
Lab: Using R and Bioconductor

Robert Gentleman
Florian Hahne
Paul Murrell

January 18, 2006

Introduction

In this lab we will cover some basic uses of R and also begin working with some of the
Bioconductor data sets and tools. Topics covered include basic use of R, R graphics, working
with environments as hash tables.

Some Basic R

First load the Biobase package and then the data set exSet.

> library("Biobase")

> data(exSet)

> exSet

Expression Set (exprSet) with

500 genes

26 samples

phenoData object with 3 variables and 26 cases

varLabels

sex: Female/Male

type: Case/Control

score: Testing Score

The expression set is an S4 class and exSet is an instance of this class. You can get help (a
description of the class) by using the ? operator; Try typing class ? exprSet.

> class(exSet)

1

[1] "exprSet"

attr(,"package")

[1] "Biobase"

> slotNames(exSet)

[1] "exprs" "se.exprs" "description" "annotation" "notes"

[6] "reporterInfo" "phenoData"

> exSet$cov1

NULL

> exSet[1,]

Expression Set (exprSet) with

1 genes

26 samples

phenoData object with 3 variables and 26 cases

varLabels

sex: Female/Male

type: Case/Control

score: Testing Score

> exSet[, 1]

Expression Set (exprSet) with

500 genes

1 samples

phenoData object with 3 variables and 1 cases

varLabels

sex: Female/Male

type: Case/Control

score: Testing Score

You can extract the values in the slots using the @ operator, or in many cases accessor
functions are available. The names of the slots can be obtained using slotNames, as shown
above. Extract the values for some of the named slots.

Exercise 1
� What happens when we subset exSet? What kind of an object do we get?

� What happened to the phenotypic data? What happened to the expression data?

� Subset exSet by selecting all elements for which cov1 has value 1.

2

Environments

In R an environment is a set of symbol-value pairs. These are very similar to lists, but
there is no natural ordering of the values and so you cannot make use of numeric indices.
Otherwise they behave the same way.
We first create an environment and then add, remove, list etc.

> e1 = new.env(hash = TRUE)

> e1$a = rnorm(10)

> e1$b = runif(20)

> ls(e1)

[1] "a" "b"

> xx = as.list(e1)

> names(xx)

[1] "a" "b"

> rm(a, envir = e1)

Exercise 2
� Create an environment and put a copy of exSet into it.

� Fit a linear model to the data x=1:10, y=2*x+rnorm(10, sd=0.25), and also place
this into your environment.

� Write a function, myExtract, that takes an environment as an argument and returns
a list, one element is the variable cov2 from exSet and the other is the vector of
coefficients from the linear model.

Something Harder

Later we will spend some time discussing machine learning (ML), but here we will just use
one simple algorithm, k-nearest neighbors (knn) to make predictions. You should read the
R manual page for a description of knn.

> library("class")

> apropos("knn")

[1] "knn" "knn.cv" "knn1"

The knn algorithm predicts the class of a given observation (the test case) according to a
majority vote of the k nearest neighbors in the training set. We will show how you can use
this to predict the class of sample 1, given data on samples 2 through 26.

3

> exprsExSet = exprs(exSet)

> classExSet = exSet$cov2

> esub = exSet[, -1]

> pred1 = knn(t(exprs(esub)), exprs(exSet)[, 1], esub$type)

> classExSet[1]

NULL

Exercise 3
� Write a function, that takes an exprSet as its input and carries out a leave-one-out set

of predictions. Your function should return the vector of predicted values for the given
covariate.

� Modify your function to allow the user to specify some of the parameters for knn, such
as k.

The apply functions

In R a great deal of work is done by applying some function to all elements of a list, matrix
or array. There are several functions available for you to use, apply, lapply, sapply are the
most commonly used. From the next release of R onwards there will also be an eapply for
use with environments.
To get some understanding of the apply functions we will attempt to extract some information
from the Gene Ontology information that is supplied with each data package.
This next code chunk shows how to use apply to extract all the molecular function GO terms
for each Affymetrix probe set.

> library("GO")

> library("hgu95av2")

> affyGO = as.list(hgu95av2GO)

> affyMF = lapply(affyGO, function(x) {

+ onts = sapply(x, function(z) z$Ontology)

+ if (is.null(unlist(onts)) || is.na(unlist(onts)))

+ NA

+ else unique(names(onts)[onts == "MF"])

+ })

Exercise 4
� How are the GO terms stored? What information is available for each?

� What are the evidence codes and what do they mean?

� Turn this code into a function that would allow users to obtain either the MF, BP or
CC data.

� Extend this function to allow the user to include only given evidence codes. (Or if you
think it better - to exclude specific codes).

4

Finding help in R

In Section 1 you have already learned about the ? operator and how you can get information
about a certain R function or object. In addition there are a lot of other sources for help in
and out of R.
Function apropos can be used to find objects in the search path partially matching the given
character string. find also locates objects, yet in a more restrictive manner.

> apropos(mean)

[1] "kmeans" "weighted.mean" "mean" "mean.Date"

[5] "mean.POSIXct" "mean.POSIXlt" "mean.data.frame" "mean.default"

[9] "mean.difftime"

> find(mean)

[1] "package:base"

If you want to get information about a certain topic or concept, try help.search. The function
searches the help system for documentation matching a given character string in the (file)
name, alias, title, concept or keyword entries and names and titles of the matched help
entries are displayed.

> help.search("mean")

Moreover there is a wealth of information just waiting for you out in the web: For many of
the usual R-related questions you may most likely find an answer in the R-FAQ at http://
cran.r-project.org/faqs.html. A more specialised source for help are the R and Biocon-
ductor mailing lists (http://www.r-project.org/mail.html, http://www.bioconductor.
org/mailList.html). You can subscribe to different sublists, regarding your interests and
level of expertise and post your questions to the R society. Before doing so, you should
by all means read the posting guides. Many questions on the mailing lists will most likely
not be answered because major posting rules have been violated. It is also a good idea
to search the online mailing archives before posting a question. Most of them have al-
ready been asked and answered by someone else.A searchable Bioconductor archive can
be found at http://files.protsuggest.org/cgi-bin/biocond.cgi, the R archives at
http://maths.newcastle.edu.au/~rking/R.
All of these links can of course also be found on the Bioconductor and R-Project webpages.

Exercise 5
� There are a number of different plotting functions available. Can you find them?

� Try to find out how to do a Mann-Whitney test.

� Take a look at the R posting guide and find out about the most common mistakes
when posting a question.

5

http://cran.r-project.org/faqs.html
http://cran.r-project.org/faqs.html
http://www.r-project.org/mail.html
http://www.bioconductor.org/mailList.html
http://www.bioconductor.org/mailList.html
http://files.protsuggest.org/cgi-bin/biocond.cgi
http://maths.newcastle.edu.au/~rking/R

� Use the searchable R mail archive and find out how to color tick marks in a plot with
the segments function. You may need this information in one of the following exercises!
[Hint: Try the keywords ’plot’, ’tick’ ’labels’ and ’colour’]

Working with packages

There are now hundreds of packages available for R and over 150 for Bioconductor. It will
be important that you learn how to find, download and install different packages.
There are a number of different methods that can be used and over time we expect them to
become more standard. R packages are stored in libraries, you can have multiple libraries
on your computer, although most people have only one on their personal machine.
Packages must be downloaded and installed. You need to do this only once. After that,
each time you want to use the package you must load it. You do this using either the library
function or the function require.
Downloading packages can be done using the menu on a distribution of R that has a GUI
(this is either Windows or OS X). On these platforms you simply select the packages you
want and they are downloaded and installed, but they are not loaded into your R session,
you must do that. By default this mechanism will download the appropriate binary packages.
You can use the function install.packages to download a specified list of packages. One
of the arguments to install.packages controls whether package dependencies should also be
downloaded and for Bioconductor packages we strongly recommend setting this to TRUE.
In Bioconductor we have a developed a second, and somewhat more intricate set of package
management tools. For the most part this is because of the complex set of interdependencies
that exist in Bioconductor (most packages on CRAN have no dependencies). The pack-
age reposTools contains all of the Bioconductor functions for dealing with packages and we
strongly recommend that you download and install this package first. The names of most
of the functions in reposTools are similar to those for standard R functions, for example in-
stall.packages2 works in much the same way as install.packages does. The tools in reposTools
can download packages from CRAN (but the converse is not true) so we recommend using
reposTools.

> .libPaths()

[1] "/Users/seth/RLIB"

[2] "/Users/seth/proj/builds/R-devel-upstream/library"

The Bioconductor project also has a script, called getBioC that downloads and installs
a minimal set of Bioconductor tools for doing microarray analysis. Please note that the
complete set is pretty large and will take some time to download even on a fast ethernet
connection.
For this course we will be using the development version of R and also of the Bioconductor
packages. You will have some substantial problems and things won’t work if you are not
using the development version of the packages.

6

Exercise 6
� What is the output of function sessionInfo?

Graphics

In this section you will work through some examples that allow you to create very general
plots in R. The function plot can be used to produce dot plots. Read through its documen-
tation (? plot) and also take a look into the documentation for par, which controls most of
the parameters for R’s base graphics.

●● ● ●● ● ●● ●●● ● ●● ●● ●●● ● ●●● ●● ●

●●● ●● ●●● ●●●● ●● ●● ● ● ●● ● ●● ●● ●

x

y

0 10 20 30 40 50 60

M
M

P
20

S
LC

6A
2

Figure 1: Figure for Graphics Question 1.

Exercise 7
� Select two probesets from exSet and use their expression data to produce a plot like

the one in Figure 1. The relevant features are the tick marks on the y-axis and the

7

vertical positioning of the data symbols. [Hint: You can find the gene symbols in
hgu95av2SYMBOL and function axis might be useful.]

Now, let us go one step further and try to plot some details of our example data. We first
find out the chromosomal locations of our genes.

> whCHR = unlist(mget(geneNames(exSet), hgu95av2CHR))

> chrGenes <- table(whCHR)

> chrGenes

whCHR

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 Un X Y

39 13 20 31 11 14 7 12 19 5 21 32 6 3 14 15 21 12 34 22 20 14 1 15 7

This tells us how many genes from each chromosome are included in our data set. We now
want to use this data to produce a barplot like the one in Figure 2 using the R function
barplot. We also want to compute moving average values (which can be used in breakpoint
analysis) for our data. For chromosome i, the moving average is the average of chromosomes
i− 7, i− 6, . . . , i).

> mean.8 <- rep(0, length(chrGenes) - 7)

> for (i in 1:length(mean.8)) mean.8[i] <- mean(chrGenes[i:(i +

+ 7)])

Exercise 8
� Create the boxplot.

� Now superimpose the moving averages values over your plot.

We now want to plot our chromosome data, basically creating plots similar to those in
geneplotter, such as alongChrom.

Exercise 9
� Select a chromosome (any one) to produce your plot.

� Find out the length of this chromosome (in bases). [Hint: the necessary data is in
hgu95av2.]

� Find the position for each gene, on your selected chromosome. [Hint: hgu95av2CHRLOC]

� Create a plot with a single horizontal line and add a tick mark for each gene (perpen-
dicular to the horizontal line).

� Can you color the tick marks according to gene expression?

The version number of R and packages loaded for generating this document are:

8

1 11 13 15 17 19 20 22 4 6 8 Un Y

Chromosomes

N
um

be
r

of
 G

en
es

0
10

20
30

●

●
● ● ●

●

●
● ● ●

●

●

●

●

●

● ●

●

Figure 2: Figure for Graphics Question 2.

Version 2.3.0 Under development (unstable) (2006-01-15 r37092)

powerpc-apple-darwin8.4.0

attached base packages:

[1] "tools" "methods" "stats" "graphics" "grDevices" "utils"

[7] "datasets" "base"

other attached packages:

hgu95av2 GO class Biobase

"1.11.0" "1.10.0" "7.2-25" "1.9.2"

9

