotate the object of class flowSet.

name.keyword An optional character vector that specifies which FCS keyword to use as the
sample names. If this is not set, the GUID of the FCS file is used for sample-
Names, and if that is not present (or not unique), then the file names are used.

alter.names see read.FCS for details.

transformation see read.FCS for details.

which.lines see read.FCS for details.

column.pattern see read.FCS for details.

invert.pattern see read.FCS for details.

decades see read.FCS for details.

sep Separator character that gets passed on to read.AnnotatedDataFrame.

as.is Logical that gets passed on to read.AnnotatedDataFrame. This controls the
automatic coercion of characters to factors in the phenoDataslot.

106 read.flowSet

name An optional character scalar used as name of the object.

ncdf Deprecated. Please refer to ’ncdfFlow’ package for cdf based storage.

dataset see read.FCS for details.

min.limit see read.FCS for details.
truncate_max_range

see read.FCS for details.

emptyValue see read.FCS for details.
ignore.text.offset

see read.FCS for details.

channel_alias see read.FCS for details.

... Further arguments that get passed on to read.AnnotatedDataFrame, see de-
tails.

Details

There are four different ways to specify the file from which data is to be imported:

First, if the argument phenoData is present and is of class AnnotatedDataFrame, then the file
names are obtained from its sample names (i.e. row names of the underlying data.frame). Also
column name will be generated based on sample names if it is not there. This column is mainly
used by visualization methods in flowViz. Alternatively, the argument phenoData can be of class
character, in which case this function tries to read a AnnotatedDataFrame object from the file
with that name by calling read.AnnotatedDataFrame(file.path(path,phenoData),...{}).

In some cases the file names are not a reasonable selection criterion and the user might want to
import files based on some keywords within the file. One or several keyword value pairs can be
given as the phenoData argument in form of a named list.

Third, if the argument phenoData is not present and the argument files is not NULL, then files is
expected to be a character vector with the file names.

Fourth, if neither the argument phenoData is present nor files is not NULL, then the file names are
obtained by calling dir(path, pattern).

Value

An object of class flowSet.

Author(s)

F. Hahne, N.Le Meur, B. Ellis

Examples

fcs.loc <- system.file("extdata",package="flowCore")
file.location <- paste(fcs.loc, dir(fcs.loc), sep="/")

samp <- read.flowSet(file.location[1:3])

rectangleGate-class 107

rectangleGate-class Class "rectangleGate"

Description

Class and constructor for n-dimensional rectangular filter objects.

Usage

rectangleGate(..., .gate, filterId="defaultRectangleGate")

Arguments

filterId An optional parameter that sets the filterId of this gate. The object can later
be identified by this name.

.gate A definition of the gate. This can be either a list, or a matrix, as described below.

... You can also directly provide the boundaries of a rectangleGate as additional
named arguments, as described below.

Details

This class describes a rectangular region in n dimensions, which is a Cartesian product of n or-
thogonal intervals in these dimensions. n=1 corresponds to a range gate, n=2 to a rectangle gate,
n=3 corresponds to a box region and n>3 to a hyper-rectangular regions. Intervals may be open
on one side, in which case the value for the boundary is supposed to be Inf or -Inf, respectively.
rectangleGates are inclusive, that means that events on the boundaries are considered to be in the
gate.

The constructor is designed to be useful in both direct and programmatic usage. To use it program-
matically, you may either construct a named list or you may construct a matrix with n columns
and 2 rows. The first row corresponds to the minimal value for each parameter while the second
row corresponds to the maximal value for each parameter. The names of the parameters are taken
from the column names or from the list names, respectively. Alternatively, the boundaries of the
rectangleGate can be given as additional named arguments, where each of these arguments should
be a numeric vector of length 2; the function tries to collapse these boundary values into a matrix.

Note that boundaries of rectangleGates where min > max are syntactically valid, however when
evaluated they will always be empty.

rectangleGate objects can also be multiplied using the * operator, provided that both gates have
orthogonal axes. This results in higher-dimensional rectangleGates. The inverse operation of
subsetting by parameter name(s) is also available.

Evaluating a rectangleGate generates an object of class logicalFilterResult. Accordingly,
rectangleGates can be used to subset and to split flow cytometry data sets.

Value

Returns a rectangleGate object for use in filtering flowFrames or other flow cytometry objects.

108 rectangleGate-class

Slots

min,max Objects of class "numeric". The minimum and maximum values of the n-dimensional
rectangular region.

parameters Object of class "character", indicating the parameters for which the rectangleGate
is defined.

filterId Object of class "character", referencing the filter.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("rectangleGate",...), by using the constructor
rectangleGate or by combining existing rectangleGates using the * method. Using the con-
structor is the recommended way of object instantiation.

Methods

%in% signature(x = "flowFrame", table = "rectangleGate"): The workhorse used to eval-
uate the filter on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "rectangleGate"): Print information about the filter.

* signature(e1 = "rectangleGate", e2 = "rectangleGate"): combining two rectangleGates
into one higher dimensional representation.

[signature(x = "rectangleGate", i = "character"): Subsetting of a rectangleGate by pa-
rameter name(s). This is essentially the inverse to *.

Note

See the documentation in the flowViz package for details on plotting of rectangleGates.

Author(s)

F.Hahne, B. Ellis N. Le Meur

See Also

flowFrame, polygonGate, ellipsoidGate, polytopeGate, filter for evaluation of rectangleGates
and split and Subsetfor splitting and subsetting of flow cytometry data sets based on that.

Other Gate classes: ellipsoidGate-class, polygonGate-class, polytopeGate-class, quadGate-class

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

#Create directly. Most likely from a command line

rotate_gate 109

rectangleGate(filterId="myRectGate", "FSC-H"=c(200, 600), "SSC-H"=c(0, 400))

#To facilitate programmatic construction we also have the following
rg <- rectangleGate(filterId="myRectGate", list("FSC-H"=c(200, 600),
"SSC-H"=c(0, 400)))
mat <- matrix(c(200, 600, 0, 400), ncol=2, dimnames=list(c("min", "max"),
c("FSC-H", "SSC-H")))
rg <- rectangleGate(filterId="myRectGate", .gate=mat)

Filtering using rectangleGates
fres <- filter(dat, rg)
fres
summary(fres)

The result of rectangle filtering is a logical subset
Subset(dat, fres)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

Multiply rectangle gates
rg1 <- rectangleGate(filterId="FSC-", "FSC-H"=c(-Inf, 50))
rg2 <- rectangleGate(filterId="SSC+", "SSC-H"=c(50, Inf))
rg1 * rg2

Subset rectangle gates
rg["FSC-H"]

##2d rectangleGate can be coerced to polygonGate
as(rg, "polygonGate")

rotate_gate Simplified geometric rotation of gates

Description

Rotate a Gate-type filter object through a specified angle

Usage

Default S3 method:
rotate_gate(obj, deg = NULL, rot_center = NULL, ...)

Arguments

obj An ellipsoidGate or polygonGate

deg An angle in degrees by which the gate should be rotated in the counter-clockwise
direction

110 sampleFilter-class

rot_center A separate 2-dimensional center of rotation for the gate, if desired. By de-
fault, this will be the center for ellipsoidGate objects or the centroid for
polygonGate objects. The rot_center argument is currently only supported
for polygonGate objects.

... Additional arguments not used

Details

This method allows for 2-dimensional geometric rotation of filter types defined by simple geomet-
ric gates (ellipsoidGate, and polygonGate). The method is not defined for rectangleGate or
quadGate objects, due to their definition as having 1-dimensional boundaries. Further, keep in mind
that the 2-dimensional rotation takes place in the plane where the dimensions of the two variables
are evenly linearly scaled. Displaying a rotated ellipse in a plot where the axes are not scaled evenly
may make it appear that the ellipse has been distorted even though this is not the case.

The angle provided in the deg argument should be in degrees rather than radians. By default,
the rotation will be performed around the center of an ellipsoidGate or the centroid of the area
encompassed by a polygonGate. The rot_center argument allows for specification of a different
center of rotation for polygonGate objects (it is not yet implemented for ellipsoidGate objects)
but it is usually simpler to perform a rotation and a translation individually than to manually specify
the composition as a rotation around a shifted center.

Value

A Gate-type filter object of the same type as gate, with the rotation applied

Examples

Not run:
#' # Rotates the original gate 15 degrees counter-clockwise
rotated_gate <- rotate_gate(original_gate, deg = 15)
Rotates the original gate 270 degrees counter-clockwise
rotated_gate <- rotate_gate(original_gate, 270)

End(Not run)

sampleFilter-class Class "sampleFilter"

Description

This non-parameter filter selects a number of events from the primary flowFrame.

Usage

sampleFilter(size, filterId="defaultSampleFilter")

Arguments

filterId An optional parameter that sets the filterId of this filter. The object can
later be identified by this name.

size The number of events to select.

sampleFilter-class 111

Details

Selects a number of events without replacement from a flowFrame.

Value

Returns a sampleFilter object for use in filtering flowFrames or other flow cytometry objects.

Slots

size Object of class "numeric". Then number of events that are to be selected.

filterId A character vector that identifies this filter.

Extends

Class "concreteFilter", directly.

Class "filter", by class concreteFilter, distance 2.

Objects from the Class

Objects can be created by calls of the form new("sampleFilter",...) or using the constructor
sampleFilter. The latter is the recommended way.

Methods

%in% signature(x = "flowFrame", table = "sampleFilter"): The workhorse used to evalu-
ate the gate on data. This is usually not called directly by the user, but internally by calls to
the filter methods.

show signature(object = "sampleFilter"): Print information about the gate.

Author(s)

B. Ellis, F.Hahne

See Also

flowFrame, filter for evaluation of sampleFilters and split and Subsetfor splitting and sub-
setting of flow cytometry data sets based on that.

Examples

Loading example data
dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))

#Create the filter
sf <- sampleFilter(filterId="mySampleFilter", size=500)
sf

Filtering using sampleFilters
fres <- filter(dat, sf)
fres
summary(fres)

The result of sample filtering is a logical subset

112 scaleTransform

Subset(dat, fres)

We can also split, in which case we get those events in and those
not in the gate as separate populations
split(dat, fres)

scaleTransform Create the definition of a scale transformation function to be applied
on a data set

Description

Create the definition of the scale Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x = (x-a)/(b-a). The transformation
would normally be used to convert to a 0-1 scale. In this case, b would be the maximum possible
value and a would be the minimum possible value.

Usage

scaleTransform(transformationId="defaultScaleTransform", a, b)

Arguments

transformationId

character string to identify the transformation

a double that corresponds to the value that will be transformed to 0

b double that corresponds to the value that will be transformed to 1

Value

Returns an object of class transform.

Author(s)

P. Haaland

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(),
splitScaleTransform(), truncateTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
scaleTrans <- scaleTransform(transformationId="Truncate-transformation", a=1, b=10^4)
dataTransform <- transform(samp, transformList('FSC-H', scaleTrans))

scale_gate 113

scale_gate Simplified geometric scaling of gates

Description

Scale a Gate-type filter object in one or more dimensions

Usage

Default S3 method:
scale_gate(obj, scale = NULL, ...)

Arguments

obj A Gate-type filter object (quadGate, rectangleGate, ellipsoidGate, or
polygonGate)

scale Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector
specifying the factor by which each dimension of the gate should be expanded
(absolute value > 1) or contracted (absolute value < 1). Negative values will
result in a reflection in that dimension.

... Additional arguments not used

Details

This method allows uniform or non-uniform geometric scaling of filter types defined by simple
geometric gates (quadGate, rectangleGate, ellipsoidGate, and polygonGate) Note that these
methods are for manually altering the geometric definition of a gate. To easily transform the def-
inition of a gate with an accompanyging scale transformation applied to its underlying data, see
rescale_gate.

The scale argument passed to scale_gate should be either a scalar or a vector of the same length
as the number of dimensions of the gate. If it is scalar, all dimensions will be multiplicatively
scaled uniformly by the scalar factor provided. If it is a vector, each dimension will be scaled by its
corresponding entry in the vector.

The scaling behavior of scale_gate depends on the type of gate passed to it. For rectangleGate
and quadGate objects, this amounts to simply scaling the values of the 1-dimensional boundaries.
For polygonGate objects, the values of scale will be used to determine scale factors in the direction
of each of the 2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional
polytopeGate objects). Important: For ellipsoidGate objects, scale determines scale factors
for the major and minor axes of the ellipse, in that order. Scaling by a negative factor will result in
a reflection in the corresponding dimension.

Value

A Gate-type filter object of the same type as gate, with the scaling applied

Examples

Not run:
Scales both dimensions by a factor of 5
scaled_gate <- scale_gate(original_gate, 5)

114 shift_gate

Shrinks the gate in the first dimension by factor of 1/2
and expands it in the other dimension by factor of 3
scaled_gate <- scale_gate(original_gate, c(0.5,3))

End(Not run)

setOperationFilter-class

Class "setOperationFilter"

Description

This is a Superclass for the unionFilter, intersectFilter, complementFilter and subsetFilter classes,
which all consist of two or more component filters and are constructed using set operators (&, |, !,
and %&% or %subset% respectively).

Slots

filters Object of class "list", containing the component filters.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filter", directly.

Author(s)

B. Ellis

See Also

filter

Other setOperationFilter classes: complementFilter-class, intersectFilter-class, subsetFilter-class,
unionFilter-class

shift_gate Simplified geometric translation of gates

Description

Shift a Gate-type filter object in one or more dimensions

Usage

Default S3 method:
shift_gate(obj, dx = NULL, dy = NULL, center = NULL, ...)

shift_gate 115

Arguments

obj A Gate-type filter object (quadGate, rectangleGate, ellipsoidGate, or
polygonGate)

dx Either a numeric scalar or numeric vector. If it is scalar, this is just the desired
shift of the gate in its first dimension. If it is a vector, it specifies both dx and
dy as (dx,dy). This provides an alternate syntax for shifting gates, as well as
allowing shifts of ellipsoidGate objects in more than 2 dimensions.

dy A numeric scalar specifying the desired shift of the gate in its second dimension.

center A numeric vector specifying where the center or centroid should be moved
(rather than specifiying dx and/or dy)

... Additional arguments not used

Details

This method allows for geometric translation of filter types defined by simple geometric gates
(rectangleGate, quadGate, ellipsoidGate, or polygonGate). The method provides two ap-
proaches to specify a translation. For rectangleGate objects, this will shift the min and max
bounds by the same amount in each specified dimension. For quadGate objects, this will simply
shift the divinding boundary in each dimension. For ellipsoidGate objects, this will shift the
center (and therefore all points of the ellipse). For polgonGate objects, this will simply shift all of
the points defining the polygon.

The method allows two different approaches to shifting a gate. Through the dx and/or dy arguments,
a direct shift in each dimension can be provided. Alternatively, through the center argument, the
gate can be directly moved to a new location in relation to the old center of the gate. For quadGate
objects, this center is the intersection of the two dividing boundaries (so the value of the boundary
slot). For rectangleGate objects, this is the center of the rectangle defined by the intersections
of the centers of each interval. For ellipsoidGate objects, it is the center of the ellipsoid, given
by the mean slot. For polygonGate objects, the centroid of the old polygon will be calculated and
shifted to the new location provided by center and all other points on the polygon will be shifted
by relation to the centroid.

Value

A Gate-type filter object of the same type as gate, with the translation applied

Examples

Not run:
Moves the entire gate +500 in its first dimension and 0 in its second dimension
shifted_gate <- shift_gate(original_gate, dx = 500)

#Moves the entire gate +250 in its first dimension and +700 in its second dimension
shifted_gate <- shift_gate(original_gate, dx = 500, dy = 700)

Same as previous
shifted_gate <- shift_gate(original_gate, c(500,700))

Move the gate based on shifting its center to (700, 1000)
shifted_gate <- shift_gate(original_gate, center = c(700, 1000))

End(Not run)

116 sinht-class

singleParameterTransform-class

Class "singleParameterTransform"

Description

A transformation that operates on a single parameter

Slots

.Data Object of class "function". The transformation.
parameters Object of class "transformation". The parameter to transform. Can be a derived

parameter from another transformation.
transformationId Object of class "character". An identifier for the object.

Objects from the Class

Objects can be created by calls of the form new("singleParameterTransform", ...).

Extends

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class
"characterOrTransformation", by class "transform", distance 3.

Author(s)

F Hahne

Examples

showClass("singleParameterTransform")

sinht-class Class "sinht"

Description

Hyperbolic sin transform class, which represents a transformation defined by the function:

f(parameter, a, b) = sinh(parameter/b)/a

This definition is such that it can function as an inverse of asinht using the same definitions of the
constants a and b.

Slots

.Data Object of class "function".
a Object of class "numeric" – non-zero constant.
b Object of class "numeric" – non-zero constant.
parameters Object of class "transformation" – flow parameter to be transformed
transformationId Object of class "character" – unique ID to reference the transformation.

split-methods 117

Objects from the Class

Objects can be created by calls to the constructor sinht(parameter,a,b,transformationId).

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column.(See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry V 1.5

See Also

asinht

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, splitscale-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08", package="flowCore"))
sinh1<-sinht(parameters="FSC-H",a=1,b=2000,transformationId="sinH1")
transOut<-eval(sinh1)(exprs(dat))

split-methods Methods to split flowFrames and flowSets according to filters

Description

Divide a flow cytometry data set into several subset according to the results of a filtering operation.
There are also methods available to split according to a factor variable.

118 split-methods

Details

The splitting operation in the context of flowFrames and flowSets is the logical extension of sub-
setting. While the latter only returns the events contained within a gate, the former splits the data
into the groups of events contained within and those not contained within a particular gate. This
concept is extremely useful in applications where gates describe the distinction between positivity
and negativity for a particular marker.

The flow data structures in flowCore can be split into subsets on various levels:

flowFrame: row-wise splitting of the raw data. In most cases, this will be done according to the
outcome of a filtering operation, either using a filter that identifiers more than one sub-population
or by a logical filter, in which case the data is split into two populations: "in the filter" and "not in
the filter". In addition, the data can be split according to a factor (or a numeric or character vector
that can be coerced into a factor).

flowSet: can be either split into subsets of flowFrames according to a factor or a vector that can
be coerced into a factor, or each individual flowFrame into subpopulations based on the filters
or filterResults provided as a list of equal length.

Splitting has a special meaning for filters that result in multipleFilterResults or manyFilterResults,
in which case simple subsetting doesn’t make much sense (there are multiple populations that are
defined by the gate and it is not clear which of those should be used for the subsetting operation).
Accordingly, splitting of multipleFilterResults creates multiple subsets. The argument population
can be used to limit the output to only one or some of the resulting subsets. It takes as values a char-
acter vector of names of the populations of interest. See the documentation of the different filter
classes on how population names can be defined and the respective default values. For splitting of
logicalFilterResults, the population argument can be used to set the population names since
there is no reasonable default other than the name of the gate. The content of the argument prefix
will be prepended to the population names and ’+’ or ’-’ are finally appended allowing for more
flexible naming schemes.

The default return value for any of the split methods is a list, but the optional logical argument
flowSet can be used to return a flowSet instead. This only applies when splitting flowFrames,
splitting of flowSets always results in lists of flowSet objects.

Methods

flowFrame methods:

split(x = "flowFrame", f = "ANY", drop = "ANY") Catch all input and cast an error if there is
no method for f to dispatch to.

split(x = "flowFrame", f = "factor", drop = "ANY") Split a flowFrame by a factor variable. Length
of f should be the same as nrow(x), otherwise it will be recycled, possibly leading to unde-
sired outcomes. The optional argument drop works in the usual way, in that it removes empty
levels from the factor before splitting.

split(x = "flowFrame", f = "character", drop = "ANY") Coerce f to a factor and split on that.

split(x = "flowFrame", f = "numeric", drop = "ANY") Coerce f to a factor and split on that.

split(x = "flowFrame", f = "filter", drop = "ANY") First applies the filter to the flowFrame
and then splits on the resulting filterResult object.

split(x = "flowFrame", f = "logicalFilterResult", drop = "ANY") Split into the two subpopula-
tions (in and out of the gate). The optional argument population can be used to control the
names of the results.

split(x = "flowFrame", f = "manyFilterResult", drop = "ANY") Split into the several subpop-
ulations identified by the filtering operation. Instead of returning a list, the additional logical

split-methods 119

argument codeflowSet makes the method return an object of class flowSet. The optional
population argument takes a character vector indicating the subpopulations to use for split-
ting (as identified by the population name in the filterDetails slot).

split(x = "flowFrame", f = "multipleFilterResult", drop = "ANY") Split into the several sub-
populations identified by the filtering operation. Instead of returning a list, the additional
logical argument codeflowSet makes the method return an object of class flowSet. The op-
tional population argument takes a character vector indicating the subpopulations to use for
splitting (as identified by the population name in the filterDetails slot). Alternatively, this
can be a list of characters, in which case the populations for each list item are collapsed into
one flowFrame.

flowSet methods:

split(x = "flowSet", f = "ANY", drop = "ANY") Catch all input and cast an error if there is no
method for f to dispatch to.

split(x = "flowSet", f = "factor", drop = "ANY") Split a flowSet by a factor variable. Length
of f needs to be the same as length(x). The optional argument drop works in the usual way,
in that it removes empty levels from the factor before splitting.

split(x = "flowSet", f = "character", drop = "ANY") Coerce f to a factor and split on that.

split(x = "flowSet", f = "numeric", drop = "ANY") Coerce f to a factor and split on that.

split(x = "flowSet", f = "list", drop = "ANY") Split a flowSet by a list of filterResults (as
typically returned by filtering operations on a flowSet). The length of the list has to be equal
to the length of the flowSet and every list item needs to be a filterResult of equal class with
the same parameters. Instead of returning a list, the additional logical argument codeflowSet
makes the method return an object of class flowSet. The optional population argument
takes a character vector indicating the subpopulations to use for splitting (as identified by the
population name in the filterDetails slot). Alternatively, this can be a list of characters,
in which case the populations for each list item are collapsed into one flowFrame. Note that
using the population argument implies common population names for allfilterResults in
the list and there will be an error if this is not the case.

Author(s)

F Hahne, B. Ellis, N. Le Meur

Examples

data(GvHD)
qGate <- quadGate(filterId="qg", "FSC-H"=200, "SSC-H"=400)

split a flowFrame by a filter that creates
a multipleFilterResult
samp <- GvHD[[1]]
fres <- filter(samp, qGate)
split(samp, qGate)

return a flowSet rather than a list
split(samp, fres, flowSet=TRUE)

only keep one population
names(fres)
##split(samp, fres, population="FSC-Height+SSC-Height+")

120 splitscale-class

split the whole set, only keep two populations
##split(GvHD, qGate, population=c("FSC-Height+SSC-Height+",
##"FSC-Height-SSC-Height+"))

now split the flowSet according to a factor
split(GvHD, pData(GvHD)$Patient)

splitscale-class Class "splitscale"

Description

The split scale transformation class defines a transformation that has a logarithmic scale at high
values and a linear scale at low values. The transition points are chosen so that the slope of the
transformation is continuous at the transition points.

Details

The split scale transformation is defined by the function

f(parameter, r,maxV alue, transitionChannel) = a ∗ parameter + b, parameter <= t

(parameter, r,maxV alue, transitionChannel) = log10(c ∗ parameter) ∗ r

d
, parameter > t

where,

b =
transitionChannel

2

d =
2 ∗ log10(e) ∗ r

transitionChannel
+ log10(maxV alue)

t = 10log10t

a =
transitionChannel

2 ∗ t

log10ct =
(a ∗ t+ b) ∗ d

r

c = 10log10ct

Slots

.Data Object of class "function".

r Object of class "numeric" – a positive value indicating the range of the logarithmic part of the
display.

maxValue Object of class "numeric" – a positive value indicating the maximum value the trans-
formation is applied to.

transitionChannel Object of class "numeric" – non negative value that indicates where to split
the linear vs. logarithmic transformation.

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

splitScaleTransform 121

Objects from the Class

Objects can be created by calls to the constructor splitscale(parameters,r,maxValue,transitionChannel,transformationId)

Extends

Class "singleParameterTransform", directly. Class "transform", by class "singleParameter-
Transform", distance 2. Class "transformation", by class "singleParameterTransform", distance
3. Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The transformation object can be evaluated using the eval method by passing the data frame as an
argument.The transformed parameters are returned as a matrix with a single column. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

See Also

invsplitscale

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, squareroot-class, unitytransform-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",package="flowCore"))
sp1<-splitscale("FSC-H",r=768,maxValue=10000,transitionChannel=256)
transOut<-eval(sp1)(exprs(dat))

splitScaleTransform Compute the split-scale transformation describe by FL. Battye

Description

The split scale transformation described by Francis L. Battye [B15] (Figure 13) consists of a loga-
rithmic scale at high values and a linear scale at low values with a fixed transition point chosen so
that the slope (first derivative) of the transform is continuous at that point. The scale extends to the
negative of the transition value that is reached at the bottom of the display.

Usage

splitScaleTransform(transformationId="defaultSplitscaleTransform",
maxValue=1023, transitionChannel=64, r=192)

122 splitScaleTransform

Arguments

transformationId

A name to assign to the transformation. Used by the transform/filter integration
routines.

maxValue Maximum value the transformation is applied to, e.g., 1023

transitionChannel

Where to split the linear versus the logarithmic transformation, e.g., 64

r Range of the logarithm part of the display, ie. it may be expressed as the max-
Channel - transitionChannel considering the maxChannel as the maximum value
to be obtained after the transformation.

Value

Returns values giving the inverse of the biexponential within a certain tolerance. This function
should be used with care as numerical inversion routines often have problems with the inversion
process due to the large range of values that are essentially 0. Do not be surprised if you end up
with population splitting about w and other odd artifacts.

Author(s)

N. LeMeur

References

Battye F.L. A Mathematically Simple Alternative to the Logarithmic Transform for Flow Cytomet-
ric Fluorescence Data Displays. http://www.wehi.edu.au/cytometry/Abstracts/AFCG05B.html.

See Also

transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(),
scaleTransform(), truncateTransform()

Examples

data(GvHD)
ssTransform <- splitScaleTransform("mySplitTransform")
after.1 <- transform(GvHD, transformList('FSC-H', ssTransform))

opar = par(mfcol=c(2, 1))
plot(density(exprs(GvHD[[1]])[, 1]), main="Original")
plot(density(exprs(after.1[[1]])[, 1]), main="Split-scale Transform")

squareroot-class 123

squareroot-class Class "squareroot"

Description

Square root transform class, which represents a transformation defined by the function

f(parameter, a) =

√
|parameter

a
|

Slots

.Data Object of class "function"

a Object of class "numeric" – non-zero multiplicative constant

parameters Object of class "transformation" – flow parameter to be transformed.

transformationId Object of class "character" – unique ID to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor squareroot(parameters,a,transformationId)

Extends

Class "singleParameterTransform", directly.

Class "transform", by class "singleParameterTransform", distance 2.

Class "transformation", by class "singleParameterTransform", distance 3.

Class "characterOrTransformation", by class "singleParameterTransform", distance 4.

Note

The squareroot transformation object can be evaluated using the eval method by passing the data
frame as an argument.The transformed parameters are returned as a column vector. (See example
below)

Author(s)

Gopalakrishnan N, F.Hahne

References

Gating-ML Candidate Recommendation for Gating Description in Flow Cytometry

See Also

dg1polynomial, ratio, quadratic

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, unitytransform-class

124 Subset-methods

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
sqrt1<-squareroot(parameters="FSC-H",a=2,transformationId="sqrt1")
transOut<-eval(sqrt1)(exprs(dat))

Subset-methods Subset a flowFrame or a flowSet

Description

An equivalent of a subset function for flowFrame or a flowSet object. Alternatively, the regular
subsetting operators can be used for most of the topics documented here.

Usage

Subset(x, subset, ...)

Arguments

x The flow object, frame or set, to subset.

subset A filter object or, in the case of flowSet subsetting, a named list of filters.

... Like the original subset function, you can also select columns.

Details

The Subset method is the recommended method for obtaining a flowFrame that only contains
events consistent with a particular filter. It is functionally equivalent to frame[as(filter(frame,subset),"logical"),]
when used in the flowFrame context. Used in the flowSet context, it is equivalent to using fsApply
to apply the filtering operation to each flowFrame.

Additionally, using Subset on a flowSet can also take a named list as the subset. In this case, the
names of the list object should correspond to the sampleNames of the flowSet, allowing a different
filter to be applied to each frame. If not all of the names are used or excess names are present, a
warning will be generated but the valid filters will be applied for the rare instances where this is the
intended operation. Note that a filter operation will generate a list of filterResult objects that
can be used directly with Subset in this manner.

Value

Depending on the original context, either a flowFrame or a flowSet.

Author(s)

B. Ellis

See Also

split, subset

subsetFilter-class 125

Examples

sample <- read.flowSet(path=system.file("extdata", package="flowCore"),
pattern="0877408774")
result <- filter(sample, rectangleGate("FSC-H"=c(-Inf, 1024)))
result
Subset(sample,result)

subsetFilter-class Class subsetFilter

Description

This class represents the action of applying a filter on the subset of data resulting from another
filter. This is itself a filter that can be incorporated in to further set operations. This is similar to an
intersectFilter, with behavior only differing if the component filters are data-driven.

Details

subsetFilters are constructed using the equivalent binary set operators "%&%" or "%subset%".
The operator is not symmetric, as the filter on the right-hand side will take the subset of the filter
on the left-hand side as input. Left-hand side operands can be a filter or list of filters, while the
right-hand side operand must be a single filter.

Slots

filters Object of class "list", containing the component filters.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filter", directly.

Author(s)

B. Ellis

See Also

filter, setOperationFilter

Other setOperationFilter classes: complementFilter-class, intersectFilter-class, setOperationFilter-class,
unionFilter-class

126 timeFilter-class

summarizeFilter-methods

Methods for function summarizeFilter

Description

Internal methods to populate the filterDetails slot of a filterResult object.

Usage

summarizeFilter(result, filter)

Arguments

result A filterResult (or one of its derived classes) representing the result of a fil-
tering operation in whose filterDetails slot the information will be stored.

filter The corresponding filter (or one of its derived classes).

Methods

summarizeFilter(result = "filterResult", filter = "filter") summarizeFilter methods are called
during the process of filtering. Their output is a list, and it can be arbitrary data that should be
stored along with the results of a filtering operation.

summarizeFilter(result = "filterResult", filter = "filterReference") see above

summarizeFilter(result = "filterResult", filter = "parameterFilter") see above

summarizeFilter(result = "filterResult", filter = "subsetFilter") see above

summarizeFilter(result = "logicalFilterResult", filter = "norm2Filter") see above

summarizeFilter(result = "logicalFilterResult", filter = "parameterFilter") see above

summarizeFilter(result = "multipleFilterResult", filter = "parameterFilter") see above

timeFilter-class Class "timeFilter"

Description

Define a filter that removes stretches of unusual data distribution within a single parameter over
time. This can be used to correct for problems during data acquisition like air bubbles or clods.

Usage

timeFilter(..., bandwidth=0.75, binSize, timeParameter,
filterId="defaultTimeFilter")

timeFilter-class 127

Arguments

... The names of the parameters on which the filter is supposed to work on. Names
can either be given as individual arguments, or as a list or a character vector.

filterId An optional parameter that sets the filterId slot of this gate. The object can
later be identified by this name.

bandwidth, binSize
Numerics used to set the bandwidth and binSize slots of the object.

timeParameter Character used to set the timeParameter slot of the object.

Details

Clods and disturbances in the laminar flow of a FACS instrument can cause temporal aberrations
in the data acquisition that lead to artifactual values. timeFilters try to identify such stretches of
disturbance by computing local variance and location estimates and to remove them from the data.

Value

Returns a timeFilter object for use in filtering flowFrames or other flow cytometry objects.

Slots

bandwidth Object of class "numeric". The sensitivity of the filter, i.e., the amount of local vari-
ance of the signal we want to allow.

binSize Object of class "numeric". The size of the bins used for the local variance and location
estimation. If NULL, a reasonable default is used when evaluating the filter.

timeParameter Object of class "character", used to define the time domain parameter. If NULL,
the filter tries to guess the time domain from the flowFrame.

parameters Object of class "character", describing the parameters used to filter the flowFrame.

filterId Object of class "character", referencing the filter.

Extends

Class "parameterFilter", directly.

Class "concreteFilter", by class parameterFilter, distance 2.

Class "filter", by class parameterFilter, distance 3.

Objects from the Class

Objects can be created by calls of the form new("timeFilter",...) or using the constructor
timeFilter. Using the constructor is the recommended way.

Methods

%in% signature(x = "flowFrame", table = "timeFilter"): The workhorse used to evaluate
the filter on data. This is usually not called directly by the user.

show signature(object = "timeFilter"): Print information about the filter.

Note

See the documentation of timeLinePlot in the flowViz package for details on visualizing temporal
problems in flow cytometry data.

128 transform

Author(s)

Florian Hahne

See Also

flowFrame, filter for evaluation of timeFilters and split and Subsetfor splitting and subset-
ting of flow cytometry data sets based on that.

Examples

Loading example data
data(GvHD)
dat <- GvHD[1:10]

create the filter
tf <- timeFilter("SSC-H", bandwidth=1, filterId="myTimeFilter")
tf

Visualize problems
Not run:
library(flowViz)
timeLinePlot(dat, "SSC-H")

End(Not run)

Filtering using timeFilters
fres <- filter(dat, tf)
fres[[1]]
summary(fres[[1]])
summary(fres[[7]])

The result of rectangle filtering is a logical subset
cleanDat <- Subset(dat, fres)

Visualizing after cleaning up
Not run:
timeLinePlot(cleanDat, "SSC-H")

End(Not run)

We can also split, in which case we get those events in and those
not in the gate as separate populations
allDat <- split(dat[[7]], fres[[7]])

par(mfcol=c(1,3))
plot(exprs(dat[[7]])[, "SSC-H"], pch=".")
plot(exprs(cleanDat[[7]])[, "SSC-H"], pch=".")
plot(exprs(allDat[[2]])[, "SSC-H"], pch=".")

transform Transform a flowFrame or flowSet

transform-class 129

Description

Similar to the base transform method, this will transform the values of a flowFrame or flowSet object
according to the transformations specified in one of two ways: 1. a [transformList][flowCore::transformList-
class] or list of [transform][flowCore::transform-class] objects 2. named arguments specifying
transformations to be applied to channels (see details)

Usage

S4 method for signature 'flowFrame'
transform(`_data`, translist, ...)

Arguments

_data a flowFrame or flowSet object

translist a transformList object

... other arguments. e.g. ‘FL1-H‘ = myFunc(‘FL1-H‘)

Details

To specify the transformations in the second way, the names of these arguments should correspond
to the new channel names and the values should be functions applied to channels currently present
in the flowFrame or flowSet. There are a few examples below.

Examples

data(GvHD)
logarithmically transform FL1-H and FL2-H for the entire flowSet
using a transformList
fs <- transform(GvHD,

transformList(c("FL1-H", "FL2-H"), list(log, log)))

transform a single flowFrame using named arguments. Note the first
transformation will overwrite FL1-H while the second will create a new
channel
fr <- transform(GvHD[[1]],

`FL1-H`=log(`FL1-H`),
`logFL2`=log(`FL2-H`))

transform-class ’transform’: a class for transforming flow-cytometry data by applying
scale factors.

Description

Transform objects are simply functions that have been extended to allow for specialized dispatch.
All of the “...Transform” constructors return functions of this type for use in one of the transforma-
tion modalities.

130 transformation-class

Slots

.Data Object of class "function"

transformationId A name for the transformation object

Methods

summary Return the parameters

Author(s)

N LeMeur

See Also

linearTransform, lnTransform, logicleTransform, biexponentialTransform, arcsinhTransform,
quadraticTransform, logTransform

Examples

cosTransform <- function(transformId, a=1, b=1){
t = new("transform", .Data = function(x) cos(a*x+b))
t@transformationId = transformId
t

}

cosT <- cosTransform(transformId="CosT",a=2,b=1)

summary(cosT)

transformation-class Class "transformation"

Description

A virtual class to abstract transformations.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "characterOrTransformation", directly.

Author(s)

N. Gopalakrishnan

transformFilter-class 131

transformFilter-class A class for encapsulating a filter to be performed on transformed pa-
rameters

Description

The transformFilter class is a mechanism for including one or more variable transformations
into the filtering process. Using a special case of transform we can introduce transformations
inline with the filtering process eliminating the need to process flowFrame objects before applying
a filter.

Slots

transforms A list of transforms to perform on the target flowFrame

filter The filter to be applied to the transformed frame

filterId The name of the filter (chosen automatically)

Objects from the Class

Objects of this type are not generally created “by hand”. They are a side effect of the use of the
%on% method with a filter object on the left hand side and a transformList on the right hand
side.

Extends

Class "filter", directly.

Author(s)

B. Ellis

See Also

"filter", "transform", transform

Examples

require(flowStats)
samp <- read.FCS(system.file("extdata", "0877408774.B08", package="flowCore"))

Gate this object after log transforming the forward and side
scatter variables
filter(samp, norm2Filter("FSC-H", "SSC-H", scale.factor=2)

%on% transform("FSC-H"=log,"SSC-H"=log))

132 transformList-class

transformList-class Class "transformList"

Description

A list of transformMaps to be applied to a list of parameters.

Usage

transformList(from, tfun, to=from, transformationId =
"defaultTransformation")

Arguments

from, to Characters giving the names of the measurement parameter on which to trans-
form on and into which the result is supposed to be stored. If both are equal, the
existing parameters will be overwritten.

tfun A list if functions or a character vector of the names of the functions used to
transform the data. R’s recycling rules apply, so a single function can be given
to be used on all parameters.

transformationId

The identifier for the object.

Slots

transforms Object of class "list", where each list item is of class transformMap.

transformationId Object of class "character", the identifier for the object.

Objects from the Class

Objects can be created by calls of the form new("transformList",...), by calling the transform
method with key-value pair arguments of the form key equals character and value equals function,
or by using the constructor transformList. See below for details

Methods

colnames signature(x = "transformList"): This returns the names of the parameters that are
to be transformed.

c signature(x = "transformList"): Concatenate transformLists or regular lists and transformLists.

%on% signature(e1 = "transformList", e2 = "flowFrame"): Perform a transformation us-
ing the transformList on a flowFrame or flowSet.

Author(s)

B. Ellis, F. Hahne

See Also

transform, transformMap

transformMap-class 133

Examples

tl <- transformList(c("FSC-H", "SSC-H"), list(log, asinh))
colnames(tl)
c(tl, transformList("FL1-H", "linearTransform"))
data(GvHD)
transform(GvHD[[1]], tl)

transformMap-class A class for mapping transforms between parameters

Description

This class provides a mapping between parameters and transformed parameters via a function.

Slots

output Name of the transformed parameter.

input Name of the parameter to transform.

f Function used to accomplish the transform.

Objects from the Class

Objects of this type are not usually created by the user, except perhaps in special circumstances.
They are generally automatically created by the inline transform process during the creation of a
transformFilter, or by a call to the transformList constructor.

Methods

show signature(object = "transformList"): Print details about the object.

Author(s)

B. Ellis, F. Hahne

See Also

transform, transformList

Examples

new("transformMap", input="FSC-H", output="FSC-H", f=log)

134 transform_gate

transformReference-class

Class "transformReference"

Description

Class allowing for reference of transforms, for instance as parameters.

Slots

.Data The list of references.

searchEnv The environment into which the reference points.

transformationId The name of the transformation.

Objects from the Class

Objects will be created internally whenever necessary and this should not be of any concern to the
user.

Extends

Class "transform", directly. Class "transformation", by class "transform", distance 2. Class
"characterOrTransformation", by class "transform", distance 3.

Author(s)

N. Gopalakrishnan

transform_gate Simplified geometric transformation of gates

Description

Perform geometric transformations of Gate-type filter objects

Usage

Default S3 method:
transform_gate(
obj,
scale = NULL,
deg = NULL,
rot_center = NULL,
dx = NULL,
dy = NULL,
center = NULL,
...

)

transform_gate 135

Arguments

obj A Gate-type filter object (quadGate, rectangleGate, ellipsoidGate, or
polygonGate)

scale Either a numeric scalar (for uniform scaling in all dimensions) or numeric vector
specifying the factor by which each dimension of the gate should be expanded
(absolute value > 1) or contracted (absolute value < 1). Negative values will
result in a reflection in that dimension.
For rectangleGate and quadGate objects, this amounts to simply scaling the
values of the 1-dimensional boundaries. For polygonGate objects, the values
of scale will be used to determine scale factors in the direction of each of the
2 dimensions of the gate (scale_gate is not yet defined for higher-dimensional
polytopeGate objects). Important: For ellipsoidGate objects, scale de-
termines scale factors for the major and minor axes of the ellipse, in that order.

deg An angle in degrees by which the gate should be rotated in the counter-clockwise
direction.

rot_center A separate 2-dimensional center of rotation for the gate, if desired. By de-
fault, this will be the center for ellipsoidGate objects or the centroid for
polygonGate objects. The rot_center argument is currently only supported
for polygonGate objects. It is also usually simpler to perform a rotation and a
translation individually than to manually specify the composition as a rotation
around a shifted center.

dx Either a numeric scalar or numeric vector. If it is scalar, this is just the desired
shift of the gate in its first dimension. If it is a vector, it specifies both dx and
dy as (dx,dy). This provides an alternate syntax for shifting gates, as well as
allowing shifts of ellipsoidGate objects in more than 2 dimensions.

dy A numeric scalar specifying the desired shift of the gate in its second dimension.

center A numeric vector specifying where the center or centroid should be moved
(rather than specifiying dx and/or dy)

... Assignments made to the slots of the particular Gate-type filter object in the
form "<slot_name> = <value>"

Details

This method allows changes to the four filter types defined by simple geometric gates (quadGate,
rectangleGate, ellipsoidGate, and polygonGate) using equally simple geometric transforma-
tions (shifting/translation, scaling/dilation, and rotation). The method also allows for directly re-
setting the slots of each Gate-type object. Note that these methods are for manually altering the
geometric definition of a gate. To easily transform the definition of a gate with an accompanyging
scale transformation applied to its underlying data, see rescale_gate.

First, transform_gate will apply any direct alterations to the slots of the supplied Gate-type filter
object. For example, if "mean = c(1,3)" is present in the argument list when transform_gate is
called on a ellipsoidGate object, the first change applied will be to shift the mean slot to (1,3).
The method will carry over the dimension names from the gate, so there is no need to provide
column or row names with arguments such as mean or cov for ellipsoidGate or boundaries for
polygonGate.

transform_gate then passes the geometric arguments (dx, dy, deg, rot_center, scale, and
center) to the methods which perform each respective type of transformation: shift_gate, scale_gate,
or rotate_gate. The order of operations is to first scale, then rotate, then shift. The default behav-
ior of each operation follows that of its corresponding method but for the most part these are what
the user would expect. A few quick notes:

136 truncateTransform

• rotate_gate is not defined for rectangleGate or quadGate objects, due to their definition
as having 1-dimensional boundaries.

• The default center for both rotation and scaling of a polygonGate is the centroid of the poly-
gon. This results in the sort of scaling most users expect, with a uniform scale factor not
distorting the shape of the original polygon.

Value

A Gate-type filter object of the same type as gate, with the geometric transformations applied

Examples

Not run:
Scale the original gate non-uniformly, rotate it 15 degrees, and shift it
transformed_gate <- transform_gate(original_gate, scale = c(2,3), deg = 15, dx = 500, dy = -700)

Scale the original gate (in this case an ellipsoidGate) after moving its center to (1500, 2000)
transformed_gate <- transform_gate(original_gate, scale = c(2,3), mean = c(1500, 2000))

End(Not run)

truncateTransform Create the definition of a truncate transformation function to be ap-
plied on a data set

Description

Create the definition of the truncate Transformation that will be applied on some parameter via the
transform method. The definition of this function is currently x[x<a] <- a. Hence, all values less
than a are replaced by a. The typical use would be to replace all values less than 1 by 1.

Usage

truncateTransform(transformationId="defaultTruncateTransform", a=1)

Arguments

transformationId

character string to identify the transformation

a double that corresponds to the value at which to truncate

Value

Returns an object of class transform.

Author(s)

P. Haaland

unionFilter-class 137

See Also

transform-class, transform

Other Transform functions: arcsinhTransform(), biexponentialTransform(), inverseLogicleTransform(),
linearTransform(), lnTransform(), logTransform(), logicleTransform(), quadraticTransform(),
scaleTransform(), splitScaleTransform()

Examples

samp <- read.FCS(system.file("extdata",
"0877408774.B08", package="flowCore"))
truncateTrans <- truncateTransform(transformationId="Truncate-transformation", a=5)
dataTransform <- transform(samp,transformList('FSC-H', truncateTrans))

unionFilter-class Class unionFilter

Description

This class represents the union of two filters, which is itself a filter that can be incorporated in
to further set operations. unionFilters are constructed using the binary set operator "|" with
operands consisting of a single filter or list of filters.

Slots

filters Object of class "list", containing the component filters.

filterId Object of class "character" referencing the filter applied.

Extends

Class "filter", directly.

Author(s)

B. Ellis

See Also

filter, setOperationFilter

Other setOperationFilter classes: complementFilter-class, intersectFilter-class, setOperationFilter-class,
subsetFilter-class

138 unitytransform-class

unitytransform-class Class "unitytransform"

Description

Unity transform class transforms parameters names provided as characters into unity transform
objects which can be evaluated to retrieve the corresponding columns from the data frame

Slots

.Data Object of class "function".

parameters Object of class "character" – the flow parameters to be transformed.

transformationId Object of class "character" – a unique Id to reference the transformation.

Objects from the Class

Objects can be created by calls to the constructor unitytransform(parameters,transformationId).

Extends

Class "transform", directly.

Class "transformation", by class "transform", distance 2.

Class "characterOrTransformation", by class "transform", distance 3.

Author(s)

Gopalakrishnan N, F.Hahne

See Also

dg1polynomial, ratio

Other mathematical transform classes: EHtrans-class, asinht-class, asinhtGml2-class, dg1polynomial-class,
exponential-class, hyperlog-class, hyperlogtGml2-class, invsplitscale-class, lintGml2-class,
logarithm-class, logicletGml2-class, logtGml2-class, quadratic-class, ratio-class,
ratiotGml2-class, sinht-class, splitscale-class, squareroot-class

Examples

dat <- read.FCS(system.file("extdata","0877408774.B08",
package="flowCore"))
un1<-unitytransform(c("FSC-H","SSC-H"),transformationId="un1")
transOut<-eval(un1)(exprs(dat))

updateTransformKeywords 139

updateTransformKeywords

modify description to reflect the transformation Involve insert-
ing/updating ’transformation’ and flowCore_$PnRmax keywords

Description

modify description to reflect the transformation Involve inserting/updating ’transformation’ and
flowCore_$PnRmax keywords

Usage

updateTransformKeywords(fr)

Arguments

fr flowFrame

Value

updated description slot

validFilters Check if all filters in a filters matches same paramters

Description

Check if all filters in a filters matches same paramters

Usage

validFilters(flist)

Arguments

flist a filters object

Value

TRUE or FALSE

140 write.FCS

write.FCS Write an FCS file

Description

Write FCS file from a flowFrame

Usage

write.FCS(x, filename, what="numeric", delimiter = "|", endian="big")

Arguments

x A flowFrame.

filename A character scalar giving the output file name.

what A character scalar defining the output data type. One in integer, numeric,
double. Note that forcing the data type to integer may result in considerable
loss of precision if the data has been transformed. We recommend using the
default data type unless disc space is an issue.

delimiter a single character to separate the FCS keyword/value pairs. Default is : "|"

endian a character, either "little" or "big" (default), specifying the most significant or
least significant byte is stored first in a 32 bit word.

Details

The function write.FCS creates FCS 3.0 standard file from an object of class flowFrame.

For specifications of FCS 3.0 see http://www.isac-net.org and the file ../doc/fcs3.html in
the doc directory of the package.

Value

A character vector of the file name.

Author(s)

F. Hahne

See Also

link[flowCore]{write.flowSet}

Examples

a sample file
inFile <- system.file("extdata", "0877408774.B08", package="flowCore")
foo <- read.FCS(inFile, transform=FALSE)
outFile <- file.path(tempdir(), "foo.fcs")

now write out into a file
write.FCS(foo, outFile)
bar <- read.FCS(outFile, transform=FALSE)

http://www.isac-net.org
../doc/fcs3.html

write.flowSet 141

all(exprs(foo) == exprs(bar))

write.flowSet Write an FCS file

Description

Write FCS file for each flowFrame in a flowSet

Usage

write.flowSet(x, outdir=identifier(x), filename, ...)

Arguments

x A flowSet.

outdir A character scalar giving the output directory. As the default, the output of
identifier(x) is used.

filename A character scalar or vector giving the output file names. By default, the function
will use the identifiers of the individual flowFrames as the file name, potentially
adding the .fcs suffix unless a file extension is already present. Alternatively,
one can supply either a character scalar, in which case the prefix i_ is appended
(i being an integer in seq_len(length(x))), or a character vector of the same
length as the flowSet x.

... Further arguments that are passed on to write.FCS.

Details

The function write.flowSet creates FCS 3.0 standard file for all flowFrames in an object of
class flowSet. In addition, it will write the content of the phenoData slot in the ASCII file
"annotation.txt". This file can subsequently be used to reconstruct the whole flowSet using
the read.flowSet function, e.g.:

read.flowSet(path=outdir, phenoData="annotation.txt"

The function uses write.FCS for the actual writing of the FCS files.

Value

A character vector of the output directory.

Author(s)

F. Hahne

See Also

link[flowCore]{write.FCS}

142 write.flowSet

Examples

sample data
data(GvHD)
foo <- GvHD[1:5]
outDir <- file.path(tempdir(), "foo")

now write out into files
write.flowSet(foo, outDir)
dir(outDir)

and read back in
bar <- read.flowSet(path=outDir, phenoData="annotation.txt")

Index

!,filter-method (filter-class), 31
∗ Gate classes

ellipsoidGate-class, 24
polygonGate-class, 91
polytopeGate-class, 92
quadGate-class, 94
rectangleGate-class, 107

∗ IO
fr_append_cols, 56
read.FCS, 101
read.FCSheader, 104
read.flowSet, 105
write.FCS, 140
write.flowSet, 141

∗ Transform functions
arcsinhTransform, 5
biexponentialTransform, 9
inverseLogicleTransform, 65
linearTransform, 71
lnTransform, 74
logicleTransform, 79
logTransform, 82
quadraticTransform, 97
scaleTransform, 112
splitScaleTransform, 121
truncateTransform, 136

∗ classes
asinht-class, 6
asinhtGml2-class, 7
boundaryFilter-class, 10
characterOrNumeric-class, 12
characterOrParameters-class, 12
characterOrTransformation-class,

13
compensatedParameter-class, 15
compensation-class, 16
complementFilter-class, 19
concreteFilter-class, 19
dg1polynomial-class, 21
EHtrans-class, 23
exponential-class, 27
expressionFilter-class, 28
filter-class, 31

filterList-class, 36
filterReference-class, 37
filterResult-class, 37
filterResultList-class, 38
filters-class, 40
filterSummary-class, 41
filterSummaryList-class, 43
flowFrame-class, 44
flowSet-class, 50
hyperlog-class, 60
hyperlogtGml2-class, 61
intersectFilter-class, 64
invsplitscale-class, 66
kmeansFilter-class, 69
lintGml2-class, 72
logarithm-class, 75
logicalFilterResult-class, 76
logicletGml2-class, 77
logtGml2-class, 81
manyFilterResult-class, 83
multipleFilterResult-class, 85
normalization-class, 86
nullParameter-class, 88
parameterFilter-class, 88
parameters-class, 89
parameterTransform-class, 90
quadGate-class, 94
quadratic-class, 96
randomFilterResult-class, 98
ratio-class, 98
ratiotGml2-class, 99
rectangleGate-class, 107
sampleFilter-class, 110
setOperationFilter-class, 114
singleParameterTransform-class,

116
sinht-class, 116
splitscale-class, 120
squareroot-class, 123
subsetFilter-class, 125
timeFilter-class, 126
transform-class, 129
transformation-class, 130

143

144 INDEX

transformFilter-class, 131
transformList-class, 132
transformMap-class, 133
transformReference-class, 134
unionFilter-class, 137
unitytransform-class, 138

∗ datasets
GvHD, 59

∗ internal
CytoExploreR_exports, 20

∗ iteration
fsApply, 57

∗ manip
Subset-methods, 124

∗ mathematical transform classes
asinht-class, 6
asinhtGml2-class, 7
dg1polynomial-class, 21
EHtrans-class, 23
exponential-class, 27
hyperlog-class, 60
hyperlogtGml2-class, 61
invsplitscale-class, 66
lintGml2-class, 72
logarithm-class, 75
logicletGml2-class, 77
logtGml2-class, 81
quadratic-class, 96
ratio-class, 98
ratiotGml2-class, 99
sinht-class, 116
splitscale-class, 120
squareroot-class, 123
unitytransform-class, 138

∗ methods
arcsinhTransform, 5
biexponentialTransform, 9
boundaryFilter-class, 10
coerce, 14
compensation-class, 16
each_col, 22
ellipsoidGate-class, 24
expressionFilter-class, 28
FCSTransTransform, 30
filter-and-methods, 31
filter-in-methods, 33
filter-methods, 33
filter-on-methods, 35
filterDetails-methods, 35
getIndexSort, 58
identifier-methods, 63
inverseLogicleTransform, 65

keyword-methods, 68
kmeansFilter-class, 69
linearTransform, 71
lnTransform, 74
logicleTransform, 79
logTransform, 82
normalization-class, 86
parameters-methods, 89
polygonGate-class, 91
polytopeGate-class, 92
quadGate-class, 94
quadraticTransform, 97
rectangleGate-class, 107
sampleFilter-class, 110
scaleTransform, 112
split-methods, 117
splitScaleTransform, 121
summarizeFilter-methods, 126
timeFilter-class, 126
truncateTransform, 136

∗ package
flowCore-package, 4

∗ setOperationFilter classes
complementFilter-class, 19
intersectFilter-class, 64
setOperationFilter-class, 114
subsetFilter-class, 125
unionFilter-class, 137

*,rectangleGate,rectangleGate-method
(rectangleGate-class), 107

<,flowFrame,ANY-method
(flowFrame-class), 44

<=,flowFrame,ANY-method
(flowFrame-class), 44

==,filterResult,flowFrame-method
(filterResult-class), 37

==,flowFrame,filterResult-method
(flowFrame-class), 44

==,flowFrame,flowFrame-method
(flowFrame-class), 44

>,flowFrame,ANY-method
(flowFrame-class), 44

>=,flowFrame,ANY-method
(flowFrame-class), 44

[,filterResultList,ANY-method
(filterResultList-class), 38

[,flowFrame,ANY-method
(flowFrame-class), 44

[,flowFrame,filter-method
(flowFrame-class), 44

[,flowFrame,filterResult-method
(flowFrame-class), 44

INDEX 145

[,flowSet,ANY-method (flowSet-class), 50
[,flowSet-method (flowSet-class), 50
[,multipleFilterResult,ANY-method

(multipleFilterResult-class),
85

[,rectangleGate,ANY-method
(rectangleGate-class), 107

[,rectangleGate,character-method
(rectangleGate-class), 107

[[,filterResult,ANY-method
(filterResult-class), 37

[[,filterResultList,ANY-method
(filterResultList-class), 38

[[,filterSummary,character-method
(filterSummary-class), 41

[[,filterSummary,numeric-method
(filterSummary-class), 41

[[,flowSet,ANY-method (flowSet-class),
50

[[,flowSet-method (flowSet-class), 50
[[,logicalFilterResult,ANY-method

(logicalFilterResult-class), 76
[[,manyFilterResult,ANY-method

(manyFilterResult-class), 83
[[,manyFilterResult-method

(manyFilterResult-class), 83
[[,multipleFilterResult,ANY-method

(multipleFilterResult-class),
85

[[,multipleFilterResult-method
(multipleFilterResult-class),
85

[[<-,flowFrame-method (flowSet-class),
50

[[<-,flowSet,ANY,ANY,flowFrame-method
(flowSet-class), 50

[[<-,flowSet-method (flowSet-class), 50
$,filterSummary-method

(filterSummary-class), 41
$,flowSet-method (flowSet-class), 50
$.flowFrame (flowFrame-class), 44
%&% (filter-and-methods), 31
%&%,ANY-method (filter-and-methods), 31
%&%,filter,filter-method

(filter-and-methods), 31
%&%-methods (filter-and-methods), 31
%in% (filter-in-methods), 33
%in%,ANY,filterReference-method

(filter-in-methods), 33
%in%,ANY,filterResult-method

(filter-in-methods), 33
%in%,ANY,manyFilterResult-method

(filter-in-methods), 33
%in%,ANY,multipleFilterResult-method

(filter-in-methods), 33
%in%,flowFrame,boundaryFilter-method

(filter-in-methods), 33
%in%,flowFrame,complementFilter-method

(filter-in-methods), 33
%in%,flowFrame,ellipsoidGate-method

(filter-in-methods), 33
%in%,flowFrame,expressionFilter-method

(filter-in-methods), 33
%in%,flowFrame,filterResult-method

(filter-in-methods), 33
%in%,flowFrame,intersectFilter-method

(filter-in-methods), 33
%in%,flowFrame,kmeansFilter-method

(filter-in-methods), 33
%in%,flowFrame,norm2Filter-method

(filter-in-methods), 33
%in%,flowFrame,polygonGate-method

(filter-in-methods), 33
%in%,flowFrame,polytopeGate-method

(filter-in-methods), 33
%in%,flowFrame,quadGate-method

(filter-in-methods), 33
%in%,flowFrame,rectangleGate-method

(filter-in-methods), 33
%in%,flowFrame,sampleFilter-method

(filter-in-methods), 33
%in%,flowFrame,subsetFilter-method

(filter-in-methods), 33
%in%,flowFrame,timeFilter-method

(filter-in-methods), 33
%in%,flowFrame,transformFilter-method

(filter-in-methods), 33
%in%,flowFrame,unionFilter-method

(filter-in-methods), 33
%in%-methods (filter-in-methods), 33
%on% (filter-on-methods), 35
%on%,ANY,flowSet-method

(filter-on-methods), 35
%on%,filter,parameterTransform-method

(filter-on-methods), 35
%on%,filter,transform-method

(filter-on-methods), 35
%on%,filter,transformList-method

(filter-on-methods), 35
%on%,parameterTransform,flowFrame-method

(filter-on-methods), 35
%on%,transform,flowFrame-method

(filter-on-methods), 35
%on%,transformList,flowFrame-method

146 INDEX

(filter-on-methods), 35
%on%,transformList,flowSet-method

(filter-on-methods), 35
%on%-methods (filter-on-methods), 35
%subset% (filter-and-methods), 31
%subset%,ANY-method

(filter-and-methods), 31
%subset%,filter,filter-method

(filter-and-methods), 31
%subset%,list,filter-method

(filter-and-methods), 31
&,filter,filter-method

(filter-and-methods), 31
&,filter,list-method

(filter-and-methods), 31
&,list,filter-method

(filter-and-methods), 31
%on%, 47, 131

AnnotatedDataFrame, 44, 46, 50, 51, 89, 90,
106

AnnotatedDataFrames, 46
apply, 22, 23, 57
arcsinhTransform, 5, 9, 65, 72, 74, 80, 83,

97, 112, 122, 130, 137
as.data.frame.manyFilterResult

(manyFilterResult-class), 83
asinht, 8, 116
asinht (asinht-class), 6
asinht-class, 6
asinhtGml2 (asinhtGml2-class), 7
asinhtGml2-class, 7

biexponentialTransform, 5, 9, 65, 72, 74,
79, 80, 83, 97, 112, 122, 130, 137

booleanGate,filter-class
(filter-class), 31

boundaryFilter (boundaryFilter-class),
10

boundaryFilter-class, 10

c,transformList-method
(transformList-class), 132

call,filter-method (filter-methods), 33
cbind2,flowFrame,matrix-method

(flowFrame-class), 44
cbind2,flowFrame,numeric-method

(flowFrame-class), 44
char2ExpressionFilter

(expressionFilter-class), 28
character,filter-method

(filter-methods), 33

characterOrNumeric
(characterOrNumeric-class), 12

characterOrNumeric-class, 12
characterOrParameters

(characterOrParameters-class),
12

characterOrParameters-class, 12
characterOrTransformation, 6, 8, 15, 21,

23, 27, 60, 62, 67, 73, 75, 78, 82, 96,
99, 100, 116, 117, 121, 123, 130,
134, 138

characterOrTransformation
(characterOrTransformation-class),
13

characterOrTransformation-class, 13
checkOffset, 13
cleanup (read.FCS), 101
coerce, 14
coerce,call,filter-method (coerce), 14
coerce,character,filter-method

(coerce), 14
coerce,complementFilter,call-method

(coerce), 14
coerce,complementFilter,logical-method

(coerce), 14
coerce,ellipsoidGate,polygonGate-method

(coerce), 14
coerce,environment,flowSet-method

(coerce), 14
coerce,factor,filterResult-method

(coerce), 14
coerce,filter,call-method (coerce), 14
coerce,filter,logical-method (coerce),

14
coerce,filterReference,call-method

(coerce), 14
coerce,filterReference,concreteFilter-method

(coerce), 14
coerce,filterResult,logical-method

(coerce), 14
coerce,filterResultList,list-method

(coerce), 14
coerce,filterSummary,data.frame-method

(filterSummary-class), 41
coerce,flowFrame,flowSet-method

(coerce), 14
coerce,flowSet,flowFrame-method

(coerce), 14
coerce,flowSet,list-method (coerce), 14
coerce,formula,filter-method (coerce),

14
coerce,intersectFiler,call-method

INDEX 147

(coerce), 14
coerce,intersectFilter,call-method

(filter-and-methods), 31
coerce,intersectFilter,logical-method

(coerce), 14
coerce,list,filterResultList-method

(coerce), 14
coerce,list,flowSet-method (coerce), 14
coerce,list,transformList-method

(coerce), 14
coerce,logical,filterResult-method

(coerce), 14
coerce,logicalFilterResult,logical-method

(coerce), 14
coerce,matrix,filterResult-method

(coerce), 14
coerce,name,filter-method (coerce), 14
coerce,nullParameter,character-method

(coerce), 14
coerce,numeric,filterResult-method

(coerce), 14
coerce,parameters,character-method

(coerce), 14
coerce,randomFilterResult,logical-method

(coerce), 14
coerce,ratio,character-method (coerce),

14
coerce,rectangleGate,polygonGate-method

(coerce), 14
coerce,subsetFilter,call-method

(coerce), 14
coerce,subsetFilter,logical-method

(coerce), 14
coerce,transform,character-method

(coerce), 14
coerce,unionFilter,call-method

(coerce), 14
coerce,unionFilter,logical-method

(coerce), 14
coerce,unitytransform,character-method

(coerce), 14
collapse_desc, 14
colnames,flowFrame-method

(flowFrame-class), 44
colnames,flowSet-method

(flowSet-class), 50
colnames,transformList-method

(transformList-class), 132
colnames<- (flowFrame-class), 44
colnames<-,flowFrame-method

(flowFrame-class), 44
colnames<-,flowSet-method

(flowSet-class), 50
compensate (compensation-class), 16
compensate,flowFrame,compensation-method

(flowFrame-class), 44
compensate,flowFrame,data.frame-method

(flowFrame-class), 44
compensate,flowFrame,matrix-method

(flowFrame-class), 44
compensate,flowSet,ANY-method

(flowSet-class), 50
compensate,flowSet,data.frame-method

(flowSet-class), 50
compensate,flowSet,list-method

(flowSet-class), 50
compensatedParameter

(compensatedParameter-class),
15

compensatedParameter-class, 15
compensation, 48
compensation (compensation-class), 16
compensation-class, 16
complementFilter

(complementFilter-class), 19
complementFilter-class, 19
concreteFilter, 11, 25, 28, 38, 70, 88, 91,

94, 108, 111, 127
concreteFilter (concreteFilter-class),

19
concreteFilter-class, 19
CytoExploreR_.estimateLogicle

(CytoExploreR_exports), 20
CytoExploreR_exports, 20

data.frames, 45
decisionTreeGate,filter-class

(filter-class), 31
decompensate, 20
decompensate,flowFrame,compensation-method

(decompensate), 20
decompensate,flowFrame,data.frame-method

(decompensate), 20
decompensate,flowFrame,matrix-method

(decompensate), 20
decompensate-methods (decompensate), 20
description, 68, 69
description (flowFrame-class), 44
description,flowFrame-method

(flowFrame-class), 44
description<-,flowFrame,ANY-method

(flowFrame-class), 44
description<-,flowFrame,list-method

(flowFrame-class), 44
dg1polynomial (dg1polynomial-class), 21

148 INDEX

dg1polynomial-class, 21
dim (flowFrame-class), 44
dim,flowFrame-method (flowFrame-class),

44
dir, 105
do.call, 87

each_col, 22, 47
each_col,flowFrame-method (each_col), 22
each_col-methods (each_col), 22
each_row (each_col), 22
each_row,flowFrame-method (each_col), 22
each_row-methods (each_col), 22
EHtrans (EHtrans-class), 23
EHtrans-class, 23
ellipsoidGate, 25, 92, 108–110, 113, 115,

135
ellipsoidGate (ellipsoidGate-class), 24
ellipsoidGate,filter-class

(filter-class), 31
ellipsoidGate-class, 24
environment, 50, 53
estimateLogicle, 30, 80
estimateLogicle (logicleTransform), 79
estimateMedianLogicle, 26
eval,asinht,missing-method

(asinht-class), 6
eval,asinhtGml2,missing-method

(asinhtGml2-class), 7
eval,compensatedParameter,missing-method

(compensatedParameter-class),
15

eval,dg1polynomial,missing-method
(dg1polynomial-class), 21

eval,EHtrans,missing-method
(EHtrans-class), 23

eval,exponential,missing-method
(exponential-class), 27

eval,filterReference,missing-method
(filterReference-class), 37

eval,hyperlog,missing-method
(hyperlog-class), 60

eval,hyperlogtGml2,missing-method
(hyperlogtGml2-class), 61

eval,invsplitscale,missing-method
(invsplitscale-class), 66

eval,lintGml2,missing-method
(lintGml2-class), 72

eval,logarithm,missing-method
(logarithm-class), 75

eval,logicletGml2,missing-method
(logicletGml2-class), 77

eval,logtGml2,missing-method
(logtGml2-class), 81

eval,quadratic,missing-method
(quadratic-class), 96

eval,ratio,missing-method
(ratio-class), 98

eval,ratiotGml2,missing-method
(ratiotGml2-class), 99

eval,sinht,missing-method
(sinht-class), 116

eval,splitscale,missing-method
(splitscale-class), 120

eval,squareroot,missing-method
(squareroot-class), 123

eval,transformReference,missing-method
(transformReference-class), 134

eval,unitytransform,missing-method
(unitytransform-class), 138

exponential (exponential-class), 27
exponential-class, 27
expressionFilter, 29
expressionFilter

(expressionFilter-class), 28
expressionFilter-class, 28
exprs (flowFrame-class), 44
exprs,flowFrame-method

(flowFrame-class), 44
exprs<- (flowFrame-class), 44
exprs<-,flowFrame,ANY-method

(flowFrame-class), 44
exprs<-,flowFrame,matrix-method

(flowFrame-class), 44

FCSTransTransform, 30
featureNames (flowFrame-class), 44
featureNames,flowFrame-method

(flowFrame-class), 44
filter, 10, 11, 19, 24, 25, 28, 29, 31–41, 45,

47, 52, 53, 63–65, 70, 71, 76, 83, 84,
86, 88–95, 98, 107, 108, 110, 111,
113–115, 118, 124–128, 131, 134,
135, 137

filter (filter-methods), 33
filter,filter-method (filter-class), 31
filter,flowFrame,filter-method

(filter-methods), 33
filter,flowFrame,norm2Filter

(filter-methods), 33
filter,flowFrame,polygonGate

(filter-methods), 33
filter,flowFrame,rectangleGate

(filter-methods), 33

INDEX 149

filter,flowFrame-method
(filter-methods), 33

filter,flowSet,filter-method
(filter-methods), 33

filter,flowSet,filterList-method
(filter-methods), 33

filter,flowSet,list-method
(filter-methods), 33

filter-and-methods, 31
filter-class, 31
filter-in-methods, 33
filter-method (filter-methods), 33
filter-methods, 33
filter-on-methods, 35
filterDetails (filterDetails-methods),

35
filterDetails,filterResult,ANY-method

(filterDetails-methods), 35
filterDetails,filterResult,missing-method

(filterDetails-methods), 35
filterDetails-methods, 35
filterDetails<-

(filterDetails-methods), 35
filterDetails<-,filterResult,character,ANY-method

(filterDetails-methods), 35
filterDetails<-,filterResult,character,filter-method

(filterDetails-methods), 35
filterDetails<-,filterResult,character,setOperationFilter-method

(filterDetails-methods), 35
filtergate,filter-class (filter-class),

31
filterList, 40, 41
filterList (filterList-class), 36
filterList-class, 36
filterReference, 19, 64
filterReference

(filterReference-class), 37
filterReference,environment,character-method

(filterReference-class), 37
filterReference-class, 37
filterResult, 11, 32–35, 38, 39, 41–43, 45,

47, 52, 53, 63, 64, 70, 76, 84, 86, 98,
118, 119, 124, 126

filterResult (filterResult-class), 37
filterResult-class, 37
filterResultList, 34, 43
filterResultList

(filterResultList-class), 38
filterResultList-class, 38
filters (filters-class), 40
filters-class, 40
filtersList (filters-class), 40

filtersList-class (filters-class), 40
filterSummary, 43
filterSummary (filterSummary-class), 41
filterSummary-class, 41
filterSummaryList, 39, 42
filterSummaryList

(filterSummaryList-class), 43
filterSummaryList-class, 43
flowCore (flowCore-package), 4
flowCore-package, 4
flowFrame, 4, 11, 16–18, 22, 25, 28, 29,

32–35, 41–43, 50–53, 56, 57, 63, 64,
68, 70, 71, 83, 89–95, 103, 105, 107,
108, 110, 111, 118, 119, 124, 127,
128, 131, 132, 140

flowFrame (flowFrame-class), 44
flowFrame-class, 44
flowFrames, 38, 55, 70
flowSet, 4, 11, 16, 17, 33–35, 38, 39, 47, 48,

55, 57, 68, 71, 86, 87, 94, 95, 105,
106, 118, 119, 124, 132, 141

flowSet (flowSet-class), 50
flowSet-class, 50
flowSet_to_list, 55
flowSets, 17, 43
flowViz, 25, 46, 70, 92, 95, 108, 127
formula,filter-method (filter-methods),

33
fr_append_cols, 56
fsApply, 57, 124
fsApply,flowSet,ANY (fsApply), 57
fsApply,flowSet-method (flowSet-class),

50
function, 90

getChannelMarker, 58
getIndexSort, 58
getIndexSort,flowFrame-method

(getIndexSort), 58
getIndexSort-methods (getIndexSort), 58
ggcyto, 46
GvHD, 59

head,flowFrame-method
(flowFrame-class), 44

here, 32
histogram, 46
hyperlog, 63
hyperlog (hyperlog-class), 60
hyperlog-class, 60
hyperlogtGml2 (hyperlogtGml2-class), 61
hyperlogtGml2-class, 61

150 INDEX

identifier, 47
identifier (identifier-methods), 63
identifier,compensation-method

(compensation-class), 16
identifier,filter-method

(identifier-methods), 63
identifier,filterList-method

(filterList-class), 36
identifier,filterReference-method

(identifier-methods), 63
identifier,filterResult-method

(identifier-methods), 63
identifier,flowFrame-method

(identifier-methods), 63
identifier,flowSet-method

(flowSet-class), 50
identifier,normalization-method

(normalization-class), 86
identifier,NULL-method

(identifier-methods), 63
identifier,transform-method

(identifier-methods), 63
identifier,transformList-method

(transformList-class), 132
identifier-methods, 63
identifier<- (identifier-methods), 63
identifier<-,compensation,character-method

(compensation-class), 16
identifier<-,filter,character-method

(filter-methods), 33
identifier<-,filterList,character-method

(filterList-class), 36
identifier<-,flowFrame,ANY-method

(identifier-methods), 63
identifier<-,flowFrame-method

(identifier-methods), 63
identifier<-,flowSet,ANY-method

(flowSet-class), 50
identifier<-,normalization,character-method

(normalization-class), 86
identifier<-,transformList,character-method

(transformList-class), 132
initialize,dg1polynomial-method

(dg1polynomial-class), 21
initialize,flowFrame-method

(flowFrame-class), 44
initialize,parameterFilter-method

(parameterFilter-class), 88
initialize,ratio-method (ratio-class),

98
initialize,ratiotGml2-method

(ratiotGml2-class), 99

initialize,singleParameterTransform-method
(singleParameterTransform-class),
116

intersectFilter
(intersectFilter-class), 64

intersectFilter-class, 64
intersectFilter-method

(filter-and-methods), 31
inverseLogicleTransform, 5, 9, 30, 65, 72,

74, 80, 83, 97, 112, 122, 137
invsplitscale (invsplitscale-class), 66
invsplitscale-class, 66
isFCSfile (read.FCS), 101

keyword, 46, 52
keyword (keyword-methods), 68
keyword,flowFrame,character-method

(keyword-methods), 68
keyword,flowFrame,function-method

(keyword-methods), 68
keyword,flowFrame,list-method

(keyword-methods), 68
keyword,flowFrame,missing-method

(keyword-methods), 68
keyword,flowSet,ANY-method

(keyword-methods), 68
keyword,flowSet,list-method

(keyword-methods), 68
keyword-methods, 68
keyword<- (keyword-methods), 68
keyword<-,flowFrame,ANY-method

(keyword-methods), 68
keyword<-,flowFrame,character-method

(keyword-methods), 68
keyword<-,flowFrame,list-method

(keyword-methods), 68
keyword<-,flowSet,list-method

(keyword-methods), 68
kmeansFilter, 32
kmeansFilter (kmeansFilter-class), 69
kmeansFilter(), 32
kmeansFilter-class, 69

length,filter-method (filter-methods),
33

length,filterReference-method
(filterReference-class), 37

length,filterSummary-method
(filterSummary-class), 41

length,flowSet-method (flowSet-class),
50

length,kmeansFilter-method
(kmeansFilter-class), 69

INDEX 151

length,logicalFilterResult-method
(logicalFilterResult-class), 76

length,manyFilterResult-method
(manyFilterResult-class), 83

length,multipleFilterResult-method
(multipleFilterResult-class),
85

linearTransform, 5, 9, 65, 71, 73, 74, 80, 83,
97, 112, 122, 130, 137

lintGml2 (lintGml2-class), 72
lintGml2-class, 72
list, 36, 38, 40, 43, 89
lnTransform, 5, 9, 65, 72, 74, 80, 83, 97, 112,

122, 130, 137
logarithm (logarithm-class), 75
logarithm-class, 75
logicalFilterResult, 38, 39, 41–43, 107,

118
logicalFilterResult

(logicalFilterResult-class), 76
logicalFilterResult-class, 76
logicletGml2, 63
logicletGml2 (logicletGml2-class), 77
logicletGml2-class, 77
logicleTransform, 5, 9, 30, 63, 65, 72, 74,

79, 79, 83, 97, 112, 122, 130, 137
logtGml2 (logtGml2-class), 81
logtGml2-class, 81
logTransform, 5, 9, 65, 72, 74, 80, 82, 82, 97,

112, 122, 130, 137

make.names, 102
manyFilterResult, 118
manyFilterResult

(manyFilterResult-class), 83
manyFilterResult-class, 83
markernames, 84
markernames,flowFrame-method

(markernames), 84
markernames,flowSet-method

(markernames), 84
markernames<- (markernames), 84
markernames<-,flowFrame-method

(markernames), 84
markernames<-,flowSet-method

(markernames), 84
multipleFilterResult, 38, 39, 42, 43, 70,

94, 118
multipleFilterResult

(multipleFilterResult-class),
85

multipleFilterResult-class, 85
multipleFilterResults, 42

name,filter-method (filter-methods), 33
names (flowFrame-class), 44
names,filterResultList-method

(filterResultList-class), 38
names,filterSummary-method

(filterSummary-class), 41
names,flowFrame-method

(flowFrame-class), 44
names,logicalFilterResult-method

(logicalFilterResult-class), 76
names,manyFilterResult-method

(manyFilterResult-class), 83
names,multipleFilterResult-method

(multipleFilterResult-class),
85

names<-,multipleFilterResult,ANY-method
(multipleFilterResult-class),
85

names<-,multipleFilterResult-method
(multipleFilterResult-class),
85

ncol,flowFrame-method
(flowFrame-class), 44

norm2Filter, 31, 32
norm2Filter,filter-class

(filter-class), 31
normalization (normalization-class), 86
normalization-class, 86
normalize (normalization-class), 86
normalize,flowSet,normalization-method

(normalization-class), 86
nrow,flowFrame-method

(flowFrame-class), 44
nullParameter (nullParameter-class), 88
nullParameter-class, 88

parameterFilter, 11, 20, 25, 32, 70, 89, 91,
94, 108, 127

parameterFilter-class, 88
parameters, 12, 46, 70
parameters (parameters-methods), 89
parameters,compensation-method

(compensation-class), 16
parameters,filter-method

(parameters-methods), 89
parameters,filterReference-method

(parameters-methods), 89
parameters,filterResult-method

(parameters-methods), 89
parameters,filterResultList-method

(filterResultList-class), 38
parameters,flowFrame,missing-method

(parameters-methods), 89

152 INDEX

parameters,flowFrame-method
(parameters-methods), 89

parameters,manyFilterResult-method
(manyFilterResult-class), 83

parameters,normalization-method
(normalization-class), 86

parameters,nullParameter-method
(parameters-methods), 89

parameters,parameterFilter-method
(parameters-methods), 89

parameters,parameterTransform-method
(parameters-methods), 89

parameters,ratio-method
(parameters-methods), 89

parameters,ratiotGml2-method
(ratiotGml2-class), 99

parameters,setOperationFilter-method
(parameters-methods), 89

parameters,singleParameterTransform-method
(singleParameterTransform-class),
116

parameters,transform-method
(parameters-methods), 89

parameters,transformReference-method
(transformReference-class), 134

parameters-class, 89
parameters-methods, 89
parameters<- (parameters-methods), 89
parameters<-,dg1polynomial,character-method

(dg1polynomial-class), 21
parameters<-,dg1polynomial,parameters-method

(dg1polynomial-class), 21
parameters<-,dg1polynomial,transform-method

(parameters-methods), 89
parameters<-,flowFrame,AnnotatedDataFrame-method

(parameters-methods), 89
parameters<-,parameterFilter,character-method

(parameters-methods), 89
parameters<-,parameterFilter,list-method

(parameters-methods), 89
parameters<-,parameterFilter,transform-method

(parameters-methods), 89
parameters<-,singleParameterTransform,character-method

(parameters-methods), 89
parameters<-,singleParameterTransform,transform-method

(parameters-methods), 89
parameterTransform

(parameterTransform-class), 90
parameterTransform-class, 90
pData,flowSet-method (flowSet-class), 50
pData<-,flowSet,data.frame-method

(flowSet-class), 50

phenoData,flowSet-method
(flowSet-class), 50

phenoData<-,flowSet,ANY-method
(flowSet-class), 50

phenoData<-,flowSet,phenoData-method
(flowSet-class), 50

plot,flowFrame,ANY-method
(flowFrame-class), 44

plot,flowFrame-method
(flowFrame-class), 44

plot,flowSet,ANY-method
(flowSet-class), 50

plot,flowSet-method (flowSet-class), 50
polygonGate, 25, 91, 93, 108–110, 113, 115,

135
polygonGate (polygonGate-class), 91
polygonGate,filter-class

(filter-class), 31
polygonGate-class, 91
polytopeGate, 25, 92, 108
polytopeGate (polytopeGate-class), 92
polytopeGate-class, 92
print,filterSummary-method

(filterSummary-class), 41

quadGate, 113, 115, 135
quadGate (quadGate-class), 94
quadGate-class, 94
quadratic (quadratic-class), 96
quadratic-class, 96
quadraticTransform, 5, 9, 65, 72, 74, 80, 83,

97, 112, 122, 130, 137

randomFilterResult, 38, 39
randomFilterResult

(randomFilterResult-class), 98
randomFilterResult-class, 98
range (flowFrame-class), 44
range,flowFrame-method

(flowFrame-class), 44
ratio, 101
ratio (ratio-class), 98
ratio-class, 98
ratiotGml2 (ratiotGml2-class), 99
ratiotGml2-class, 99
rbind2,flowFrame,flowSet-method

(flowSet-class), 50
rbind2,flowSet,flowFrame-method

(flowSet-class), 50
rbind2,flowSet,flowSet,missing-method

(flowSet-class), 50
rbind2,flowSet,flowSet-method

(flowSet-class), 50

INDEX 153

rbind2,flowSet,missing (flowSet-class),
50

rbind2,flowSet,missing-method
(flowSet-class), 50

read.AnnotatedDataFrame, 105, 106
read.FCS, 45, 48, 101, 105, 106
read.FCSheader, 104
read.flowSet, 51, 53, 103, 105, 141
rectangleGate, 25, 92, 93, 107, 113, 115, 135
rectangleGate (rectangleGate-class), 107
rectangleGate(), 32
rectangleGate,filter-class

(filter-class), 31
rectangleGate-class, 107
rescale_gate, 113, 135
rotate_gate, 109, 135

sampleFilter (sampleFilter-class), 110
sampleFilter-class, 110
sampleNames,flowSet-method

(flowSet-class), 50
sampleNames<-,flowSet,ANY-method

(flowSet-class), 50
sapply, 52, 57
scale_gate, 113, 135
scaleTransform, 5, 9, 65, 72, 74, 80, 83, 97,

112, 122, 137
setOperationFilter, 19, 65, 125, 137
setOperationFilter

(setOperationFilter-class), 114
setOperationFilter-class, 114
shift_gate, 114, 135
show,boundaryFilter-method

(boundaryFilter-class), 10
show,compensation-method

(compensation-class), 16
show,complementFilter-method

(complementFilter-class), 19
show,ellipsoidGate-method

(ellipsoidGate-class), 24
show,expressionFilter-method

(expressionFilter-class), 28
show,filter-method (filter-methods), 33
show,filterList-method

(filterList-class), 36
show,filterReference-method

(filterReference-class), 37
show,filterResult-method

(filterResult-class), 37
show,filterResultList-method

(filterResultList-class), 38
show,filters-method (filters-class), 40

show,filtersList-method
(filters-class), 40

show,filterSummary-method
(filterSummary-class), 41

show,flowFrame-method
(flowFrame-class), 44

show,flowSet-method (flowSet-class), 50
show,intersectFilter-method

(intersectFilter-class), 64
show,kmeansFilter-method

(kmeansFilter-class), 69
show,manyFilterResult-method

(manyFilterResult-class), 83
show,multipleFilterResult-method

(multipleFilterResult-class),
85

show,polygonGate-method
(polygonGate-class), 91

show,polytopeGate-method
(polytopeGate-class), 92

show,quadGate-method (quadGate-class),
94

show,rectangleGate-method
(rectangleGate-class), 107

show,sampleFilter-method
(sampleFilter-class), 110

show,subsetFilter-method
(subsetFilter-class), 125

show,timeFilter-method
(timeFilter-class), 126

show,transform-method
(transform-class), 129

show,transformFilter-method
(transformFilter-class), 131

show,transformMap-method
(transformMap-class), 133

show,unionFilter-method
(unionFilter-class), 137

show,unitytransform-method
(unitytransform-class), 138

singleParameterTransform, 6, 8, 23, 27, 60,
62, 67, 73, 75, 78, 82, 96, 117, 121,
123

singleParameterTransform-class, 116
sinht, 6
sinht (sinht-class), 116
sinht-class, 116
smoothScatter, 46
spillover, 17, 18
spillover (flowFrame-class), 44
spillover,flowFrame-method

(flowFrame-class), 44

154 INDEX

split, 25, 29, 39, 47, 52, 70, 71, 92, 95, 108,
111, 124, 128

split (split-methods), 117
split,flowFrame,ANY-method

(split-methods), 117
split,flowFrame,character-method

(split-methods), 117
split,flowFrame,factor-method

(split-methods), 117
split,flowFrame,filter-method

(split-methods), 117
split,flowFrame,logicalFilterResult-method

(split-methods), 117
split,flowFrame,manyFilterResult-method

(split-methods), 117
split,flowFrame,multipleFilterResult-method

(split-methods), 117
split,flowFrame,numeric-method

(split-methods), 117
split,flowSet,ANY-method

(split-methods), 117
split,flowSet,character-method

(split-methods), 117
split,flowSet,factor-method

(split-methods), 117
split,flowSet,filter-method

(split-methods), 117
split,flowSet,filterResult-method

(split-methods), 117
split,flowSet,filterResultList-method

(filterResultList-class), 38
split,flowSet,list-method

(split-methods), 117
split,flowSet,numeric-method

(split-methods), 117
split-methods, 117
splitscale (splitscale-class), 120
splitscale-class, 120
splitScaleTransform, 5, 9, 65, 72, 74, 80,

83, 97, 112, 121, 137
splom, 46
squareroot (squareroot-class), 123
squareroot-class, 123
Subset, 11, 25, 29, 34, 92, 108, 111, 128
Subset (Subset-methods), 124
subset, 124
Subset,flowFrame,filter-method

(Subset-methods), 124
Subset,flowFrame,logical-method

(Subset-methods), 124
Subset,flowFrame-method

(Subset-methods), 124

Subset,flowSet,ANY (Subset-methods), 124
Subset,flowSet,ANY-method

(Subset-methods), 124
Subset,flowSet,filterResultList-method

(Subset-methods), 124
Subset,flowSet,list-method

(Subset-methods), 124
Subset-methods, 124
subsetFilter (subsetFilter-class), 125
subsetFilter-class, 125
subsetFilter-method

(filter-and-methods), 31
summarizeFilter

(summarizeFilter-methods), 126
summarizeFilter,filterResult,filter-method

(summarizeFilter-methods), 126
summarizeFilter,filterResult,filterReference-method

(summarizeFilter-methods), 126
summarizeFilter,filterResult,parameterFilter-method

(summarizeFilter-methods), 126
summarizeFilter,filterResult,subsetFilter-method

(summarizeFilter-methods), 126
summarizeFilter,logicalFilterResult,norm2Filter-method

(summarizeFilter-methods), 126
summarizeFilter,logicalFilterResult,parameterFilter-method

(summarizeFilter-methods), 126
summarizeFilter,multipleFilterResult,parameterFilter-method

(summarizeFilter-methods), 126
summarizeFilter-methods, 126
summary, 31
summary,filter-method (filter-methods),

33
summary,filterReference-method

(filterReference-class), 37
summary,filterResult-method

(filterSummary-class), 41
summary,filterResultList-method

(filterResultList-class), 38
summary,flowFrame-method

(flowFrame-class), 44
summary,flowSet-method (flowSet-class),

50
summary,logicalFilterResult-method

(logicalFilterResult-class), 76
summary,manyFilterResult-method

(manyFilterResult-class), 83
summary,multipleFilterResult-method

(multipleFilterResult-class),
85

summary,rectangleGate-method
(rectangleGate-class), 107

summary,subsetFilter-method

INDEX 155

(subsetFilter-class), 125
summary,transform-method

(transform-class), 129

tail,flowFrame-method
(flowFrame-class), 44

timeFilter, 127
timeFilter (timeFilter-class), 126
timeFilter-class, 126
timeLinePlot, 127
toTable (filterSummary-class), 41
toTable,filterSummary-method

(filterSummary-class), 41
toTable,filterSummaryList-method

(filterSummaryList-class), 43
transform, 5, 6, 8, 9, 15–17, 21, 23, 27, 32,

35, 47, 60, 62–64, 67, 69, 72–75, 78,
79, 82, 83, 90, 96, 97, 99–101, 112,
116, 117, 121–123, 128, 131–134,
137, 138

transform,flowFrame-method (transform),
128

transform,flowSet-method (transform),
128

transform,missing-method
(transform-class), 129

transform-class, 129
transform_gate, 134
transformation, 6, 8, 13, 15, 21, 23, 27, 60,

62, 67, 69, 70, 73, 75, 78, 82, 96, 99,
100, 116, 117, 121, 123, 134, 138

transformation (transformation-class),
130

transformation-class, 130
transformFilter, 133
transformFilter

(transformFilter-class), 131
transformFilter-class, 131
transformList, 32, 35, 131, 133
transformList (transformList-class), 132
transformList-class, 132
transformMap, 132
transformMap (transformMap-class), 133
transformMap-class, 133
transformReference

(transformReference-class), 134
transformReference-class, 134
transformReferences, 18
transforms, 18
truncateTransform, 5, 9, 65, 72, 74, 80, 83,

97, 112, 122, 136

unionFilter (unionFilter-class), 137

unionFilter-class, 137
uniroot, 9
unitytransform (unitytransform-class),

138
unitytransform-class, 138
updateTransformKeywords, 139

validFilters, 139
varLabels,flowSet-method

(flowSet-class), 50
varLabels<-,flowSet,ANY-method

(flowSet-class), 50
varLabels<-,flowSet-method

(flowSet-class), 50
varMetadata,flowSet-method

(flowSet-class), 50
varMetadata<-,flowSet,ANY-method

(flowSet-class), 50
vector, 89

write.FCS, 140, 141
write.flowSet, 141

xyplot, 40

	flowCore-package
	arcsinhTransform
	asinht-class
	asinhtGml2-class
	biexponentialTransform
	boundaryFilter-class
	characterOrNumeric-class
	characterOrParameters-class
	characterOrTransformation-class
	checkOffset
	coerce
	collapse_desc
	compensatedParameter-class
	compensation-class
	complementFilter-class
	concreteFilter-class
	CytoExploreR_exports
	decompensate
	dg1polynomial-class
	each_col
	EHtrans-class
	ellipsoidGate-class
	estimateMedianLogicle
	exponential-class
	expressionFilter-class
	FCSTransTransform
	filter-and-methods
	filter-class
	filter-in-methods
	filter-methods
	filter-on-methods
	filterDetails-methods
	filterList-class
	filterReference-class
	filterResult-class
	filterResultList-class
	filters-class
	filterSummary-class
	filterSummaryList-class
	flowFrame-class
	flowSet-class
	flowSet_to_list
	fr_append_cols
	fsApply
	getChannelMarker
	getIndexSort
	GvHD
	hyperlog-class
	hyperlogtGml2-class
	identifier-methods
	intersectFilter-class
	inverseLogicleTransform
	invsplitscale-class
	keyword-methods
	kmeansFilter-class
	linearTransform
	lintGml2-class
	lnTransform
	logarithm-class
	logicalFilterResult-class
	logicletGml2-class
	logicleTransform
	logtGml2-class
	logTransform
	manyFilterResult-class
	markernames
	multipleFilterResult-class
	normalization-class
	nullParameter-class
	parameterFilter-class
	parameters-class
	parameters-methods
	parameterTransform-class
	polygonGate-class
	polytopeGate-class
	quadGate-class
	quadratic-class
	quadraticTransform
	randomFilterResult-class
	ratio-class
	ratiotGml2-class
	read.FCS
	read.FCSheader
	read.flowSet
	rectangleGate-class
	rotate_gate
	sampleFilter-class
	scaleTransform
	scale_gate
	setOperationFilter-class
	shift_gate
	singleParameterTransform-class
	sinht-class
	split-methods
	splitscale-class
	splitScaleTransform
	squareroot-class
	Subset-methods
	subsetFilter-class
	summarizeFilter-methods
	timeFilter-class
	transform
	transform-class
	transformation-class
	transformFilter-class
	transformList-class
	transformMap-class
	transformReference-class
	transform_gate
	truncateTransform
	unionFilter-class
	unitytransform-class
	updateTransformKeywords
	validFilters
	write.FCS
	write.flowSet
	Index

