dreamlet

Scalable differential expression analysis of single cell transcriptomics datasets with complex study designs


Bioconductor version: Release (3.20)

Recent advances in single cell/nucleus transcriptomic technology has enabled collection of cohort-scale datasets to study cell type specific gene expression differences associated disease state, stimulus, and genetic regulation. The scale of these data, complex study designs, and low read count per cell mean that characterizing cell type specific molecular mechanisms requires a user-frieldly, purpose-build analytical framework. We have developed the dreamlet package that applies a pseudobulk approach and fits a regression model for each gene and cell cluster to test differential expression across individuals associated with a trait of interest. Use of precision-weighted linear mixed models enables accounting for repeated measures study designs, high dimensional batch effects, and varying sequencing depth or observed cells per biosample.

Author: Gabriel Hoffman [aut, cre]

Maintainer: Gabriel Hoffman <gabriel.hoffman at mssm.edu>

Citation (from within R, enter citation("dreamlet")):

Installation

To install this package, start R (version "4.4") and enter:


if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("dreamlet")

For older versions of R, please refer to the appropriate Bioconductor release.

Documentation

Reference Manual PDF
NEWS Text

Details

biocViews BatchEffect, DifferentialExpression, Epigenetics, FunctionalGenomics, GeneExpression, GeneRegulation, GeneSetEnrichment, ImmunoOncology, Normalization, Preprocessing, QualityControl, RNASeq, Regression, Sequencing, SingleCell, Software, Transcriptomics
Version 1.3.3
In Bioconductor since BioC 3.18 (R-4.3) (1 year)
License Artistic-2.0
Depends R (>= 4.3.0), variancePartition(>= 1.33.11), SingleCellExperiment, ggplot2
Imports edgeR, SummarizedExperiment, DelayedMatrixStats, sparseMatrixStats, MatrixGenerics, Matrix, methods, purrr, GSEABase, data.table, zenith(>= 1.1.2), mashr (>= 0.2.52), ashr, dplyr, BiocParallel, ggbeeswarm, S4Vectors, IRanges, irlba, limma, metafor, remaCor, broom, tidyr, rlang, BiocGenerics, S4Arrays, SparseArray, DelayedArray, gtools, reshape2, ggrepel, scattermore, Rcpp, lme4 (>= 1.1-33), MASS, Rdpack, utils, stats
System Requirements C++11
URL https://DiseaseNeurogenomics.github.io/dreamlet
Bug Reports https://github.com/DiseaseNeurogenomics/dreamlet/issues
See More
Suggests BiocStyle, knitr, pander, rmarkdown, muscat, ExperimentHub, RUnit, muscData, scater, scuttle
Linking To Rcpp, beachmat
Enhances
Depends On Me
Imports Me
Suggests Me
Links To Me
Build Report Build Report

Package Archives

Follow Installation instructions to use this package in your R session.

Source Package
Windows Binary (x86_64)
macOS Binary (x86_64)
macOS Binary (arm64) dreamlet_1.3.3.tgz
Source Repository git clone https://git.bioconductor.org/packages/dreamlet
Source Repository (Developer Access) git clone git@git.bioconductor.org:packages/dreamlet
Bioc Package Browser https://code.bioconductor.org/browse/dreamlet/
Package Short Url https://bioconductor.org/packages/dreamlet/
Package Downloads Report Download Stats