
Lab: An introduction to Bioconductor

Martin Morgan

14 May, 2007

Take one of these paths through the lab:

1. Tour 1 visits a few of the major packages in Bioconductor, much like in
the accompanying lecture. There is a lot of material here; you are unlikely
to traverse it all.

2. Tour 2 provides an introduction to packages and their structure, and is
most useful for those wanting, in the long term, to effectively use R’s
package mechanism to organize their projects.

1 The package tour

1.1 Data input

The Affymetrix expression platform produces CEL files. Each CEL file corre-
sponds to a single chip, and several chips typically constitute an experiment.
The objective of this section is to read several CEL files into data structures
that Bioconductor uses.

Exercise 1
Load packages required for the task.

We will read cell files using the R package affy. A second R package, affydata,
contains sample data files.

> library(affy)

> library(affydata)

An error such as

Error in library(affydata) : there is no package called 'affydata'

means that the package is not yet installed. To install a package, the best route
is

> source("http://bioconductor.org/biocLite.R")

> biocLite("affydata")
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Packages often have dependencies, i.e., relying on other packages to perform their
work. The biocLite function is smart enough to identify all dependencies, so
that a command like that above may result in several packages being installed.

Exercise 2
Tell R where our CEL files are located.

The system.file command is a convenient way to locate the path to installed
packages; normally you would use file.path to construct the appropriate path.

> celPath <- system.file("celfiles", package = "affydata")

Windows users will likely want to use a / rather than \ as separators in the file
path (file.path follows this convention). This is because in R the \ character
has special meaning, and typically replaces the character following the \ with
something unexpected.

Exercise 3
With the file path in hand, read the data into R.

> affyBatch <- ReadAffy(celfile.path = celPath)

Find out about ReadAffy from the help page

> help("ReadAffy")

This represents one way to read CEL data into Bioconductor; different pack-
ages may expect different data, and expect different data input methods. The
recommended way for accessing data is often contained in a package vignette,
accessible with the command

> openVignette()

(evaluated after the library is loaded) or, on Windows, through the ’Vignettes’
menu available after Biobase is loaded.

Exercise 4
Make sure the data look reasonable.

At a minimum, take a look at the data object you have just created:

> affyBatch

AffyBatch object
size of arrays=712x712 features (13 kb)
cdf=HG-U133A (22283 affyids)
number of samples=2
number of genes=506944
annotation=hgu133a
notes=
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AffyBatch is actually kind of smart. To be informative, it requires information
about the chip used in the experiment. The CEL files contain an annotation
indicating the chip, but the description of the chip is available in a separate
package. AffyBatch checks to see whether the package with the annotation
data is installed, and if not visits the Bioconductor site to retrieve and install
it. Cool.

1.2 Preprocessing

Expression data typically requires pre-processing steps such as background cor-
rection and normalization. In general preprocessing is a data reduction, from
the probes on Affymetrix chip to summaries of probe sets.

Exercise 5
Use the R help and vignette system to investigate how to perform background
correction, normalization, PM correction, and probe summarization.

The key function in the affy package is expresso, described most clearly in the
affy vignette. A more direct though less flexible route from CEL file to pre-
processed data is through justRMA. Here we change the ’working directory’ to
the location of the CEL files, then evaluate justRMA:

> currentDirectory <- getwd()

> setwd(celPath)

> celFiles <- list.files(celPath)

> expressionSet <- justRMA(filenames = celFiles)

Background correcting
Normalizing
Calculating Expression

> setwd(currentDirectory)

Pre-processing produces a qualitatively different type of data, and this is repre-
sented in many Bioconductor packages as an ExpressionSet :

> expressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 2 samples
element names: exprs, se.exprs

phenoData
rowNames: binary.cel, text.cel
varLabels and varMetadata:
sample: arbitrary numbering

featureData
featureNames: 1007_s_at, 1053_at, ..., AFFX-TrpnX-M_at (22283 total)
varLabels and varMetadata: none

experimentData: use 'experimentData(object)'
Annotation [1] "hgu133a"
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Exercise 6
Packages often provide alternative methods for analysis, including analysis of
two-color experiments. Use the vsn package to further process an existing Ex-
pressionSet named lymphoma and found in the vsn package.

lymphoma is derived from a two-color experiment, with even-numbered samples
representing the ‘Red’ channel, and odd numbered samples the corresponding
‘Green’ channel.

> library(vsn)

> data(lymphoma)

> vsnData <- justvsn(lymphoma)

Use the R help system to determine what justvsn (hint: vsn is an acronym
for variance stabilized normalization) does. What does the help system tell you
about the lymphoma data?

1.3 Visualization

R has a lot of visualization techniques, both for traditional graphs (e.g., the
lattice package) and especially for visualization of high-throughput data.

So-called M-vs-A plots are a useful way to visually assess the effectiveness of
normalization methods like that in the package vsn. M is the difference between
the sample and reference expression level; A the average of the sample and
reference expression levels.

Exercise 7
Remember that the lymphoma data is arranged such that pairs of columns rep-
resent the ‘Red’ and ‘Green’ channels. Extract the underlying data from the
ExpressionSet, for a particular pair of channels

> exprVals <- exprs(vsnData)

> green <- exprVals[, 7]

> red <- exprVals[, 8]

exprs extracts a matrix representing the expression values, with ‘features’ as
rows and samples as columns. The subsetting operations (e.g., exprVals[,7]
extracts a numeric vector of values corresponding to a single column.

Exercise 8
Now calculate the M and A values:

> M <- green - red

> A <- (green + red)/2

Notice that these operations are vector operations – green and red are actually
vectors of 9216 elements, and M is now a vector of pair-wise differences. Always
a good idea to make sure things are happening as expected:
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Figure 1: M versus A plot for lymphoma data samples 7 (red) and 8 (green).

> head(green, n = 5)

1 2 3 4 5
8.241099 8.647391 9.201032 10.136215 11.274535

> head(red, n = 5)

1 2 3 4 5
8.248713 9.305025 12.344540 9.036242 12.813635

> head(M, n = 5)

1 2 3 4 5
-0.007614116 -0.657634966 -3.143507963 1.099973569 -1.539100668

Exercise 9
It is not informative to do a scatterplot of a large number of points. Instead, use
the geneplotter package to generate a plot where density reflects local abundance.

> library(geneplotter)

> smoothScatter(A, M, pch = 20, xlab = "A", ylab = "M")

> abline(h = 0, col = "red")

The cryptic arguments to smoothScatter are directives about the appear-
ance of the figure; a description can be found on the help page for plot.default.
abline adds a straight line to the plot. The output is shown in Figure 1. The
idea is that the normalization has made it so that the variance is independent
of the expression level. Is this figure consistent with the expectation? What
about other red and green pairs? What about the data before justvsn?
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1.4 Interrogation

Bioconductor tries to organize data so that information remains connected
across different domains.

Exercise 10
Load the sample.ExpressionSet data from the Biobase package, give it a
shorter name for convenience, and look at the annotation information, and the
feature name of the second element in this data object.

> library(Biobase)

> data(sample.ExpressionSet)

> obj <- sample.ExpressionSet

This sample data is derived from an Affymetrix hgu95av2 chip. Each feature
has a name associated with it, with the name referring to information in the
chip description.

> annotation(obj)

[1] "hgu95av2"

> feature <- featureNames(obj)[100]

> feature

[1] "31339_at"

Each chip has a collection of annotations, derived from publicly accessible
sources and collated into an annotation package. Some of the annotation infor-
mation relies on additional sources of data, such as that collated into the GO
(gene ontology) package.

Exercise 11
Load libraries required to access annotation information and construct the map
from our feature to its gene ontologies:

> library(annotate)

> library(hgu95av2)

> library(GO)

> ontologies <- hgu95av2GO[[feature]]

> length(ontologies)

[1] 4

Exercise 12
Look at a selection of the ontologies identified, perhaps using the R help system
and GO documentation to understand the results.

> ontologies[[1]]
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$GOID
[1] "GO:0008150"

$Evidence
[1] "ND"

$Ontology
[1] "BP"

The AnnBuilder package allows construction of custom annotations. A flexi-
ble alternative is to use a package such as biomaRt, which integrates with web-
based resources.

Exercise 13
Load biomaRt and select a ‘mart’ for retrieving information about features in
our expression set.

> library(biomaRt)

> ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

This is fun – biomaRt is retrieving the information from a remote site (the one
that hosts the ensembl mart), and confirming that the data set we selected is
available. Check out the biomaRt vignettes and help pages to see how to discover
available marts and resources.

Exercise 14
Let’s look at one of our features, and use getGene from biomaRt to retrieve
information about it (unfortunately, the chip naming convention followed by the
mart people is different from that used in Bioconductor, so the array argument
is constructed by hand).

> feature <- featureNames(obj)[100]

> gene <- getGene(id = feature, type = "affy_hg_u95av2", mart = ensembl)

> names(gene)

[1] "affy_hg_u95av2" "hgnc_symbol" "description"
[4] "chromosome_name" "band" "strand"
[7] "start_position" "end_position" "ensembl_gene_id"
[10] "ensembl_transcript_id"

> gene$description

[1] "protease inhibitor 15 preproprotein [Source:RefSeq_peptide;Acc:NP_056970]"

The command names(gene) provides the names of the types of information
retrieved by the query; genes$description accesses some of that information.
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1.5 Linear models

Designed experiments can frequently be cast as linear models. The limma pack-
age provides an interface to R extensive linear modeling capability, with features
exploiting the data structure of typical expression experiments.

Exercise 15
Load the limma package and generate simulated expression data (100 probes, 6
microarrays; construct so that the first two probes are differentially expressed.

> library(limma)

> sd <- 0.3 * sqrt(4/rchisq(100, df = 4))

> ourExprs <- matrix(rnorm(100 * 6, sd = sd), nrow = 100, ncol = 6)

> rownames(ourExprs) <- paste("Gene", 1:100)

> colnames(ourExprs) <- paste("Sample", 1:6)

> ourExprs[1:2, 4:6] <- ourExprs[1:2, 4:6] + 2

The matrix function creates a matrix from a single vector of data. The vector
is 100 * 6 elements long, with the elements drawn randomly from a normal
distribution with a particular standard deviation. The matrix has 100 rows
(corresponding to the number of genes) and 6 columns. We provide the rows
and columns with names, for easy identification later on; these would be the
feature- or sample-names of real data. Our ‘over-expressed’ genes are in rows 1
and 2, sample 4 through 6, and have 2 units added to their expression values.
Use head(y) to make sure the simulate data looks reasonable.

Exercise 16
Linear models usually contrast the effects of different treatments. Create a
data.frame to contain phenotypic information about our samples, and combine
the expression and phenotypic data into an ExpressionSet, so that we can deal
with the information in a coordinated way.

> ourPData <- data.frame(Group = c(rep("A", 3), rep("B", 3)))

> rownames(ourPData) <- colnames(ourExprs)

> exSet <- new("ExpressionSet", phenoData = new("AnnotatedDataFrame",

+ data = ourPData), exprs = ourExprs)

More typically, we would arrive at this point through reading in CEL or other
data files, and performing preprocessing and other tasks.

Exercise 17
Linear models are described by a model matrix summarizing the model under
investigation. Create the model matrix for our experiment:

> modelMatrix <- model.matrix(~exSet$Group, data = pData(exSet))

> modelMatrix
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(Intercept) exSet$GroupB
Sample 1 1 0
Sample 2 1 0
Sample 3 1 0
Sample 4 1 1
Sample 5 1 1
Sample 6 1 1
attr(,"assign")
[1] 0 1
attr(,"contrasts")
attr(,"contrasts")$`exSet$Group`
[1] "contr.treatment"

This is moderately cryptic, but the first argument to model.matrix is an R
formula; the left-hand-side describes the response variables (‘all’, in this case),
the right hand side the independent variables (the Group part of exSet, which we
just created). A model matrix is defined for a particular data frame, and we can
access the phenotypic data describing our experiment with the pData function
(pData retrieves ourPData, which we just stored in exSet). The structure of
the model matrix will be familiar to the statisticians in the crowd; we are going
to compare expression levels between the two groups.

Exercise 18
Use the limma package provides a convenient way to fit our linear model to all
features in our expression set:

> fit <- lmFit(exSet, modelMatrix)

> names(fit)

[1] "coefficients" "rank" "assign" "qr"
[5] "df.residual" "sigma" "cov.coefficients" "stdev.unscaled"
[9] "pivot" "genes" "Amean" "method"
[13] "design"

The function names(fit) summarizes the information in the fitted model.
Features are not independent of one another, so it is likely that in assessing

individual probes we can ‘borrow’ statistical information from the expression
patterns of other probes. The author of the limma package has a particular
implementation of this idea, and we can update our fit with his empirical Bayes
approach:

> moderated <- eBayes(fit)

Exercise 19
Did our model detect differences between our groups?

Let’s look at the most differentially expressed genes:
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Figure 2: Volcano plot for simulated data contrasting two experimental groups

> topTable(moderated)[1:5, -2]

ID exSet.GroupB AveExpr F P.Value adj.P.Val
2 Gene 2 2.2152943 1.55033973 106.846140 3.236566e-06 0.0003236566
1 Gene 1 1.9711057 0.95215694 49.124517 5.078202e-05 0.0025391009
90 Gene 90 0.5230701 0.54855070 16.982238 1.671551e-03 0.0557183761
68 Gene 68 -0.5048777 -0.38991418 9.072433 1.005482e-02 0.2513704090
70 Gene 70 -0.9189472 0.04271758 5.367992 3.594721e-02 0.7189442585

(the number of columns displayed is truncated for layout purposes). The P-
values, adjusted for multiple comparisons, suggests that we have indeed been
successful (consult the topTable manual page for a more complete description
of this table).

A picture is worth a thousand words; we can see the significant differential
expression in a so-called volcano plot:

> volcanoplot(moderated, coef = 2, highlight = 3)

That our genes are in the top right corner of Figure 2 indicates that they are
highly unusual, and that they are over-expressed in the ‘B’ group.

limma allows for analysis of many, though not all, experimental designs. R’s
machinery for linear models can be employed to fit whatever linear or generalized
linear model may be appropriate.
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1.6 Etcetera

There are over 200 Bioconductor packages, and we have really just scratched
the surface of a small handful. Visit the ‘Browse packages’ link of Bioconductor
web site for some attempts to categorize the diversity of offerings.

2 A bus-man’s holiday

2.1 From scratch

The most efficient way of installing new packages ‘on the fly’ is to use the
biocLite function:

> source("http://bioconductor.org/biocLite.R")

> biocLite()

The first line illustrates the source function, which reads a file containing R
commands. Surprisingly, source knows how to read files that are accessible
via http, in addition to files available locally. The file biocLite.R contains
the definition of biocLite; source has read that definition into the current R
session.

The biocLite function invoked without any arguments causes R to install a
default list of packages by consulting several on-line repositories. A package is
a set of R instructions and documentation that provide specific functionality; it
is the basic building-block for organizing R software into coherent and modular
pieces that can be assembled by the user to perform specific tasks.

The biocLite function attempts to find each package and all of the de-
pendencies (defined below). These are downloaded to the local computer and
installed in the R system. Options to biocLite control which repositories
are searched, whether package dependencies are also downloaded, and how the
download and installation proceed.

The biocLite function can be invoked with a character vector of package
names. Each package and its dependencies would then be located and installed.
For instance, the command

> biocLite(c("Biobase", "biglm"))

downloads and installs the Biobase package (part of the Bioconductor project)
and the biglm package (an R package for linear models applied to large data
sets; not part of Bioconductor).

R packages are versioned. To compare the version of currently installed
packages with the most recent version available online, and to update installed
packages as needed, evaluate:

> library(Biobase)

> update.packages(repos = biocReposList())

11

http://bioconductor.org


This uses the R function update.packages, with a list of repositories specific to
Bioconductor provided by the function biocReposList which is defined in the
Biobase package.

Exercise 20
Are any packages in your installation out-of-date? Use the update.packages to
determine this. It is not necessary to update any out-of-date packages; see the
help page for update.packages for information on how to check status without
performing the update.

2.2 A package and its parts

Start a new R session, and load the Biobase package

> library(Biobase)

On your system, this command generates a line Loading required package: tools.
The tools package is an R package that Biobase depends on. By this we mean
first that tools contains R code that Biobase uses and second that tools is not
loaded, and hence its functionality is not available, by default. The authors of
Biobase had to instruct R to load tools before loading Biobase.

Biobase is important to Bioconductor, and displays a ‘splash screen’ with
hopefully useful information for new users (most packages do not display a splash
screen). The splash screen points the user to important sources of information
about the package and how it can be used.

2.2.1 Vignettes and help

The function openVignette produces a list of vignettes found in loaded pack-
ages. A vignette tries to convey a sense of package functionality. The best
vignettes outline the problem that the package addresses, and walks the user
through key steps in the use of the package. Vignettes are usually available to
the user as PDF documents, making them easy to view and reference.

Package developers write vignettes in LATEX, with additional facilities (pro-
vided by the Sweave package) for including R code that is evaluated when the
package is installed. This literate programming technique provides a very useful
illustration of how the code is meant to be used. Since the commands in a
vignette are evaluate when the package is installed, vignettes provide a crude
way of ensuring that the package is functioning: if the vignette does not build
correctly, then something in the package code has gone amiss. The document
you are currently reading is written using LATEX and Sweave.

The splash screen also points to the help function. The equivalent com-
mands help(Biobase) and ?Biobase open a help page the package authors have
written to summarize Biobase. help(package=Biobase) provides an overview of
Biobase data classes, methods, and functions. Commands such as ?ExpressionSet
take the user to help pages describing particular objects, in this case the Ex-
pressionSet class used in many Bioconductor packages to represent microarray
expression data.

12



Package authors write help pages in a LATEX-like syntax. Checks during
package creation ensure that all objects visible to the package user are docu-
mented to a specific level of detail, i.e., package authors must eventually docu-
ment their software! Tools in R create templates for manual pages, facilitating
the documentation process.

Exercise 21
What is an ExpressionSet? What can you do with an ExpressionSet once you
have one? Briefly explore the vignettes and help pages for Biobase. How could
the vignettes be made more useful to the new user?

Vignettes and help pages provide enough information and guidance for the
user to write R scripts that perform specific tasks. More advanced users can
access and explore packages in additional ways, as we now discover.

2.2.2 Classes and methods

Many Bioconductor packages are based on the S4 object system. The S4 system
is a way to formally represent complicated data objects and the methods that
operate on them. Here, let’s take a look at some basic features.

The S4 system allows package authors to create classes that encapsulate
complicated data structures. ExpressionSet is an example of a class, and the
help page provides some indication of how it is structured.

Exercise 22
To get a feeling for classes, take a look at the class definition of ExpressionSet:

> getClass("ExpressionSet")

ExpressionSet consists of slots. Each slot (slots are named assayData, phenoData,
featureData, experimentData, annotation, and .__classVersion__) repre-
sents a different portion of the complex data an ExpressionSet is trying to
represent. For instance, the assayData slot contains expression values resulting
from several different chips in a single microarray experiment. The phenoData
and featureData slots contain information about the samples used in the ex-
periment, and the features present on the microarray.

Each slot contains an object of a particular class. The class of some slots
(e.g., annotation, which has class character), are basic R data types. Other
slots (e.g., assayData, with class AssayData) are themselves complex classes
with their own class definition. The class of most ExpressionSet slots are de-
fined in the Biobase package, but this is not necessary or even desirable: a key
benefit to object systems like S4 is the reuse of complex objects that others
have created. The oddly named slot .__classVersion__ probably reflects an
ad hoc convention on the part of the author to designate this slot as somehow
special, perhaps suggesting that even advanced users do not normally need to
worry about its content.
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Exercise 23
The ExpressionSet class extends eSet and other classes. The meaning of ‘ex-
tends’ is explored later, but use getClass to look at the structure of an eSet.
Can you speculate on what ‘extends’ might represent, in terms of shared slots
or other functionality? How might this notion contribute to object reuse, and
to efficient programming?

While classes encapsulate data structure, methods describe operations available
on classes.

Exercise 24
Programmatically view all (well, most, there are bugs) of the methods available
on an ExpressionSet.

To do this, evaluate the command

> showMethods(classes = "ExpressionSet")

One of the methods available for ExpressionSet is exprs. To find out what class
of objects exprs works on, evaluate the command

> showMethods("exprs")

exprs is a fairly specialized method. What classes have initialize (used when
new objects are created) and show (used to display objects) methods defined?
What about [ (the square bracket is, in fact, a function, see ?[). Load the affy
package; does this change the initialize and show methods available?

2.2.3 Name spaces

When the user types a symbol name (corresponding to a variable or function, for
instance) at the prompt, R searches for the corresponding symbol definition. R
maintains a search path of places to look for the symbol. R starts at the front of
the search path (the .GlobalEnv , recording symbols that the user has entered at
the R prompt) and proceeds down the search path until an appropriate symbol
is found. Loading an R packages adds the package and its dependencies to the
search path, immediately after .GlobalEnv.

Exercise 25
Use search to view the search path of your current R session. Where are
the Biobase and tools packages in the search path? What other packages are
attached? When where those packages loaded?

As packages become more complicated, it is usually the case that package
authors write functions that are very useful internally, but whose visibility to
the user would serve primarily to obscure the package functionality. It is also
often advantageous to maintain a separation between how the user interacts
with the package (the package interface) and the actual way in which the pack-
age implements calculations or represents data. This separation makes it easy
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to update packages to more efficient data representations or analytic routines,
without requiring the user to learn new ways of interacting with the package. A
package name space provides a way to selectively expose package functionality.

Exercise 26
Use getNamespaceExports to retrieve the symbols exported in the Biobase name
space, and length to determine the number of exported symbols.

> nmSpace <- getNamespaceExports("Biobase")

Symbols defined in a package but not visible in the name space are still accessible
to the user.

Exercise 27
The symbol assayDataStorageMode is defined in the Biobase name space, but
not visible to the user. Use the help page ?::: to determine how to access
the definition of assayDataStorageMode. Why might the Biobase author have
chosen not to expose this function? The help page you consulted also contains
information on ::, which provides access to publicly visible symbols. Why might
you want to access publicly visible symbols in this way?

2.3 From the outside. . .

To conclude this portion of the lab, quit R and navigate to a directory containing
a package (using the linux command cd or the Windows command chdir). Take
a quick look at the package structure (using ls -l or dir):

-rw-r--r-- 1 mtmorgan compbio 321 2007-03-14 13:26 DESCRIPTION
drwxr-xr-x 3 mtmorgan compbio 4096 2007-03-14 13:26 man
-rw-r--r-- 1 mtmorgan compbio 119 2007-03-14 13:26 NAMESPACE
drwxr-xr-x 3 mtmorgan compbio 4096 2007-03-14 13:26 R
drwxr-xr-x 3 mtmorgan compbio 4096 2007-03-14 13:26 src

The contents of these files and directories map to the topics covered today as
follows:

File or directory contents
DESCRIPTION Dependencies and package description
NAMESPACE Exposed methods, functions, and classes
R R source code
man Help files
inst/doc Vignettes
src C- or other source code
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3 Summary

These tours provide a very brief overview of the packages and facilities available
in R and Bioconductor. One final feature is the idea of literate programming :
the document you have been reading was written using the Sweave package. All
of the commands and figures were generated by running the written document
through R and then LATEX. This provides a rich and reproducible mechanism for
documenting work flows and research approaches. The specific packages used
for this document are

> toLatex(sessionInfo())

� R version 2.5.0 Patched (2007-04-24 r41305), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools,
utils

� Other packages: affy 1.15.0, affydata 1.11.2, affyio 1.5.0, annotate 1.15.0,
Biobase 1.15.8, biomaRt 1.11.3, codetools 0.1-1, digest 0.3.0, geneplot-
ter 1.15.1, GO 1.17.0, hgu133acdf 1.17.0, hgu95av2 1.17.0, lattice 0.15-4,
limma 2.11.0, RCurl 0.8-0, weaver 1.3.0, XML 1.7-3
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