# Bach mouse mammary gland (10X Genomics) ## Introduction This performs an analysis of the @bach2017differentiation 10X Genomics dataset, from which we will consider a single sample of epithelial cells from the mouse mammary gland during gestation. ## Data loading ``` r library(scRNAseq) sce.mam <- BachMammaryData(samples="G_1") ``` ``` r library(scater) rownames(sce.mam) <- uniquifyFeatureNames( rowData(sce.mam)$Ensembl, rowData(sce.mam)$Symbol) library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] rowData(sce.mam)$SEQNAME <- mapIds(ens.mm.v97, keys=rowData(sce.mam)$Ensembl, keytype="GENEID", column="SEQNAME") ``` ## Quality control ``` r unfiltered <- sce.mam ``` ``` r is.mito <- rowData(sce.mam)$SEQNAME == "MT" stats <- perCellQCMetrics(sce.mam, subsets=list(Mito=which(is.mito))) qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent") sce.mam <- sce.mam[,!qc$discard] ``` ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, y="subsets_Mito_percent", colour_by="discard") + ggtitle("Mito percent"), ncol=2 ) ```
Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-dist)Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

``` r plotColData(unfiltered, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() ```
Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-comp)Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 0 0 143 ## discard ## 143 ``` ## Normalization ``` r library(scran) set.seed(101000110) clusters <- quickCluster(sce.mam) sce.mam <- computeSumFactors(sce.mam, clusters=clusters) sce.mam <- logNormCounts(sce.mam) ``` ``` r summary(sizeFactors(sce.mam)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.264 0.520 0.752 1.000 1.207 10.790 ``` ``` r plot(librarySizeFactors(sce.mam), sizeFactors(sce.mam), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

(\#fig:unref-bach-norm)Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

## Variance modelling We use a Poisson-based technical trend to capture more genuine biological variation in the biological component. ``` r set.seed(00010101) dec.mam <- modelGeneVarByPoisson(sce.mam) top.mam <- getTopHVGs(dec.mam, prop=0.1) ``` ``` r plot(dec.mam$mean, dec.mam$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.mam) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

(\#fig:unref-bach-var)Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

## Dimensionality reduction ``` r library(BiocSingular) set.seed(101010011) sce.mam <- denoisePCA(sce.mam, technical=dec.mam, subset.row=top.mam) sce.mam <- runTSNE(sce.mam, dimred="PCA") ``` ``` r ncol(reducedDim(sce.mam, "PCA")) ``` ``` ## [1] 15 ``` ## Clustering We use a higher `k` to obtain coarser clusters (for use in `doubletCluster()` later). ``` r snn.gr <- buildSNNGraph(sce.mam, use.dimred="PCA", k=25) colLabels(sce.mam) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r table(colLabels(sce.mam)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 ## 550 847 639 477 54 88 39 22 32 24 ``` ``` r plotTSNE(sce.mam, colour_by="label") ```
Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

(\#fig:unref-bach-tsne)Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

## Session Info {-}
``` R version 4.5.1 (2025-06-13) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.3 LTS Matrix products: default BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] BiocSingular_1.25.0 scran_1.37.0 [3] AnnotationHub_3.99.6 BiocFileCache_2.99.5 [5] dbplyr_2.5.0 scater_1.37.0 [7] ggplot2_3.5.2 scuttle_1.19.0 [9] ensembldb_2.33.1 AnnotationFilter_1.33.0 [11] GenomicFeatures_1.61.6 AnnotationDbi_1.71.1 [13] scRNAseq_2.23.0 SingleCellExperiment_1.31.1 [15] SummarizedExperiment_1.39.1 Biobase_2.69.0 [17] GenomicRanges_1.61.1 Seqinfo_0.99.2 [19] IRanges_2.43.0 S4Vectors_0.47.0 [21] BiocGenerics_0.55.1 generics_0.1.4 [23] MatrixGenerics_1.21.0 matrixStats_1.5.0 [25] BiocStyle_2.37.1 rebook_1.19.0 loaded via a namespace (and not attached): [1] RColorBrewer_1.1-3 jsonlite_2.0.0 CodeDepends_0.6.6 [4] magrittr_2.0.3 ggbeeswarm_0.7.2 gypsum_1.5.0 [7] farver_2.1.2 rmarkdown_2.29 BiocIO_1.19.0 [10] vctrs_0.6.5 memoise_2.0.1 Rsamtools_2.25.2 [13] RCurl_1.98-1.17 htmltools_0.5.8.1 S4Arrays_1.9.1 [16] curl_6.4.0 BiocNeighbors_2.3.1 Rhdf5lib_1.31.0 [19] SparseArray_1.9.1 rhdf5_2.53.4 sass_0.4.10 [22] alabaster.base_1.9.5 bslib_0.9.0 alabaster.sce_1.9.0 [25] httr2_1.2.1 cachem_1.1.0 GenomicAlignments_1.45.2 [28] igraph_2.1.4 lifecycle_1.0.4 pkgconfig_2.0.3 [31] rsvd_1.0.5 Matrix_1.7-3 R6_2.6.1 [34] fastmap_1.2.0 digest_0.6.37 dqrng_0.4.1 [37] irlba_2.3.5.1 ExperimentHub_2.99.5 RSQLite_2.4.2 [40] beachmat_2.25.4 labeling_0.4.3 filelock_1.0.3 [43] httr_1.4.7 abind_1.4-8 compiler_4.5.1 [46] bit64_4.6.0-1 withr_3.0.2 BiocParallel_1.43.4 [49] viridis_0.6.5 DBI_1.2.3 HDF5Array_1.37.0 [52] alabaster.ranges_1.9.1 alabaster.schemas_1.9.0 rappdirs_0.3.3 [55] DelayedArray_0.35.2 bluster_1.19.0 rjson_0.2.23 [58] tools_4.5.1 vipor_0.4.7 beeswarm_0.4.0 [61] glue_1.8.0 h5mread_1.1.1 restfulr_0.0.16 [64] rhdf5filters_1.21.0 grid_4.5.1 Rtsne_0.17 [67] cluster_2.1.8.1 gtable_0.3.6 metapod_1.17.0 [70] ScaledMatrix_1.17.0 XVector_0.49.0 ggrepel_0.9.6 [73] BiocVersion_3.22.0 pillar_1.11.0 limma_3.65.3 [76] dplyr_1.1.4 lattice_0.22-7 rtracklayer_1.69.1 [79] bit_4.6.0 tidyselect_1.2.1 locfit_1.5-9.12 [82] Biostrings_2.77.2 knitr_1.50 gridExtra_2.3 [85] bookdown_0.43 ProtGenerics_1.41.0 edgeR_4.7.3 [88] xfun_0.52 statmod_1.5.0 UCSC.utils_1.5.0 [91] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.4 [94] codetools_0.2-20 tibble_3.3.0 alabaster.matrix_1.9.0 [97] BiocManager_1.30.26 graph_1.87.0 cli_3.6.5 [100] jquerylib_0.1.4 dichromat_2.0-0.1 Rcpp_1.1.0 [103] GenomeInfoDb_1.45.9 dir.expiry_1.17.0 png_0.1-8 [106] XML_3.99-0.18 parallel_4.5.1 blob_1.2.4 [109] bitops_1.0-9 viridisLite_0.4.2 alabaster.se_1.9.0 [112] scales_1.4.0 purrr_1.1.0 crayon_1.5.3 [115] rlang_1.1.6 cowplot_1.2.0 KEGGREST_1.49.1 ```