Bioconductor basics tutorial

Sandrine Dudoit and Robert Gentleman

June 24, 2002

1 Preliminaries

This document is a brief tutorial for three packages released as part of the Bioconductor
project. These and all other Bioconductor packages (including data packages) can be down-
loaded from the Bioconductor website, www.bioconductor.org. The specific packages that
will be considered include Biobase, genefilter, and annotate. These packages provide
basic tools needed to process DNA microarray expression data. Finally, at the end of the
tutorial, we briefly demonstrate the use of standard R clustering functions. A more complete
overview of machine learning using R is given in another tutorial and also in the lectures
on classification and clustering. Other packages used in this tutorial can be obtained from
CRAN www.cran.r-project.org.

More can be learned about specific functions from the R help system; either help (name) or
7name will yield the help files. Bioconductor packages have additional documentation in the
form of vignettes and How'To’s that are supplied in the /inst/doc directory of each package.
These documents can also be obtained from the Bioconductor website. In addition, there
are many other resources on how to use R, including R manuals on CRAN. Documentation
and textbooks for S—Plus, such as [Venables and Ripley| (1999), are also appropriate.

You will need to load the following R and Bioconductor packages.

R> library(XML)

R> library(Biobase)

R> library(annotate)
R> library(genefilter)
R> library(golubEsets)
R> library(ctest)

R> library(MASS)

R> library(cluster)

2 Golub et al. dataset

The functionality of the three packages is demonstrated using the Affymetrix gene expression
dataset of |Golub et al.| (1999). The data are available from the authors in an online repos-

1

www.bioconductor.org
www.cran.r-project.org

itory (http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html) and were included
in an R data package, golubEsets, suitable for use in this tutorial. This dataset comes from
a study of gene expression in two types of acute leukemias: acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). Gene expression levels were measured using
Affymetrix high—density oligonucleotide arrays (HU6800 chip) containing probes for approx-
imately 6,800 human genes and ESTs. The chip actually contains 7,129 different probe sets;
some of these map to the same genes and others are there for quality control purposes. The
data comprise 47 cases of ALL (38 B—cell ALL and 9 T-cell ALL) and 25 cases of AML.
Samples are divided into a learning set with 38 observations and a test set of 34 observations.

In this tutorial, we make the assumption that the data have been suitably pre—processed,
i.e., image analysis, normalization, and computation of expression measures were already
performed. You are referred to either the affy package from Bioconductor or to dChip
www.dchip.org for relevant software and documentation for pre—processing of Affymetrix
data, and to marrayNorm for pre-processing of cDNA array data.

3 DBiobase: Classes exprSet and phenoData

We can obtain the expression measures in the form of exprSets by using the data function

R> data(golubTrain)
R> data(golubTest)
R> data(golubMerge)

The following commands provide information on the object golubTrain (similarly for gol-
ubTest and golubMerge)

R> class(golubTrain)
[1] "exprSet"
R> slotNames(golubTrain)

[1] "exprs" "se.exprs" "phenoData" "description" "annotation"
[6] "notes"

R> golubTrain

Expression Set (exprSet) with
7129 genes
38 samples
phenoData object with 11 variables and 38 cases
varLabels
Samples: Samples
ALL.AML: ALL.AML

http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html
www.dchip.org

BM.PB: BM.PB
T.B.cell: T.B.cell
FAB: FAB

Date: Date

Gender: Gender
pctBlasts: pctBlasts
Treatment: Treatment
PS: PS

Source: Source

To extract only information on the mRNA samples

R> phenoTrain <- phenoData(golubTrain)
R> class(phenoTrain)

[1] "phenoData"

R> slotNames (phenoTrain)
[1] "pData" "varLabels"
R> phenoTrain

phenoData object with 11 variables and 38 cases
varLabels
Samples: Samples
ALL.AML: ALL.AML
BM.PB: BM.PB
T.B.cell: T.B.cell
FAB: FAB
Date: Date
Gender: Gender
pctBlasts: pctBlasts
Treatment: Treatment
PS: PS
Source: Source

Data on only the first 3 chips and 10 genes can be obtained using the subsetting operator

" [u

R> golubTrain[1:3, 1:10]
Expression Set (exprSet) with
3 genes

10 samples
phenoData object with 11 variables and 10 cases

3

varLabels
Samples: Samples
ALL.AML: ALL.AML
BM.PB: BM.PB
T.B.cell: T.B.cell
FAB: FAB
Date: Date
Gender: Gender
pctBlasts: pctBlasts
Treatment: Treatment
PS: PS
Source: Source

The matrix of expression measures can be accessed using either the general @ operator or the
slot function from the methods package. It can also be accessed using the accessor function
exprs provided in Biobase.

R> X <- golubTrain@exprs

R> X <- slot(golubTrain, "exprs")
R> X <- exprs(golubTrain)

R> dim(X)

(1] 7129 38

The @ operator and slot function can also be used to modify slots of these objects
R> slot(golubTrain, "annotation")

[1] "affy"

R> slot(golubTrain, "annotation") <- "HU6800"
R> golubTrain@annotation

(1] "HU6800"

4 Genefilter

4.1 Preliminary gene filtering

One of the first tasks that must be carried out when analyzing expression data is to filter
out those genes that are unlikely to be of interest. The approach taken in genefilter is
to separate the task of specifying the filters that will be used from the task of applying
them. Users must first specify which filtering functions they want to use, assemble them
using filterfun, and then apply them using genefilter.

Following |Golub et al| (1999) (Pablo Tamayo, pers. comm.), we will apply three pre-
processing steps to the normalized matrices of intensity values available on the website:
(i) thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of genes with
max /min < 5 or (max —min) < 500, where max and min refer respectively to the max-
imum and minimum intensities for a particular gene across mRNA samples; (iii) base—10
logarithmic transformation. In addition, we will (iv) standardize the data so that the ex-
pression measures for each array have mean 0 and variance one across genes. After applying
these steps to the training set, the expression measures can be summarized by a 3,051 x 38
matrix X = (z4;), where x4 denotes the expression level for gene g in mRNA sample i.

The following commands may be used to apply steps (i)—(iv) to the training set and store
the resulting combined expression and sample data in the exprSet object golubTrainSub.

(i) Thresholding.

R> X <- exprs(golubTrain)
R> X[X < 100] <- 100
R> X[X > 16000] <- 16000

The matrix X now has all values that were less than 100 replaced by 100 and all values that
were larger than 16,000 replaced by 16,000.

(ii) Filtering. Now we want to select those genes that satisfy the second requirement of
Tamayo. We first define the filter function mmfilt and use the two main functions, filterfun
and genefilter.

R> mmfilt <- function(r = 5, d = 500, na.rm = TRUE) {
function(x) {
minval <- min(x, na.rm = na.rm)
maxval <- max(x, na.rm = na.rm)
(maxval/minval > r) && (maxval - minval > d)

}

+ + + + + +

}

R> mmfun <- mmfilt()

R> ffun <- filterfun(mmfun)
R> good <- genefilter (X, ffun)
R> sum(good)

[1] 3051
R> X <- X[good,]
(iii) Log—transformation.

R> X <- logl0(X)

(iv) Standardization. Finally, we standardize the chips and create a new instance of the
exprSet class

R> X <- scale(X)

R> golubTrainSub <- golubTrain[good,]
R> slot(golubTrainSub, "exprs") <- X
R> golubTrainSub

Expression Set (exprSet) with

3051 genes

38 samples
phenoData object with 11 variables and 38 cases

varLabels
Samples: Samples
ALL.AML: ALL.AML
BM.PB: BM.PB
T.B.cell: T.B.cell
FAB: FAB
Date: Date
Gender: Gender
pctBlasts: pctBlasts
Treatment: Treatment
PS: PS
Source: Source

4.2 Filtering genes by t—test

It is of interest to identify genes that are differentially expressed in ALL and AML patients.
We will filter genes according to their nominal p—values for a two—sample Welch t—test com-
paring expression measures in ALL and AML patients. We can use the ttest filter function
from the genefilter package to identify genes with nominal p—values less than 0.0001. Note
that this is a very rough analysis. These p—values are nominal and should be adjusted to
account for multiple testing; the multtest package can be used for more in depth multiple
testing procedures.

R> cl1 <- golubTrainSub$ALL.AML
R> table(cl)

cl
ALL AML
27 11

R> ffun <- filterfun(ttest(cl, p = 1e-04))
R> smallp<- genefilter(exprs(golubTrainSub), ffun)
R> sum(smallp)

[1] 163

Let us compute a number of statistics for these 163 genes, such as, ALL and AML mean
expression levels, t—statistics, and nominal p—values.

R> X2 <- exprs(golubTrainSub[smallp,])
R> stats <- apply(X2, 1, function(z) {

+ res <- t.test(z ~ cl)
+ c(res$estimate, res$statistic, res$parameter, res$p.value)
+ })

R> stats <- data.frame(t(stats))

R> names(stats) <- c("ALL mean", "AML mean", "t-statistic", "df",
+ "p-value")

R> stats <- stats[order(stats$p),]

5 Annotate

We will now use functions from the annotate package to relate expression data to biolog-
ical metadata from databases such as LocusLink and PubMed. Note that this part of the
Bioconductor project is undergoing very rapid development and may well be different by
the time you read this. Please consult the online documentation and relevant vignettes and
HowTo’s.

5.1 LocusLink query

To obtain LocusLink IDs (LocusID) for the 163 genes with small p—values, first use the
read.annotation function to read in annotation data from the file corresponding to the
HU6800 chip used in this experiment. This function returns the environment into which
the annotation data are read. The LocusLink IDs for a subset of interesting genes can be
obtained using the multiget function. LocusLink can then be queried for these genes using
the locuslinkByID function.

11 <- read.annotation("hgu6811") # Read in locus link annotation data

gname <- row.names (X2) # Names of genes with small p--value
LocusID<-multiget (gname, env=11) # Locus link IDs
locuslinkByID(LocusID) # Query LocusLink

The LocusLink page is shown in the browser for the first accession number in LocusID. Other
results will be accessible through the "View” pull-down menu on the LocusLink page.

5.2 PubMed query

Given a set of PubMed IDs (PMID), the pubmed function can either have a browser dis-
play a PubMed page for those identifiers, or return an XMLDocument object with the same
information. For instance, to view entries for the following three PMIDs

pubmed ("11695507", "9923029", "11769896" ,disp="browser")
To store the corresponding abstracts in (a list of) objects of class pubMedAbst

x <- pubmed("11695507","9923029","11769896")
a <- xmlRoot (x)
numAbst <- length(xmlChildren(a))
abstsl <- 1list()
for (i in 1:numAbst) {
absts1[[i]] <- buildPubMedAbst(al[[i]])
}

To view and access various slots of these objects, including the title slot

absts1[[1]]
for(i in 1: length(absts1))
print(articleTitle(absts1[[i]]))

The function pm.getabst combines a number of the above tasks. It takes as arguments gene
names and a character string identifying the appropriate annotation for the experiment.
PubMed IDs are obtained for the corresponding gene names and PubMed is queried with
these IDs. The corresponding abstracts are downloaded and converted into R objects of class
pubMedAbst using the buildPubMedAbst function as well as functions from the XML pack-
age. The ALL and AML expression dataset was obtained using the Affymetrix HU6800
chip, thus the annotation to be used is "hgu68". Correspondence between Affymetrix
names (e.g. D10495_at) and PMIDs (e.g. 7118228777, "11748588”, "11676480”, "11466390”,
783578347, 78188219, "7925449”) is specified in the file hgu68pmed from the annotate pack-
age. Note that Bioconductor now provides data packages containing various annotation
files for PubMed and LocusLink queries, as well as chromosomal location information (e.g.
hgu6800 and hgu95A packages). To obtain PubMed entries corresponding to the genes with
the 5 smallest p—values

R> g5 <- gname[1:5]
R> absts2 <- pm.getabst (g5, "hgu68")

absts2 is a list of length the number of genes, where each entry is itself a list of objects of
class pubMedAbst for each gene. The pm.titles function can be used to extract abstract
titles and store these in a list with length the number of genes.

R> pm.titles(absts2)

[[1]1]

[1] "Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2,

[[2]]

[1] "An important role for protein kinase C-delta in human keratinocyte migration on der

[2] "Regulation of human eosinophil NADPH oxidase activity: a central role for PKCdelta.
[3] "Physical and functional interactions between protein tyrosine phosphatase alpha, PI
[4] "Inhibition of H2 histamine receptor-mediated cation channel opening by protein kina
[6] "Molecular and biochemical characterization of a recombinant human PKC-delta family

[6] "Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromoso
[7] "Bradykinin induces translocation of the protein kinase C isoforms alpha, epsilon, a
[[3]]

[1] "Prediction of the coding sequences of unidentified human genes. III. The coding seq
[[4]]

[1] "[The change in the plasma contents of adrenomedullin and endothelin in burn patient
[2] "Expression and function of adrenomedullin and its receptors in Conn’s adenoma cells
[3] "Comparison of intravenous adrenomedullin with atrial natriuretic peptide in patient
[4] "Expression of adrenomedullin by human granulosa lutein cells and its effect on prog
(5] "Adrenomedullin."

[6] "Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exa
[7] "Genomic structure of human adrenomedullin gene."

[8] "Cloning and characterization of cDNA encoding a precursor for human adrenomedullin.
[[51]

[1] "Human Noppl140, which interacts with RNA polymerase I: implications for rRNA gene tr
[2] "Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130

Text searching can then be done using the function pm.abstGrep which relies on the R
function grep. It returns a list (of length the number of genes) of logical vectors, indicating
which abstracts contain the desired word for the corresponding gene. For example, to see
which abstracts contain the word protein (with lower or upper case p)

R> sapply(absts2, function(x) pm.abstGrep("[Pp]lrotein", x))

[[11]
[1] TRUE

[[2]]
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[[3]1]
[1] TRUE

[[4]]
[1] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE

[[5]1]
[1] TRUE TRUE

5.3 Chromosome location
To obtain the chromosomal locations of the genes with small p—values

R> chroms <- read.annotation("hgu68chrom")
R> whichC <- multiget(gname, env = chroms, iffail = NA)
R> cc <- as.numeric(unlist(whichC))

5.4 Creation of HTML report

Finally, the function 11.htlmpage can be used to create an HTML report of our analysis.
Given LocusLink accession numbers, it will produce an HTML file with one row per gene
and a clickable entry which opens the LocusLink webpage for that gene. Other information
can be displayed using the othernames argument as shown below.

R> res <- cbind(gname, cc, signif(stats, 3))

R> names(res) <- c("Gene name", "Chromosome", names(stats))

R> 11.htmlpage(LocusID, filename = "golub.html", title = "Golub et al. data, genes wit
+ othernames = res, table.head = c("LocusID", names(res)),

+ table.center = TRUE)

The report is stored in the file golub.html of your current working directory. In case you
forgot the directory, type getwd ().

6 Cluster analysis

6.1 Distances

One of the most important issues that must be addressed when analyzing gene expression
data is the choice of a distance or similarity measure. To compare two genes across a set of
samples (or two samples across a set of genes) we must have some notion of distance between
these objects and define a suitable function for measuring this distance. There are many
different measures that are available. In the interest of using standard software, we will use
either the Euclidean or Manhattan distances in this tutorial. However, we do note that this
decision is important and should generally be given much more consideration than we have
time for here.

6.2 Clustering methods

We now give a very brief overview of clustering functions in R; many more clustering methods
are available in R than described here. Depending on the question of interest, one could
cluster the samples to see which ones group together or we could be interested in clustering
genes — again to see which group together.

Two broad categories of clustering algorithms are the agglomerative algorithms and the
partitioning algorithms. Agglomerative hierarchical clustering can be performed using the
hclust function in the mva package.

10

First, dist is used to compute distances. This function takes a matrix as its first argument
and computes the distances between the rows of the matrix. We will use the expression
data matrix from golubTrainSub for this purpose and if we want to cluster samples then
we must take the transpose of this matrix. The matrix can be obtained from the exprSet
object golubTrainSub using the accessor function exprs. The commands below are used
to carry out hierarchical clustering using the Manhattan distance metric and to plot the
corresponding dendrogram with nodes labeled according to the ALL/AML status.

R> dgTr <- dist(t(exprs(golubTrainSub)), method = "manhattan")

R> hcgTr <- hclust(dgTr, method = "average")

R> plot(hcgTr, labels = golubTrainSub$ALL.AML, main = "Hierarchical clustering dendrog
+ sub = "Average linkage, Manhattan distance for scaled arrays, G=3,051 genes")

Hierarchical clustering dendrogram for ALL AML data

o
o _|
N
N
-
-
1=
o
o _|
(e 0]
—
o
= _
=2
(<]
I o
o _|
S
—
o
o _|
o
—

dgTr
Average linkage, Manhattan distance for scaled arrays, G=3,051 genes

Next, we consider partitioning methods. These include pam, partitioning around medoids,
which is available in the cluster package, and kmeans which is available in the mva package.
These methods require the user to specify how many clusters are wanted. The algorithms
then use different strategies to apportion the samples to the clusters.

11

For pam silhouette plots are easily produced. For the interpretation of these read the docu-
mentation (? pam) or Kaufman and Rousseeuw| (1990). In the next example (as in many
other examples) we set the seed for the random number generator. This is done to ensure
that the results are always the same. These algorithms have some random components that
may give rise to very different results. One may want to consider the average (in some sense)
of multiple runs of these algorithms.

R> set.seed(12345)

R> pmgTr <- pam(dgTr, k = 2, diss = TRUE)

R> kmgTr <- kmeans(t(exprs(golubTrainSub)), centers = 2)
R> table(pmgTr$clust, golubTrainSub$ALL.AML)

ALL AML
1 23 0
2 4 11

R> table(kmgTr$clust, golubTrainSub$ALL.AML)

ALL AML
1 2 11
2 26 O

The two tables allow us to compare the clustering results to the truth.

For silhouette plots

R> sils <- pmgTr$silinfo[[1]][, 3]

R> ord <- as.numeric(row.names (pmgTr$silinfo[[1]]))

R> barplot(sils, col = c(2, 4)[as.numeric(cl[ord])], main = "Silhouette plot for ALL A
+ sub = "Manhattan distance for scaled arrays, K=2, G=3,051 genes")

12

Silhouette plot for ALL AML data

o

AN

o

Lo

—

o

o

—

o

Lo

o

d “‘llll

: IIII]

o _ -

o TTTTTTT T T T T T TT T I T T T T T T T T T T I T TTTITTIT1TT1
15 16 9 4 1 19 23 18 8 30 32 37 29 2
Manhattan distance for scaled arrays, K=2, G=3,051 genes

References

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M.L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular
classification of cancer: Class discovery and class prediction by gene expression monitoring.
Science, 286:531-537, 1999.

Leonard Kaufman and Peter Rousseeuw. Finding groups in data: An introduction to cluster
analysis. John Wiley & Sons, 1990. ISBN 0471878766.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S—PLUS. Springer, 1999.

13

