
Using ReportingTools in an Analysis of Microarray Data

Jason A. Hackney and Jessica L. Larson

April 15, 2025

Contents
1 Introduction 2

2 Differential expression analysis using limma 2

3 GO analysis using GOstats 3

4 PFAM analysis 4

5 GSEA analysis 5

6 Putting it all together 8

7 References 8

1

1 Introduction
The ReportingTools package is particularly useful in displaying results from a microarray experiment. In this
vignette we show how to display results from differential gene expression, Gene Ontology (GO), protein families
(PFAM) and gene set enrichment analyses. In the final section, we create an index page where the user can easily
access any of these results.

2 Differential expression analysis using limma
For this vignette we will examine the ALL dataset. First we load our ReportingTools package and the data.
This dataset is from a clinical trial in acute lymphoblastic leukemia (ALL) and is available from Bioconductor.

> library(ReportingTools)
> library(ALL)
> library(hgu95av2.db)
> library(genefilter)
> data(ALL)

We will compare the gene expression between the BCR/ABL and NEG samples. We use featureFilter to
remove most of the unexpressed genes.

> ALL <- ALL[, ALL$mol.biol %in% c('NEG','BCR/ABL') &
+ !is.na(ALL$sex)]
> ALL$mol.biol <- factor(ALL$mol.biol,
+ levels = c('NEG', 'BCR/ABL'))
> ALL <- featureFilter(ALL)

Next we use limma to find statistical evidence of differentially expressed genes.

> library(limma)
> model <- model.matrix(~mol.biol+sex, ALL)
> fit <- eBayes(lmFit(ALL, model))

With the limma output we can make our differential analysis report. To publish MArrayLM objects, we supply
the eSet and factor used in our analysis.

> library(lattice)
> rep.theme <- reporting.theme()
> lattice.options(default.theme = rep.theme)
> deReport <- HTMLReport(shortName = 'de_analysis',
+ title = 'Analysis of BCR/ABL translocation differential expression',
+ reportDirectory = "./reports")
> publish(fit, deReport, eSet=ALL, factor=ALL$mol.biol, coef=2, n=100)
> finish(deReport)

The resulting output is displayed on an .html page and includes several statistics of interest as well as an image of
the data.

If we want to change our images, we can do so with .modifyDF (see the basic vignette for more examples of
how to use this feature). In this example, we make lattice plots of the expression of each gene in our table stratified by
mol.biol and sex . Note that .modifyDF uses the basic data frame (output from topTable) as its default
object and then modifies it with the corresponding function. To modify the decorated ReportingToolsdata.frame
, let .modifyDF=list(modifyReportDF, makeNewImages) .

2

Figure 1: Resulting page created by publish for fit .

> library(hwriter)
> makeNewImages <- function(df,...){
+ imagename <- c()
+ for (i in 1:nrow(df)){
+ probeId <- df$ProbeId[i]
+ y_at <- pretty(exprs(ALL)[probeId,])
+ y_labels <- formatC(y_at, digits = 1, format = 'f')
+ imagename[i] <- paste0("plot", probeId, ".png")
+ png(filename = paste0("./reports/figuresde_analysis/",
+ imagename[i]))
+ print(stripplot(exprs(ALL)[probeId,]~ALL$mol.biol|ALL$sex))
+ dev.off()
+ }
+ df$Image <- hwriteImage(paste0("figuresde_analysis/", imagename),
+ link=paste0("figuresde_analysis/", imagename),
+ table=FALSE, width=100)
+ return(df)
+ }
> deReport2 <- HTMLReport(shortName='de_analysis2',
+ title = 'Analysis of BCR/ABL translocation differential expression with new plots',
+ reportDirectory = "./reports")
> publish(fit, deReport2, eSet = ALL, factor = ALL$mol.biol, coef=2,
+ n=100,
+ ##.modifyDF=list(modifyReportDF, makeNewImages)) ##to add new images to default RT output
+ .modifyDF=makeNewImages)
> finish(deReport2)

3 GO analysis using GOstats
In this section, we show how to use ReportingTools to publish a GO analysis to an html file. First we select
the top 100 differential genes and then run the hyperGTest from the GOstats package.

> library(GOstats)
> tt <- topTable(fit, coef = 2, n = 100)
> selectedIDs <- unlist(mget(rownames(tt), hgu95av2ENTREZID))

3

Figure 2: Resulting page created by makeNewImages

> universeIDs <- unlist(mget(featureNames(ALL), hgu95av2ENTREZID))
> goParams <- new("GOHyperGParams",
+ geneIds = selectedIDs,
+ universeGeneIds = universeIDs,
+ annotation = annotation(ALL),
+ ontology = "BP",
+ pvalueCutoff = 0.01,
+ conditional = TRUE,
+ testDirection = "over")
> goResults <- hyperGTest(goParams)

With these results, we can then make the GO report. We must supply publish with the genes of interest and the
species annotation for this dataset. The default p-value cutoff is 0.01 and the minimum category size is 10 genes.

> goReport <- HTMLReport(shortName = 'go_analysis',
+ title = 'GO analysis of BCR/ABL translocation',
+ reportDirectory = "./reports")
> publish(goResults, goReport)
> finish(goReport)

The resulting output is displayed on an .html page and includes several statistics of interest as well as an image of the
overlap for each category.

4 PFAM analysis
In this section, we show how to use ReportingTools to write a table of PFAM analysis results to an html file.
First we run the hyperGTest from the Category package.

> library(Category)
> pfamParams <- new("PFAMHyperGParams",
+ geneIds = selectedIDs,
+ universeGeneIds = universeIDs,
+ annotation = annotation(ALL),
+ pvalueCutoff = 0.01,
+ testDirection = "over")
> PFAMResults <- hyperGTest(pfamParams)

4

Figure 3: Resulting page created by publish for goResults.

Then we make the PFAM report. Again we supply publish with the genes of interest and the species annotation
for this dataset. We set the minimum category size to 3 genes.

> PFAMReport <- HTMLReport(shortName = 'pfam_analysis',
+ title = 'PFAM analysis of BCR/ABL translocation',
+ reportDirectory = "./reports")
> publish(PFAMResults, PFAMReport, categorySize = 3)
> finish(PFAMReport)

The resulting output is displayed on an .html page and includes several statistics of interest as well as an image of
the overlap for each category.

5 GSEA analysis
In this section we show how to use publish to display GeneSetCollection objects and their corresponding
gene set enrichment statistics. For this example, we will randomly select our gene sets and create our collection.

> library(GSEAlm)
> library(GSEABase)
> mapped_genes <- mappedkeys(org.Hs.egSYMBOL)
> eidsAndSymbols <- as.list(org.Hs.egSYMBOL[mapped_genes])
> geneEids <- names(eidsAndSymbols)
> set.seed(123)
> set1 <- GeneSet(geneIds=sample(geneEids, 100, replace=FALSE), setName="set1",
+ shortDescription = "This is set1")
> set2 <- GeneSet(geneIds=sample(geneEids, 10, replace=FALSE), setName="set2",
+ shortDescription = "This is set2")
> set3 <- GeneSet(geneIds=sample(geneEids, 37, replace=FALSE), setName="set3",
+ shortDescription = "This is set3")
> set4 <- GeneSet(geneIds=sample(geneEids, 300, replace=FALSE), setName="set4",
+ shortDescription = "This is set4")
> geneSets <- GeneSetCollection(c(set1, set2, set3, set4))

We can now make a very simple GeneSetCollection html table with ReportingTools .

5

> geneSetsReport <- HTMLReport(shortName = "gene_sets",
+ title = "Gene Sets",
+ reportDirectory = "./reports")
> publish(geneSets, geneSetsReport, annotation.db = "org.Hs.eg")
> finish(geneSetsReport)

The resulting output is displayed on an .html page and includes the gene sets and links to pages listing the genes
within the corresponding set.

Often, investigators would like more information about the enrichment of certain gene sets. Thus, we will proceed
with gene set enrichment analysis (GSEA). To begin, we determine the overlap between our sets and our genes of
interest by creating an incidence matrix.

> mat <- matrix(data=0, ncol=length(universeIDs),nrow=length(geneSets))
> for(i in 1:length(geneSets)){
+ geneIdEntrez <- unlist(geneIds(geneSets[[i]]))
+ mat[i,match(geneIdEntrez, universeIDs)] <- 1
+ }
> colnames(mat) <- universeIDs
> rownames(mat) <- sapply(geneSets, function(x) x@setName)

Now we can run the GSEA and obtain set-specific statistics and p-values.

> lm <- lmPerGene(ALL, ~mol.biol+sex, na.rm=TRUE)
> GSNorm <- GSNormalize(lm$tstat[2,], mat)
> #one-sided p-values
> pVals <- gsealmPerm(ALL,~mol.biol+sex, mat, nperm=100)
> bestPval <- apply(pVals, 1, min)

We can add these statistics to our report page.

> gseaReport <- HTMLReport(shortName = "gsea_analysis",
+ title = "GSEA analysis",
+ reportDirectory = "./reports")
> publish(geneSets, gseaReport, annotation.db = "org.Hs.eg",
+ setStats = GSNorm, setPValues = 2*bestPval)
> finish(gseaReport)

The resulting output is displayed on an .html page and includes our set statistics and p-values. Links to set-specific
pages are also created.

We can also add the same statistics via .modifyDF . As demonstrated in the basic vignette, .modifyDF allows
us to manipulate the output published to our html pages.

> runGSEA <- function(df,...){
+ mat <- matrix(data = 0, ncol = length(universeIDs), nrow = length(geneSets))
+ for(i in 1:length(geneSets)){
+ geneIdEntrez <- unlist(geneIds(geneSets[[i]]))
+ mat[i,match(geneIdEntrez, universeIDs)] <- 1
+ }
+ colnames(mat) <- universeIDs
+ rownames(mat) <- sapply(geneSets, function(x) x@setName)
+ lm <- lmPerGene(ALL, ~mol.biol+sex, na.rm=TRUE)
+ GSNorm <- GSNormalize(lm$tstat[2,], mat)
+ pVals <- gsealmPerm(ALL,~mol.biol+sex, mat, nperm = 100)

6

Figure 4: Resulting updated page created by publish for geneSets after we include the set statistics and p-
values.

Figure 5: The set-specific page.

7

Figure 6: The page created from calling publish on all of our previous pages.

+ bestPval <- apply(pVals,1, min)
+ df <- cbind(df, GSNorm, bestPval)
+ return(df)
+ }
> gseaReport2 <- HTMLReport(shortName = "gsea_analysis2",
+ title = "GSEA analysis",
+ reportDirectory = "./reports")
> publish(geneSets, gseaReport2, annotation.db = "org.Hs.eg",
+ .modifyDF = runGSEA)
> finish(gseaReport2)

6 Putting it all together
We now make an index page to put all the output together.

> indexPage <- HTMLReport(shortName = "index",
+ title = "Analysis of ALL Gene Expression",
+ reportDirectory = "./reports")
> publish(Link(list(deReport, goReport), report = indexPage), indexPage)
> publish(Link(PFAMReport, report = indexPage), indexPage)
> publish(Link("GSEA report has a new title", "gsea_analysis.html"), indexPage)
> finish(indexPage)

7 References
Huntley, M.A., Larson, J.L., Chaivorapol, C., Becker, G., Lawrence, M., Hackney, J.A., and J.S. Kaminker. (2013).
ReportingTools: an automated results processing and presentation toolkit for high throughput genomic analyses.
Bioinformatics. 29(24): 3220-3221.

8

	Introduction
	Differential expression analysis using limma
	GO analysis using GOstats
	PFAM analysis
	GSEA analysis
	Putting it all together
	References

