
R and the Bioconductor
project

Sandrine Dudoit and Robert Gentleman

Bioconductor short course
Summer 2002

© Copyright 2002, all rights reserved

Everywhere …

• for statistical design and analysis:
– pre-processing, estimation, testing, clustering,

prediction, etc.
• for integration with biological information

resources (in house and external databases)
– gene annotation (GenBank, LocusLink);
– literature (PubMed);
– graphical (pathways, chromosome maps).

Statistical computing

Outline
• Introduction to R and Bioconductor.
• R programming

– environments and closures;
– object oriented programming.

• Overview of Bioconductor packages
– Biobase

– genefilter

– Annotate.
• Dynamic statistical reports using Sweave.

R

• R is a widely used open source
implementation of the S language.

• S-PLUS is a commercial implementation
of the S language.

• There are some differences between
these two implementations but most books
and papers describing one can be used for
the other.

R resources
• R is available from www.r-project.org.
• R is available for Unix, Windows, and

Macintosh computers.
• A large number of software packages for

R are available from CRAN,
www.cran.r-project.org.

• These packages can easily be
downloaded and installed in your local
computer.

Using R

• We presume some proficiency using R.
• There are a number of manuals, tutorials,

and other resources available from the
CRAN site if you feel that you need help.

• R also has detailed on-line documentation,
in text, HTML, PDF, and LaTeX formats.

• help(name)

• ? name

Bioconductor

• Bioconductor is an open source project to
design and deliver high quality software
and documentation for bioinformatics.

• Most of the early developments are in the
form of R packages.

• Software and documentation are available
from www.bioconductor.org.

Bioconductor

• Object-oriented class/method design.
Allows efficient representation and
manipulation of large and complex
biological datasets of multiple types.

• Widgets. Specific, small scale, interactive
components providing graphically driven
analyses - point & click interface.

Bioconductor
• Interactive tools for linking experimental results

to annotation and literature WWW resources
in real time. E.g. PubMed, GenBank, LocusLink.

• Scenario. For a list of differentially expressed
genes obtained from multtest or
genefilter, use the annotate package to
retrieve PubMed abstracts for these genes and
to generate an HTML report with links to
LocusLink for each gene.

Bioconductor packages

• General infrastructure
– Biobase

– annotate, AnnBuilder

– tkWidgets.

• Pre-processing for Affymetrix data
– affy.

• Pre-processing for cDNA data
– marrayClasses, marrayInput,
marrayNorm, marrayPlots.

• Differential expression

Bioconductor training

• Extensive documentation and training materials
for self-instruction and short courses
– all available on WWW.

• R help system
– interactive with browser or printable manuals;
– detailed description of functions and examples;
– e.g. help(genefilter), ?pubmed.

• R demo system
– user-friendly interface for running demonstrations of R

scripts;
– e.g. demo(marrayPlots).

Bioconductor training
• R vignettes system

– comprehensive repository of step-by-step tutorials covering a
wide variety of computational objectives in /doc subdirectory;

– use Sweave function from tools package.
– integrated statistical documents intermixing text, code, and code

output (textual and graphical);
– documents can be automatically updated if either data or

analyses are changed.

• Modular training segments
– short courses: lectures and computer labs;
– interactive learning and experimentation with the software

platform and statistical methodology.

R programming
• In order to deliver high quality software the

Bioconductor project relies on a few
programming techniques that might not be
familiar:
– enviroments and closures;
– object oriented programming.

• We review these here for interested
programmers (understanding them is not
essential but is often very helpful).

Environments and closures
• An environment is an object that contains

bindings between symbols and values.
• It is very similar to a hash table.
• Environments can be accessed using the

following functions:
– ls(env=e) # get a listing.
– get(“x”, env=e) # get the value of the object in e

with name x.
– assign(“x”,y,env=e) # assign to the name x

the value y in the environment e.

• Since these operations are used a great
deal in Bioconductor we have provided
two helper functions
– multiget

– multiassign

• These functions get and assign multiple
values into the specified environment.

Environments and closures

• Environments can be associated with
functions.

• When an environment is associated with a
function, then that environment is used to
obtain values for any unbound variables.

• The term closure refers to the coupling of
the function body with the enclosing
environment.

• The annotate, genefilter, and other
packages take advantage of environments

Environments and closures

x <- 4

e1 <- new.env()

assign(“x”,10, env=e1)

f <- function() x

environment(f) <- e1

x # returns 4

f() # returns 10!

Environments and closures

Object oriented programming

• The Bioconductor project has adopted the
OOP paradigm presented in Programming
with Data, J. M. Chambers, 1998.

• Tools for programming using the
class/method mechanism are provided in
the methods package.

OOP
• A class provides a software abstraction of

a real world object. It reflects how we
think of certain objects and what
information these objects should contain.

• A class defines the structure, inheritance,
and initialization of objects.

• Classes are defined in terms of slots
which contain the relevant data.

• An object is an instance of a class.

OOP
• A method is a function that performs an

action on data (objects).

• A generic function is a dispatcher, it
examines its arguments and determines
the appropriate method to invoke.

• Examples of generic functions include
plot, summary, print

OOP
• It is important to realize that when calling a

generic function (such as plot) the actions
performed depend on the class of the
arguments.

• Methods define how a particular function should
behave depending on the class of its arguments.

• Methods allow computations to be adapted to
particular data types, i.e., classes.

OOP

• To obtain documentation (on-line help)
about
– a class: class?classname

so, class?exprSet, will display the help file
for the exprSet class.

– a method: methods?methodname
so, methods?print, will display the help file
for the print methods.

OOP
> x <- 1:10

> y <- 2*x + 1 + rnorm(10)

> class(x)

[1] "integer"

> plot(x,y)

> fit <- lm(y ~ x)

> class(fit)

[1] "lm"

> plot(fit)

OOP
• The methods package contains a number

of functions for defining new classes and
methods (e.g. setClass, setMethod)
and for working with these classes and
methods.

• A tutorial is available at
http://www.omegahat.org/RSMethods/index.html

OOP
> setClass(“simple",

representation(x="numeric",y="matrix“),

prototype = list(x=numeric(),y=matrix(0)))

> z <- new("simple", x=1:10,
y=matrix(rnorm(50),10,5))

> z@x

[1] 1 2 3 4 5 6 7 8 9 10

> setMethod("plot",

signature(x="simple", y="missing"),

function(x, y,...)

plot(slot(x,"x"),slot(x,"y")[,1]))

> plot(z)

Biobase
• The Biobase package provides class

definitions and other infrastructure tools
that will be used by other packages.

• The two important classes defined in
Biobase are
– phenoData: sample level covariate data.
– exprSet: the sample level covariate data

combined with the expression data and a few
other quantities of interest.

Biobase: exprSet
Slots for the exprSet class
• exprs: a matrix of expression measures, genes

are rows, samples are columns.
• se.exprs: standard errors for the expression

measures, if available.
• phenoData: an object of class phenoData that

describes the samples.
• annotation: a character vector.
• description: a character vector.
• notes: a character vector.

Biobase: exprSet

description

annotation

phenoData

Any notes

Matrix of expression measures, genes x samples

Matrix of SEs for expression measures

Sample level covariates, instance of class phenoData

Name of annotation data

Covariate labels

se.exprs

exprs

notes

Biobase: exprSet

• One of the most important tasks is to align the
expression data and the phenotypic data (and to
keep that alignment through the analysis).

• To achieve this, the exprSet class combines
these two data sources into one object, and
provides subsetting and access methods that
make it easy to manipulate the data while
ensuring that they are correctly aligned.

Biobase: exprSet

• A design principle that was adopted for the
exprSet and other classes was that they
should be closed under the subset
operation.

• So any subsetting, either of rows or
columns, will return a valid exprSet
object.

• This makes it easier to use exprSet in
other software packages

Biobase: exprSet

Some methods for the exprSet class
• show: controls the printing (you seldom

want a few hundred thousand numbers
rolling by).

• subset, [and $, are both designed to
keep correct subsets of the exprs,
se.exprs, and phenoData objects.

• split, splits the exprSet into two or
more parts depending on the vector used
for splitting.

Biobase: exprSet

• geneNames, retrieves the gene names
(row names of exprs).

• phenoData, pData, and sampleNames
provide access to the phenoData slot.

• write.exprs, writes the expression
values to a file for processing or storage.

Biobase: phenoData
Slots for the phenoData class

• pData: a dataframe, where the samples
are rows and the variables are columns
(this is the standard format).

• varLabels: a vector containing the
variable names (as they appear in pData)
and a longer description of the variables.

Biobase: phenoData

• Methods for the phenoData class include
– [, the subset operator, this method ensures

that when a subset is taken, both the pData
object and the varLabels object have the
appropriate subsets taken.

– $, extracts the appropriate column of the
pData slot (as for a dataframe).

– show, a method to control printing, we show
only the varLabels (and the size).

Biobase
• The data package golubEsets contains

instances of the exprSet class for the ALL
AML study of Golub et al. (1999).

• Try
library(golubEsets)

data(golubTrain)

show(golubTrain)

golubTrain[1:100,1:4]

pData(golubTrain)

Gene filtering
• In many cases, we want to perform a gene by

gene selection.
• Some reasons:

– only about 40% of the genome is expressed in any
cell type;

– some genes are expressed at almost constant levels
in all samples and hence are uninformative for certain
analyses;

– we would like to select a subset of genes that are
good at differentiating cases from controls, or that are
spatially or temporally differentially expressed.

Gene filtering
• Sometimes we will need very specialized

selection methods.
• Example 1: Survival/Duration

– Suppose that our samples are from patients
and that we have data regarding the time from
treatment until death.

– We would like to select genes that have high
correlation with survival time.

– A Cox Model will be appropriate in many
cases.

Gene filtering

• Example 2: Time course experiments
– Many researchers are performing time course

experiments, in which a set of samples is
examined at some defined points in time.

– Genes with expression profiles that correlate
with time are interesting.

– Tools such as complex linear and non-linear
models may be appropriate for identifying
genes with time regulated expression.

Filtering: separation of tasks
The approach taken in the genefilter package
is to separate the different steps in filtering.

1. Select/define functions for specific filtering
tasks.

2. Assemble the filters using the filterfun
function.

3. Apply the filters using the genefilter
function and obtain a logical vector (TRUE
indicates genes that are retained).

4. Apply that vector to the exprSet to obtain the
microarray object for the subset of interesting
genes.

• There are two main functions, filterfun
and genefilter, for assembling and
applying the filters, respectively.

• Any number of functions for specific
filtering tasks can be defined and supplied
to filterfun. E.g. Cox model p-values,
coefficient of variation.

Filtering: separation of tasks

Filtering: supplied filters
• kOverA – select genes for which k samples

have expression values larger than A.
• gapFilter – select genes with a large IQR or

gap (jump) in expression measures across
samples.

• ttest – select genes according to t-test
nominal p-values.

• Anova – select genes according to ANOVA
nominal p-values.

• coxfilter – select genes according to Cox
model nominal p-values.

Filtering: write your own
filters

• It is very simple to write your own filters.
• You can use the supplied filtering

functions as templates.
• The basic idea is to rely on lexical scope

to provide values (bindings) for the
variables that are needed to do the
filtering.

Filtering: How to
1. First build the filters

kF <- kOverA(5, 100)

2. Next assemble them in a filtering function
ff <- filterfun(kF)

3. Finally apply the filter
wh <- genefilter(exprs(DATA), ff)

4. Use wh to obtain the relevant subset of
the data
mySub <- DATA[wh,]

Annotate
• One of the largest challenges in analyzing

genomic data is associating the experimental
data with the available meta data, e.g. gene
annotation, literature.

• The annotate package provides some tools for
carrying this out.

• These are very likely to change, evolve and
improve, so please check the current
documentation (things may already have
changed).

Annotate: some tasks
• Associate manufacturers identifiers (e.g. Affy) to

other available identifiers (e.g. LocusLink).
• Associate genes with biological data such as

chromosomal position.
• Associate genes with published data via

PubMed.
• Provide nice summaries of analyses.
• Provide tools for regular expression searching of

PubMed abstracts.

Annotate: basics
• Much of what annotate does relies on

matching symbols.
• This is basically the role of a hash table in

most programming languages.
• In R we rely on environments (they are

similar to hash tables).

Data packages
• The Bioconductor project is starting to develop

and deploy packages that contain only data.
• The first one available is for the Affymetrix U95A

series of gene chips – hgu95a.
• These packages will contain many different

mappings to interesting data.
• They will be available from the Bioconductor

website and update.packages will work.

Data packages: hgu95a

• Maps to LocusLink, GenBank, gene
Symbol, gene Name.

• Chromosomal location, orientation.
• Maps to KEGG pathways, to enzymes.
• Gene reference in function.
• These packages will be updated and

expanded regularly as new or updated
data become available.

PubMed
www.ncbi.nlm.nih.gov

• For any gene there is often a large amount of
data available from PubMed.

• We have provided the following tools for
interacting with PubMed.
– pubMedAbst: defines a class structure for PubMed

abstracts in R.
– pubmed: the basic engine for talking to PubMed.

• WARNING: be careful you can query them too
much and be banned!

PubMed: high level tools
• pm.getabst: obtain (download) the

specified PubMed abstracts (stored in
XML).

• pm.titles: select the titles from a set of
PubMed abstracts.

• pm.abstGrep: regular expression
matching on the abstracts.

PubMed: example

Data rendering
• A simple interface, ll.htmlpage, can be

used to generate a webpage for your own
use or to send to other scientists involved
in the project.

• The page consists of a table with one row
per gene, with links to LocusLink.

• Entries can include various gene
identifiers and statistics.

Sweave

• The Sweave framework allows dynamic
generation of statistical documents
intermixing documentation text, code, and
code output (textual and graphical).

• Fritz Leisch’s Sweave function from the R
tools package.

• See ? Sweave and manual
http://www.ci.tuwien.ac.at/~leisch/Sweave/

Sweave input
• Source: a noweb file, i.e., a text file which

consists of a sequence of code and
documentation segments or chunks
– Documentation chunks

• start with @
• can be text in a markup language like LaTeX.

– Code chunks
• start with <<name>>=
• can be R or S-Plus code.

– File extension: .rnw, .Rnw, .snw, .Snw.

Sweave output
• Output: Sweave produces a single document,

e.g., .tex file or .pdf file containing
– the documentation text
– the R code
– the code output: text and graphs.

• The document can be automatically regenerated
whenever the data, code, or text change.

• Stangle: extract only the code.

Sweave
main.Rnw

main.tex fig.pdffig.eps

main.dvi

main.ps main.pdf

Sweave

latex

dvips dvi2pdf

