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Overview

e Closing the gap between knowledge of sequence and knowledge

of function requires aggressive, integrative use of biological

research databases of many different types.

e In this lecture we focus attention on resources that can help to

make use of meta-data in different analyses.

e We make use of the following packages: annotate, GO, KEGG,
hgul33a, GOstats, and cMAP.




Per chip annotation

e An early design decision was that we should provide

on a per chip-type basis.

> library("hgu1l33a")
> 1s("package:hgul33a")

[1] "hgul33a" "hgu133aACCNUM"

[3] "hgul133aCHR" "hgu133aCHRLENGTHS"
[5] "hgu133aCHRLOC" "hgul33aENZYME"

[7] "hgul133aENZYME2PROBE" "hgul33aGENENAME"
[9] "hgu133aGD" "hgu133aGO2ALLPROBES"
[11] "hgu133aGO2PROBE" "hgul33aGRIF"

[13] "hgu133aLOCUSID" "hgul33aMAP"

[15] "hgul33a0MIM" "hgu133a0RGANISM"
[17] "hgul33aPATH" "hgu133aPATH2PROBE"
[19] "hgu133aPMID" "hgu133aPMID2PROBE"
[21] "hgul33aREFSEQ" "hgu133aSUMFUNC"
[23] "hgu133aSYMBOL" "hgu133aUNIGENE"

meta-data




A brief description

e These packages contain R environments, which are used as
hash tables.

For each package there is quality control information available,
use hgul133a(); which report how many of each of the different
mappings were found.

e You can access the data directly using any of the standard

subsetting or extraction tools for environments; get, mget, $
and [[.

> hgu133aSYMBOL$"201473_at"

[1] "JUNB"

> hgu133aL0CUSID[["201476_s_at"]]
[1] 6240

> get("201475_x_at", hgul33a0MIM)
[1] "156560"




MetaData

LocusLink is a catalog of genetic loci that connects curated
sequence information to official nomenclatur

UniGene defines sequence clusters. UniGene focuses on
protein-coding genes of the nuclear genome (excluding rRNA
and mitochondrial sequences).

RefSeq is a non-redundant dataset of transcripts and proteins of
known genes for a variety of species, including human, mouse
and rat.

Enzyme Commission (EC) numbers are assigned to different

enzymes and linked to genes through their association with
LocusLink identifiers.

Gene Ontology (GO) is a structured vocabulary of terms
describing gene products according to relevant molecular
function, biological process, or cellular component.




Meta-data

PubMed is a service of the U.S. National Library of Medicine.
PubMed provides a very rich resource of data and tools for
working with papers published in journals that are related to
medicine and health. The data source, while large, is not

comprehensive and not all papers have been abstracted.

LITDB The Protein Research Foundation curates LITDB, which
covers all articles dealing with peptides from scientific journals
accessible in Japan.

OMIM Online Mendelian Inheritance in Man is a catalog of
human genes and genetic disorders.

NetAffx The NetAffx Analysis Center provides tools that
correlate experimental data assayed using the Affymetrix

GeneChip technology.




Meta-data

KEGG Kyoto Encyclopedia of Genes and Genomes; a collection of
data resources including a rich collection of pathway data.

cMAP Pathway data from both KEGG and BioCarta, in a
computable form.

Chromosomal Location Genes are identified with chromosomes,

and where appropriate with strand.

Data Archives The NCBI coordinates the Gene Expression
Omnibus (GEO); TIGR provides the Resourcerer database,

and the EBI supports ArrayExpress.




Working with Meta-data

e Suppose for example, we are interested in the gene BAD.

> gsyms <- unlist(as.list(hgu95av2SYMBOL))
> whBAD <- grep("“BAD$", gsyms)
> gsyms [whBAD]

1861 _at
IIBADII




BAD Pathways

e Now find the pathways that BAD is associated with.

> BADpath <- hgu95av2PATH$"1861_at"
> mget (BADpath, KEGGPATHID2NAME)

$"04210"
[1] "Apoptosis"

$"05030"
[1] "Amyotrophic lateral sclerosis (ALS)"

> allProbes <- mget(BADpath, hgu95av2PATH2PROBE)

> sapply(allProbes, length)

04210 05030
149 28




Annotating a Genome

e Bioconductor also provides some comprehensive annotations

for whole genomes (e.g. S. cerevisae).

These packages are like the chip annotation packages, except a
different set of primary keys is used (e.g. for yeast we use the
systematic names such as YBLO88C)

> library("YEAST")
> 1s("package:YEAST")

[1] "YEAST" "YEASTALIAS"
[3] "YEASTCHR" "YEASTCHRLENGTHS"
[5] "YEASTCHRLOC" "YEASTDESCRIPTION"
[7] "YEASTENZYME" "YEASTENZYME2PROBE"
[9] "YEASTGENENAME" "YEASTGO"

[11] "YEASTGO2ALLPROBES" "YEASTGO2PROBE"

[13] "YEASTORGANISM" "YEASTPATH"

[15] "YEASTPATH2PROBE"  "YEASTPMID"

[17] "YEASTPMID2PROBE"




The annotate package
e Functions for harvesting of curated persistent data sources
e functions for simple HT'TP queries to web service providers

e interface code that provides common calling sequences for the

assay based meta-data packages such as getGI and getSEQ

perform web queries to NCBI to extract the GI or nucleotide
sequence corresponding to a GenBank accession number.

> ggi <- getGI("M22490")

> ggi

[1] "179503"

> gsq <- getSEQ("M22490")
> substring(gsq, 1, 40)

[1] "GGCAGAGGAGGAGGGAGGGAGGGAAGGAGCGCGGAGCCCG"
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The annotate package

e other interface functions include getGO, getSYMBOL, getPMID,
and getLL

functions whose names start with pm work with lists of PubMed

identifiers for journal articles.

> hoxa9 <- "37809_at"
> absts <- pm.getabst (hoxa9, "hgu95av2")
> substring(abstText (absts[[1]]1[[1]]), 1, 60)

[1] "In primary cells from acute leukemia patients, expression of"




Working with GO

e An ontology is a structured vocabulary that characterizes some

conceptual domain.

e The Gene Ontology (GO) Consortium defines three ontologies
characterizing aspects of knowledge about genes and gene
products.

e These ontologies are

— molecular function (MF),

— biological process (BP)

— cellular component (CC).

e for explicit descriptions of these categories you should consult
the GO web page.




GO

molecular function of a gene product is what it does at the
biochemical level. This describes what the gene product can
do, but without reference to where or when this activity
actually occurs. Examples of functional terms include

“enzyme,” “transporter,” or “ligand.”

biological process is a biological objective to which the gene

product contributes. There is often a temporal aspect to a

biological process. Biological processes usually involve the

transformation of a physical thing. The terms “DNA
replication” or “signal transduction” describe general biological

processes.

cellular component is a part of a cell that is a component of

some larger object or structure. Examples of cellular

components include “chromosome”, “nucleus” and “ribosome”.



GO Characteristics

Number of Terms
BP 8578
CC 1335
MF 6891

Table 1: Number of GO terms per ontology.




Working with GO For precision and conciseness, all indexing of GO

resources employs the 7 digit tags with prefix GO:. Three very basic

tasks that are commonly performed in conjunction with GO are

e navigating the hierarchy, determining parents and children of
selected terms, and deriving subgraphs of the overall DAG
constituting GO:;

resolving the mapping from GO tag to natural language

characterizations of function, location, or process;

resolving the mapping between GO tags or terms and elements

of catalogs of genes or gene products.




Navigating the hierarchy

e Finding parents and children of different terms is handled by
using the PARENT and CHILDREN mappings.

e To find the children of "GO:0008094" we use:
> get ("G0O:0008094", GOMFCHILDREN)
[1] "G0O:0004003" "GO:0008722" "GO:0015616" "GO:0043142"

e We use the term offspring to refer to all descendants (children,

grandchildren, and so on) of a node.

e Similarly we use the term ancestor to refer to the parents,
grandparents, and so on, of a node.
> get("G0:0008094", GOMFOFFSPRING)

[1] "GO:0004003" "GO:0008722" "GO:0015616" "GO:0043142"
[6] "GO:0017116" "G0O:0043140" "GO:0043141"




Searching for terms

e All GO terms are provided in the GOTERM environment. It is
relatively easy to search for a term with the word chromosome
in it using eapply and grep or agrep.

> hasChr <- eapply(GOTERM, function(x) x[grep("chromosome",
+ Term(x))])

> lens <- sapply(hasChr, length)

> hasChr <- hasChr[lens > 0]

> length (hasChr)

[1] 64




Searching for terms

e We can write a function:

> GOTerm2Tag <- function(term) {
+ GTL <- eapply(GOTERM, function(x) {
grep(term, x@Term, value = TRUE)
)
Gl <- sapply(GTL, length)
names (GTL[G1 > 0])
+

and then apply to find all terms with a specific phrase, for
example, “transcription factor binding”:

> hasTFA <- GOTerm2Tag("transcription factor binding")
> hasTFA

[1] "GO:0003719" "GO:0008134"




Evidence Codes

e The mapping of genes to GO terms is carried out separately by

GOA

e Four environments in the GO package address the association

between LocusLink sequence entries and GO terms: GOLOCUSID,
GOALLOCUSID, GOLOCUSID2G0, and GOLOCUSID2ALLGO

Term | Definition

IMP | inferred from mutant phenotype
ISS inferred from sequence similarity
IEA | inferred from electronic annotation

TAS traceable author statement

Table 2: Some GO Evidence Codes.




GO Evidence Codes

e find the GO identifier for “transcription factor binding” and use
that to get all LocusLink identifiers that have that annotation.

> ggl <- get(GOTerm2Tag(" "transcription factor binding$"),
+ GOLOCUSID)

> table(names(ggl))

IDA IMP IPI ISS NAS TAS
9 1 8 16 4 28




LocusLink ID

e consider the gene with LocusLink ID 7355, SLC35A2

> 111 <- GOLOCUSID2GO[["7355"]]

> length(111)

[1] 9

> sapply (111, function(x) x$0Ontology)

G0:0000139 GO:0015785 GO:0005459 GO:0008643 GO:0006012
noe" "Bp" "ME" "Bp" "Bp"

G0:0016021 GO:0015780 GO:0005338 GO:0005351
noe" "Bp" "ME" n"ME"

there are 9 different GO terms.

We get those from the BP ontology by using getOntology.

> getOntology(111, "BP")
[1] "GO:0015785" "GO:0008643" "GO:0006012" "G0O:0015780"




Evidence Codes

e then get the evidence codes using getEvidence

e we can drop codes using dropEcode

> getEvidence(111)
GO0:0000139 GO:0015785 GO:0005459 GO:0008643 GO:0006012

IIIEAII IITASII IITASII IIIEAII IITASH

GO0:0016021 GO:0015780 GO:0005338 GO:0005351
"TEA" "TEA" "TEA" "TEA"

> zz <- dropECode (111, code = "IEA")

> getEvidence(zz)

G0:0015785 GO:0005459 GO:0006012
"TAS" "TAS" nTAS"




GO graphs

e For any set of selected genes, and any of the three GO
ontologies the induced GO graph is the set of GO terms that the
genes are associated with, together with all less specific terms

the term “transcription factor activity” is in the molecular
function (MF) ontology and has the GO label GO:0003700

> library("G0")

> library("GOstats")
> GOTERM$"GO:0003700"

GOID = GO:0003700

Term = transcription factor activity

Definition = Any protein required to initiate or
regulate transcription; includes both gene
regulatory proteins as well as the general
transcription factors.

Ontology = MF




e The induced graph, based on the MF hierarchy, can be
produced using the GOGraph function of the package GOstats

> tfG <- GOGraph("GO:0003700", GOMFPARENTS)

e we can plot the induced GO graph using Rgraphviz and the
code below.

> plot(tfG, nodeAttrs = nattr)




transcription factor activity

DNA binding

nucleic acid binding

transcription regulator activity

A

molecular_function

Figure 1: Graph of GO relationships for the term “transcription

factor activity”.
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Induced GO graphs
> tfch <- GOMFCHILDREN$"GO:0003700"

[1] "GO:0003705"

> tfchild <- mget(tfch, GOTERM)

$"G0:0003705"

GOID = GO:0003705

Term = RNA polymerase II transcription factor
activity, enhancer binding

Definition = Functions to initiate or regulate RNA
polymerase II transcription by binding a
promoter or enhancer region of DNA.

Ontology = MF




KEGG

KEGG provides on set of mappings from genes to pathways.

For each package we provide mappings, you can also query the

site directly using KEGGSOAP or any other software.

One problem with the KEGG is that the data is not in a form

that is amenable to computation. The cMAP project provides

data that is somewhat more useful for constructing networks.




KEGG
Data available in the KEGG package includes:

KEGGEXTID2PATHID which provides mappings from either
LocusLink (for human, mouse and rat) or Open Reading Frame
(yeast) to KEGG pathways, a second environment,
KEGGPATHID2EXTID contains the mappings in the other

direction.

KEGGPATHID2NAME which provides mappings from the
KEGG path ID to a name (textual description of the pathway).
Only the numeric part of the KEGG pathway identifiers is used

(and not the three letter species codes).




Counts per species

ath dme hsa mmu rno sce

Counts 105 105 133 123 115 98

Table 3: Pathway Counts Per Species




Exploring KEGG
e Consider the pathway 00140

e species specific mappings, from a pathway to the genes it

contains, are indicated by gluing together a three letter species
code, such as hsa for homo sapiens, to the numeric pathway
code.

> KEGGPATHID2NAME$"00140"

[1] "C21-Steroid hormone metabolism"

> KEGGPATHID2EXTID$hsa00140

[1] "1109" "1583" "1584" "1585" "1586" "1589" "3283" "3284"
[9] "3290" "3291" "6718"

> KEGGPATHID2EXTID$sce00140
[1] "YGLOO1iC"

We look up PAK1, which has LocusLink ID 5058 in humans,
and find that it is involved in two pathways, hsa04010 and
hsa04510.




e For mice, the LocusLink ID for PAK1 is
> KEGGEXTID2PATHID$"5058"
[1] "hsa04010" "hsa04510"

> KEGGEXTID2PATHID$"18479"
[1] "mmu04010"




cMAP

e The cancer Molecular Analysis Project (cMAP) is a project

that provides software and data for the comprehensive

exploration of data relevant to cancer.

cMAP provides pathway data in a format that is amenable to
computational manipulation.

> keggproc <- eapply(cMAPKEGGINTERACTION, function(x) x$process)
> table(unlist (keggproc))

character (0)

> cartaproc <- eapply(cMAPCARTAINTERACTION, function(x) x$process)
> length(table(unlist (cartaproc)))

[1] ©




cMAP

e We study the pathway labeled hsa00020 as an example.

> cMK <- 1s(cMAPKEGGPATHWAY)
> spec <- substr(cMK, 1, 3)
> table(spec)

spec
hsa map

81 4

> cMK[[2]]
[1] "hsa00020"

> pw2 <- cMAPKEGGPATHWAY[[cMK[2]]]
> names (pw2)

[1] "id" "organism" "source"
[6] "component"

> pw2%name

[1] "citrate cycle (tca cycle)"

> pw2$component

[1] 63 713473 80 68 78 79 77 72




[12] 82 74 84 75 64 83 61 58 59 69 81
[23] 60 66 73 66 76 1367 62 b4

e We select the first element of the pw2$component; it is an

interaction so we first extract it, and then explore its
components.

> getIl <- get("63", cMAPKEGGINTERACTION)
> unlist(getI1[1:4])

source process reversible condition
"KEGG" NA "TRUE" NA

> unlist(getI1[[5]][[2]])

id edge role location activity
2 NA NA NA NA

e We find that ATP is an input to the citrate cycle:
> get ("2", cMAPKEGGMOLECULE) [[2]][7:8]

AS AS
"adenosine 5'-triphosphate" "ATP"




Homology

e Two genes are said to be homologous if they have descended
from a common ancestral DNA sequence.

there is some interest in using homologous genes when studying
related phenomena across species

there is one homology package for each species; a three letter

species name (for homo sapiens hsa) and a suffix of homology

the mappings provided are between HomoloGene’s identifiers
and a variety of other commonly used identifiers, namely

LocusLink and UniGene.

> library("hsahomology")
> 1s("package:hsahomology")

[1] "hsahomology" "hsahomologyACC2HGID"
[3] "hsahomologyDATA" "hsahomologyHGID"

[6] "hsahomologyHGID2ACC" "hsahomologyHGID2LL"
[7] "hsahomologyLL2HGID" "hsahomologyORGCODE"




Homology
e the data linking genes is provided in hsahomologyDATA

each element in the list represents a gene that is homologous to
the key

there are three different types of homology that are recorded
and represented in the data.

e a single letter is used; the type can be:
— B (reciprocal best best between three or more organisms),

— b (reciprocal best match between two organisms), or

— ¢ (curated homology relationship between two organisms)




Homology Example

e the code for homo sapiens is 9606

e the Homologene project uses its own set of gene identifiers,

e to find the homologs for estrogen receptor 1 (ESR1) we use its

LocusLink ID (2099) and find the corresponding HomoloGene
ID.

> esrHG <- hsahomologyLL2HGID$"2099"
> hesr <- get(as.character(esrHG), hsahomologyDATA)
> sapply(hesr, function(x) x$homoOrg)

10090 10090 10116 10090 10116 8022 8355 8364 9823 7955
Ilmmull Ilmmull Ilrnoll Ilmmull llrnoll Ilomyll "Xla" IlXtrll IISSCII Ildrell
9913

Ilbtall




Homology Cross Species

e to find all potential homologs in one species, starting with the

genes in a different species.

to find all Xenopus Laevis homologs for human genes we use
the following code

> hXp <- eapply(hsahomologyDATA, function(x) {

gd <- sapply(x, function(x) if (!is.na(x$homoOrg) &&
x$homoOrg == "xla")
TRUE

else FALSE)

+ x[gd]

+ })

> 1h <- sapply(hXp, length)

> hXp2 <- hXp[lh > 0]

+
+
+
+

e we find 7021 human genes that have a potential homolog in
Xenopus Laevis.




Visualizing Genomic Data

e High-density scatterplots using hexbin and

e Heatmap: rectangular false-color displays.
e Visualizing distances

e Special plots: genomic coordinates




Visualization

e visualization is more than simply plotting data

e visualization is the process of plotting data so that the contents

are easily and accurately perceived by the user

e irrelevant details should be suppressed, and important
comparisons enhanced and put on an appropriate scale, or
encoded using color etc.




Use of Color

color can greatly enhance perception

the RColorBrewer package provides a number of different
palettes to choose from

There are 3 types of palettes, sequential, diverging, and
qualitative.

see the manual page for brewer.pal for more details

the R function hcl provides another set of colors (which may

be more appropriate for statistical graphics).

both colorRamp and colorRampPalette provide tools for
creating palettes of colors that map between two chosen colors.




csphd(c("blue", "green", "yellow", "orange"))
csphd(hcl(h = c(30, 120, 210, 300)))

> csphd(hcl(h = c(30, 120, 210, 300), c = 20, 1 = 90,
fixup = FALSE))

csphd(hcl(h = seq(60, 240, by = 60)))




44



Students

Students

30

25

20

15

10

30

25

20

15

10

Computer Science PhD Graduates

|
EED0OO

Fall
Summer
Spring
Winter

72 74 76 78 80 82

Year

a)

Computer Science PhD Graduates

84

l
opooo

Fall
Summer
Spring
Winter

72 74 76 78 80 82

84

45

Students

Students

30

25

20

15

10

30

25

20

15

10

Computer Science PhD Graduates

l
goooo

Fall
Summer
Spring
Winter

72 74 76 78 80 82

Year

b)

Computer Science PhD Graduates

84

l
opooo

Fall
Summer
Spring
Winter

72 74 76 78 80 82

84




High-density scatterplots

library("affydata")

data("Dilution")

x <- log2(exprs(Dilution)[, 1:2])

x <- x /*J, cbind(A = ¢(1, 1), M = c(-1, 1))

plot(x, pch = ".")

library("hexbin")

library("geneplotter")

hb <- hexbin(x, xbins = 50)

plot (hb, colramp = colorRampPalette(brewer.pal (9,
"Y1GnBu") [-1]))

> library("prada")
> smoothScatter(x, nrpoints = 500)

plot(x, col = densCols(x), pch = 20)
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Heatmaps

A heatmap is a two-dimensional, rectangular, colored grid.

It displays data that themselves come in the form of a

rectangular matrix.

The color of each rectangle is determined by the value of the

corresponding entry in the matrix.

The rows and columns of the matrix can be rearranged

independently.

Usually they are reordered so that similar rows are placed next

to each other, and the same for columns.




Heatmaps

e the function heatmap is an implementation with many options

users can control the ordering of rows and columns

independently of each other

they can use row and column labels of their own choosing or

select their own color scheme

they can also add a colored bar to annotate either the row or

the column data




Heatmaps

library("ALL")

data("ALL")

selSamples <- ALL$mol.biol 7inj, c("ALL1/AF4",
"E2A/PBX1")

ALLs <- ALL[, selSamples]

ALLs$mol.biol <- factor(ALLs$mol.biol)

colnames (exprs (ALLs)) <- paste(ALLs$mol.biol,
colnames (exprs (ALLs)))

+ VvV Vv VvV 4+ V Vv V

library("genefilter")

g <- split(1:length(ALLs$mol.biol), ALLs$mol.biol)

meanThr <- 1og2(100)

tThr <- qt(0.9999, df = sum(listLen(g)) - 2)

s1 <- rowMeans (exprs(ALLs) [, gl[[1]]]) > meanThr

s2 <- rowMeans (exprs(ALLs) [, g[[2]]]) > meanThr

s3 <- abs(fastT(exprs(ALLs), gl[1]], gl[[2]], var.equal = TRUE)$z) >
tThr

selProbes <- (s1 | s2) & s3

ALLhm <- ALLs[selProbes, ]

>
>
>
>
>
>
>
+
>
>




> hmcol <- colorRampPalette(brewer.pal(10, "RdBu")) (256)
> spcol <- ifelse(ALLhm$mol.biol == "ALL1/AF4",

+ "goldenrod", "skyblue")

> heatmap (exprs (ALLhm), col = hmcol, ColSideColors = spcol)
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Heatmaps of residuals

in most cases you can find residuals from any model fit to gene

expression data

for example, even fitting ¢-tests to each row (gene) yields

residuals

the residuals are the same size as the original data and a

heatmap can reveal structure in them

often peculiar arrays (those with too many high or low values)

can be detected

as can sets of genes that the model does not fit, in the same way




vV VvV + + V

vV V Vv V

A\

predict.MArrayLM <- function(f, design = f$design) {
return(f$coefficients 7/*/, t(design))

}

esFit <- predict(fit)

res <- exprs(esEset) - esFit

sel <- order(fit$coefficients[, "ES:T48"], decreasing = TRUE) [1:50]
four.groups <- as.integer(factor(colnames (exprs(esEset))))
csc <- brewer.pal(4, "Paired") [four.groups]

heatmap (exprs (esEset) [sel, ], col = hmcol, ColSideColors = csc)

heatmap(res[sel, ], col = hmcol, ColSideColors = csc)
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Figure 5: Heatmap of the estrogen data for the 50 probesets with
the highest treatment—time integaction. The horizontal color bar
corresponds to the 2 x 2 factor levels for treatment and time.
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Visualizing Distances

e All machine learning involves the use and comparison of

distances.

e the selection of an appropriate distance is important as are the
development and use of methods to visualize distances

e unfortunately one of the most widely used tools (the

dendrogram) is the least suited to this objective and should be

avoided where possible.




>
+
+
+
+
+
+
>
>
>

vV VvV VvV VvV Vv V

\%

standardize <- function(z) {
rowmed <- apply(z, 1, median)
rowmad <- apply(z, 1, mad)
rv <- sweep(z, 1, rowmed)
rv <- sweep(rv, 1, rowmad, "/")
return(rv)
}
ALLhme <- exprs(ALLhm)
ALLdistl <- dist(t(standardize (ALLhme)))
ALLhcl <- hclust(ALLdist1)

plot (ALLhcl, xlab = "", sub = "", main = "ALLhcl")

ALLsub2 <- exprs(ALLs[(s1 | s2), 1)
rowMads <- apply(ALLsub2, 1, mad)
ALLsub2 <- ALLsub2[rowMads > 1.4, ]
ALLdist2 <- dist(t(standardize(ALLsub2)))
ALLhc2 <- hclust(ALLdist2)

plot (ALLhc2, xlab = "", sub = "", main = "ALLhc2")
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Figure 7: Dendrograms for the ALL1/AF4 and E2A /PBX1 samples. The clus-
tering was obtained a) using the 81 probes in ALLhme that were selected in Sec-

tion 7?7 by the t-statistic, b) using the 58 probes in ALLsub2 that were filtered
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Cophentic Distance

to compute the dendrogram you must have some distance

between the objects
the dendrogram induces a second distance between the objects

the cophenetic correlation is the correlation between these two
distances

the larger the cophenetic correlation, the more the dendrogram

reflects the original distances, and the better the dendrogram is

as a visual representation of the data




> mypal <- brewer.pal(7, "RdBu")
> blue <- mypall[7]

> red <- mypall1]

> ALLcphl <- cophenetic(ALLhc1)
> cor(ALLdist1, ALLcphl)

[1] 0.99
> plot(ALLdist1, ALLcphl, pch = "[", col

> ALLcph2 <- cophenetic(ALLhc2)
> cor (ALLdist2, ALLcph2)

[1] 0.877

> plot(ALLdist2, ALLcph2, pch = "[", col
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Figure 8: Scatterplots of actual distances versus cophenetic dis-
tances. a) distances calculated with t-test selected probes, b)
variability-selected probes. Each pair of distances is shown by a ver-
tical bar. Note that the cophenetic distances only take on a discrete
set of values.
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Multidimensional scaling

MDS starts from a matrix of all pairwise distances or
dissimilarities between n objects

it tries to arrange n points in a k-dimensional Fuclidean space
such that the distances between the points are as much like the
given distances as possible

this can be done in a variety of ways and each leads to slightly

different solutions

R functions for carrying out MDS include: cmdscale in the

stats package, and isoMDS and sammon in MASS

like all dimension reduction methods, it is essential that the

user check to see if the reduction is suitable (you can always

compute it, it just does not have to be a good representation of
the data)




Goodness of fit

classical MDS solution, cmdscale returns two statistics.

one is the sum of the eigenvalues for the components S divided

by the sum of the absolute value of all eigenvalues
the other is S divided by the sum of all positive eigenvalues

to decide how many dimensions are necessary to adequately
represent your data, it is useful to look at the scree plot, that is
the plot of the goodness-of-fit statistic as a function of k

a criterion for the choice of k is to pick a solution for which

adding more dimensions does not significantly improve the

goodness-of-fit.




Other MDS solutions

e isoMDS provides one form of non-metric MDS. It chooses a

k-dimensional configuration to minimize the stress
> (f(pig) — dij)?

2 1#£]
Z dzzj
1#£]

S

where p;; is the original distance matrix, f is a monotonic

transformation, and d;; are the distances between the MDS

points.
sammon uses a different loss-function

The different variants of MDS lead to different relative
importances of large versus small distances to the fitted MDS

solution.




MDS Example Code

> cml <- cmdscale(ALLdist1,
> cm1$GOF

[1] 0.908 0.908

> samml <- sammon (ALLdistl, trace = FALSE)
> cm2 <- cmdscale(ALLdist2, eig = TRUE)
> cm2$GOF

[1] 0.646 0.646

> samm2 <- sammon(ALLdist2, trace = FALSE)

> ALLscol <- c("goldenrod", "skyblue")[as.integer (ALLs$mol.biol)]
> plot(cmi$points, col = ALLscol, ...)
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Using Heatmaps with Distances
e we can make use of the heatmap function for showing distances

e we call heatmap with both sym=TRUE and specify our own

distance function

e the resulting plot is symmetric and there is a strong indication

that there are two (or possibly three) groups of samples.

> heatmap (as.matrix(ALLdist2), sym = TRUE, col = hmcol,

+ distfun = function(x) as.dist(x))
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Figure 10: A heatmap of the between sample distances.
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Plotting in Genomic Coordinates

some of the genetic defects that are associated with cancer such
as deletions and amplifications induce correlations in expression

that are related to chromosomal proximity.

(Genomic regions of correlated transcription have also been

identified in normal tissues.

This motivates the development of tools that relate gene

expression to chromosomal location.

Genomic DNA is double stranded, one strand is called the

sense strand, the other the antisense strand

Both strands can contain coding sequences for genes, and the

visualization methods we consider reflect this.




The geneplotter package
e We can build the object chrLoc using the code below

> library("geneplotter")
> chrLoc <- buildChromLocation("hgu95av2")

e this creates an object of class chromLocation which contains
the location of all genes that were assayed on the HG-U95Av2

chip (for different experiments you would use a different chip).




Plotting chromosomal location

e select the highly expressing genes using s1 and s2 from above

and compute the mean expression for each probe separately for
the two groups of patient samples, ALL1/AF4 and E2A /PBXI1.

> ALLch <- ALLs[s1 | s2, ]

> m1 <- rowMeans (exprs(ALLch) [, ALLch$mol.biol
+ "ALL1/AF4"])

> m2 <- rowMeans (exprs(ALLch) [, ALLch$mol.biol
+ "E2A/PBX1"])

next compute the deciles of the combined data so the genes in
each decile can be colored differently.

> deciles <- quantile(c(ml, m2), probs = seq(O0,

+ 1, 0.1))

> sldec <- cut(ml, deciles)

> s2dec <- cut(m2, deciles)

> gN <- names(sldec) <- names(s2dec) <- geneNames (ALLch)
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colors <- brewer.pal(10, "RdBu")

layout (matrix(1:3, nr = 1), widths = c(5, 5, 2))
cPlot (chrLoc, main = "ALL1/AF4")

cColor(gN, colors[slidec], chrLoc)

cPlot (chrLoc, main = "E2A/PBX1")

cColor(gN, colors[s2dec], chrLoc)

image(1, 1:10, matrix(1:10, nc = 10), col = colors,

axes = FALSE, xlab = "", ylab = "")
axis(2, at = (1:10), labels = levels(sldec), las =

78

1)



Chromosome

ALL1/AF4

M_

Y_J.L__
e

22 1 i

21

20 o frHnt

10 | -

18 o T

15 1 —iimh

13 o — i1

R I

11 - Hm—r

10 o L

9 o bk —rmil

8 o i

7 |

6 + Hilrmr—ir -
§ o e
4 A
3 o At
2 { U L e

Chromosome

P P PR PR R PP RPDNMNNDN
O FRP N W HNMNOGON O © O B N X <X Z

P N W A~ 01 O N 0 ©

E2A/PBX1

(9.31,13.7]

(8.52,9.31]

(8.07,8.52]

(7.75,8.07] —

(7.48,7.75] —

(7.25,7.48] —

(7.06,7.25] —

(6.87,7.06]

(6.68,6.87]

(3.48,6.68]



Plotting Single Chromosomes
e plotChr produces one plot per chromosome.

e FEach sample has two smooth lines; the one in the top half of
the plot represents genes on the sense strand and the line in the
bottom half of the plot represents expression for genes encoded
on the antisense strand.

Low expression values are near the center line and high

expression values are towards the edge of the plot.

> par(mfrow = c(1, 1))

> msobj <- Makesense(ALLs, "hgu95av2")

> plotChr("22", msobj, col = ifelse(ALLs$mol.biol ==
+ "ALL1/AF4", "#EF8A62", "#67A9CF"), log = FALSE)
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Cumulative Expression

for some genomic aberrations looking at cummulative

expression can be helpful

it is hypothesized that losing one copy of a chromosome may
only slightly alter gene expression and that the amount by
which it changes is less than the variability in the population

the function alongChrom plots gene expression with the genes
ordered by their chromosomal location.

the motivation for this is that on the level of individual loci,
the technical and biological variability between samples can be
large enough to obscur systematic differences due to copy
number changes

J.-P. Bourquin compared gene expression profiles between

children with Down’s syndrome (trisomy 21) and a transient
myeloid disorder to children with different subtypes of AML.
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Cumulative expression levels by genes in chromosome 21

scaling method: none
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