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Road map

* Some basic concepts and recent literature

e Exercises

— Feature filtering and eQTL detection with SNP;
comparison to GWAS catalog loci

— Deep DNA sequencing in the vicinity of eQTL
(Complete Genomics diversity panel)

— Transcript variants and allelic imbalance with RNA-
seq [NO — see ggtut tutll.pdf section 5]

— dsQTL: variants associated with DNasel
hypersensitivity



Task 1: Upgrade your packages

source(“http://bioconductor.org/scratch-repos/vince.R")

We'll use, among others

GGtools — structures and functions for genetics of expression
genetw12 — backbone with vignette underlying talk

cgdvl?7 — complete genomics diversity panel

dsQTL — genetic determinants of DNasel hypersensitivity



Task 2: compute all the objects we’ll
want to talk about

Sweave(system.file("doc/genetw12.Rnw",
package="genetw12"”))

Will take 10 mins or so while we go through
literature



LETTERS

edited by Jennifer Sills

Retraction

AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (7), we discovered that technical errors in the Illumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms
(SNPs) in our findings. An independent laboratory subsequently performed stringent quality
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same
methodology as in the published paper. We feel the main scientific findings remain supported
by the available data: (i) A model consisting of multiple specific SNPs accurately differentiates
between centenarians and controls; (i1) genetic profiles cluster into specific signatures; and (iii)
signatures are associated with ages of onset of specific age-related diseases and subjects with
the oldest ages. However, the specific details of the new analysis change substantially from
those originally published online to the point of becoming a new report. Therefore, we retract
the original manuscript and will pursue alternative publication of the new findings.
PAOLA SEBASTIANI,** NADIA SOLOVIEFF,* ANNIBALE PUCA,2 STEPHEN W. HARTLEY,* EFTHYMIA MELISTA,?
STACY ANDERSEN,* DANIEL A. DWORKIS,? JEMMA B. WILK,* RICHARD H. MYERS,®> MARTIN H. STEINBERG,®
MONTY MONTANO,? CLINTON T. BALDWIN,*” THOMAS T. PERLS**
!Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. ?IRCCS Multimedica,
Milano, Italy; Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, 20122, Italy. *Department of
Medicine, Boston University School of Medicine, Boston, MA 02118, USA. “Section of Geniatrics, Department of Medicine,
Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA. Department of Neurology, Bos-
ton University School of Medicine, Boston, MA 02118, USA. *Departments of Medicine and Pediatrics, Boston University

School of Medicine and Boston Medical Center, Boston, MA 02118, USA. "Center for Human Genetics, Boston University
School of Medicine, Boston, MA 02118, USA.

*To whom correspondence should be addressed. E-mail: sebas@bu.edu (P.S.); thperls@bu.edu (T.T.P.)
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Biostatistics (2012), xx, xx, pp. 1-10
do1:10.1093/biostatistics/kxr055

Learning from our GWAS mistakes: from experimental
design to scientific method

CHRISTOPHE G. LAMBERT*
Golden Helix Inc., PO Box 10633, Bozeman, MT 59719, USA
lambert@ goldenhelix.com

LAURA J. BLACK
College of Business, Montana State University, PO Box 173040, Bozeman, MT 59717-3040, USA and
Greer Black Company, PO Box 3607, Bozeman, MT 59772-3607, USA

SUMMARY
Many public and private genome-wide association studies that we have analyzed include flaws in de-
sign, with avoidable confounding appearing as a norm rather than the exception. Rather than recognizing
flawed research design and addressing that. a category of quality-control statistical methods has arisen to
treat only the symptoms. Reflecting more deeply. we examine elements of current genomic research in
light of the traditional scientific method and find that hypotheses are often detached from data collection,
experimental design, and causal theories. Association studies independent of causal theories, along with
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Figure 1. Plausible sites of action for genetic determinants of mRNA
levels. Genetic variations influencing gene expression may reside within
the regulatory sequences, promoters, enhancers, splice sites, and second-

ary structure motifs of the target gene and so be genetically in cis (red
stars), or there may be variations in the molecular machinery that interact

with cis-regulatory sequences and so act genetically in trans (blue stars).

Williams R et al. Genome Research 2007 vol. 17 (12) pp. 1707-1716



Average expression varies by genotype — why?
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Schemata for SNP-associated splicing
events (Coulombe-Huntington 2009)
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Figure 2. AS type and affected splice-site for SNPs identified in
Table 2 and Table 3. The arrow indicates the splice-site affected by
the polymorphism. The genes are read from left to right, as indicated by
the intersecting arrow heads. The type of AS event and which splice-site
is affected is essential to understanding the relation between the
probeset expression change and the theoretical efficiency of splicing. In
(A,C,D), the correlation should be positive since the use of the splice-site
produces a longer transcript, while in (B,E,F), an inverse relation is
expected since the use of the splice-site produces a shorter transcript.
doi:10.1371/journal.pgen.1000766.g002

PMID 20011102



Gaffney et al. Dissecting the regulatory architecture of
gene expression QTLs, Genome Biology 2012 (PMID

22293038)
(a) SNPs in ChlP-seq binding regions (b) SNPs in inferred TF binding sites
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From *Ranges paper in progress; a demonstrative calculation — upshot is that
there are covariates of TFBS:X relationships whose accommodation may be
important

Quintiles of ENCODE TFBS score
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LETTER

doi:10.1038/nature10808

DNasel sensitivity QTLs are a major determinant of
human expression variation

Jacob F. Degner"**, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras"?, Daniel J. Gaffney™*, Joseph K. Pickrell’,
Sherryl De Leon*, Katelyn Michelini®, Noah Lewellen*, Gregory E. Crawford™®, Matthew Stephens"’, Yoav Gilad'

& Jonathan K. Pritchard"*

The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation'”. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which
genetic variation leads to gene expression differences among
humans. We used DNasel sequencing to measure chromatin
accessibility in 70 Yoruba lymphoblastoid cell lines, for which

PMID 22307276

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNasel cleavage, often producing recognizable ‘footprints’ of
decreased DNasel sensitivity"'*".

We collected DNase-seq data for 70 HapMap Y oruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes
were already available®®. We obtained an average of 39 million uniquely
mapped DNase-seq reads per sample, providing individual maps of
chromatin accessibility for each cell line (see Supplementary Informa-
tion for all analysis details). Our data allowed us to characterize the
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a Joint dsQTL-eQTL example

DHS regulating SLFN5 RNA-seq gene expression for SLFNS
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Upshots

e Basic theory of structural impacts of DNA
variation (in cis) on expression variation (Williams
cartoon) has some observational confirmation

— Expression-associated variants more common in exons
(with some trend in location) than internal introns

— Impacts of DNA variants on splicing events have been
observed

— Enrichment of eQTL among SNP located in insulators,
enhancers; effects on chromatin accessibility

 What about phenotypic impacts?



OPEN @ ACCESS Freely available online PLOS

Candidate Causal Regulatory Effects by Integration of
Expression QTLs with Complex Trait Genetic Associations

Alexandra C. Nica'?, Stephen B. Montgomery''?, Antigone S. Dimas'’?, Barbara E. Stranger'?, Claude
Beazley’', Inés Barroso', Emmanouil T. Dermitzakis’**

1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom, 2 Department of Genetic Medicine and Development,
University of Geneva Medical School, Geneva, Switzerland, 3 Harvard Medical School/Brigham and Women’s Hospital, Boston, Massachusetts, United States of America

Abstract

The recent success of genome-wide association studies (GWAS) is now followed by the challenge to determine how the
reported susceptibility variants mediate complex traits and diseases. Expression quantitative trait loci (eQTLs) have been
implicated in disease associations through overlaps between eQTLs and GWAS signals. However, the abundance of eQTLs
and the strong correlation structure (LD) in the genome make it likely that some of these overlaps are coincidental and not
driven by the same functional variants. In the present study, we propose an empirical methodology, which we call
Regulatory Trait Concordance (RTC) that accounts for local LD structure and integrates eQTLs and GWAS results in order to
reveal the subset of association signals that are due to cis eQTLs. We simulate genomic regions of various LD patterns with
both a single or two causal variants and show that our score outperforms SNP correlation metrics, be they statistical () or
historical (D). Following the observation of a significant abundance of regulatory signals among currently published GWAS

PMID 20369022



Table 1. Candidate cis results.

GWAS SNP Complex Trait Gene RTC Chr
rs2064689 Crohn’s disease WDR78 1 1
rs3129934 Multiple sclerosis HLA-DRB1 1 6
rs2188962 Crohn’s disease SLC22A5 1 5
rs1015362 Burning and freckling TRPC4AP 1 20
rs2735839 Prostate cancer C190rf48 1 19
rs6830062 Height LCORL 1
rs2242330 Parkinsons disease TMPRSS11A 1 4
rs6441961 Celiac disease LIMD1 092
rs660895 Rheumatoid arthritis PSMB9 091 6
rs9652490 Essential tremor ILMN_111363 091 15
rs1397048 Hemostatic factors OR8H2 091 1
rs3825932 Type 1 diabetes CTSH 091 15
rs2395185 Ulcerative colitis ILMN_29412 09 6

Candidate genes (RTC Score == 0.9) for cis regulatory mediated GWAS effects.
The higher the score, the more likely it is that the GWAS SNP and the eQTL for
the gene shown are tagging the same functional variant.
doi:10.1371/journal.pgen.1000895.t001



Scoring scheme for determining causal regulatory effects

We assess the likelihood of a shared functional effect between a
GWAS SNP and an eQTL by quantifying the change in the
statistical significance of the eQTL after correcting for the genetic
effect of the GWAS SNP. We redo the SRC association of the
eQTL genotype with the residuals from the standard LR of the
“corrected-for” SNP against normalized expression values. We
account for the LD structure in each hotspot interval separately by
ranking (Rankgwas snp) the impact on the eQTL (quantified by
the adjusted association P-value after correction) of the GWAS
SNP correction to that of correcting for all other SNPs in the same
interval. By taking into account the total number of SNPs in the
mterval (Ngnp), we can compare this ranking across different
genes and intervals. For this purpose we define the regulatory trait
concordance (RTC) Score ranked below ranging from 0 to 1, with
values closer to 1 indicating causal regulatory effects.

RTC— Ngnps— Rankgw 45 snp
Ngnps




Summary

* Genome-wide studies of impacts of DNA
variation are exciting (acceptance of longevity
signatures) and tricky (retraction of longevity
signatures)

* Good experimental design is essential, but
workflows are elaborate; real-time aspects may
induce loss of design control

* Many decisions on data filtering and choice of
analysis have no a priori justification, so
sensitivities of findings to assumptions and
optional choices should be assessed



A series of exercises, informally

Represent and provide interfaces to the expression +
genotype data on human cohorts so that effective
eQTL searches can be conducted and statistically
calibrated

Relate published results on GWAS to eQTL that you
identify

Investigate arbitrary variants obtained through deep
DNA- [and RNA-sequencing for information on
individual contexts of eQTL, and on allelicimbalance in
transcription]

Connect normalized DNase-seq results with SNP
genotyping to identify dsQTL



Representation with a package:
help(package=“GGdata”)

Information on package 'GGdata'

Description:

Package: GGdata

Title: all 90 hapmap CEU samples, 47K expression, 4mm SNP

Description: data exemplars dealing with hapmap SNP reports, GWAS,
etc.

Version: 1.0.17

Author: VJ Carey <stvjc@channing.harvard.edu>

Maintainer: VJ Carey <stvjc@channing.harvard.edu>

biocViews: ExperimentData, HapMap

Depends: R (>= 2.12.0), methods, Biobase (>= 2.5.5), GGBase,
snpStats, illuminaHumanvl.db, AnnotationDbi

Enhances: GGtools

LazyLoad: yes

License: LGPL

Built: R 2.15.0; ; 2011-11-17 00:19:10 UTC; unix

Index:

hmceuB36 representations of HapMap snp data + expression

data



After suppressPackageStartupMessages(library
(Ggtools))

> g22 = getSS("GGdata", "22")

> g22

SnpMatrix-based genotype set:

number of samples: 90

number of chromosomes present: 1

annotation: illuminaHumanvl.db

Expression data dims: 47293 x 90

Total number of SNP: 54786

Phenodata: An object of class "AnnotatedDataFrame"

sampleNames: NA06985 NA06991 ... NA12892 (90
total)
varLabels: famid persid ... male (7 total)

varMetadata: labelDescription



D. Clayton’s snpStats bytecode for
potentially) uncertain calls
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Expression and genotype data on the
CEPH CEU HapMap cell lines

> g22 = getSS(“GGdata”, “22")
> exprs(g22)[1:5,1:5]

NA06985 NA06991 NA06993 NA06994 NA07000
GI 10047089-S 5.983962 5.939529 5.912270 5.891347 5.906675
GI 10047091-S 6.544493 6.286516 6.244446 6.277397 6.330893
GI 10047093-S 9.905235 10.353804 10.380972 9.889223 10.155686
GI 10047099-S 7.993935 7.593970 8.261215 6.598430 6.728085
GI 10047103-S 11.882265 12.204753 12.249708 11.798415 12.015252
> as(smList(g22)[[1]][1:5, 1:5], "character")

rs11089130 rs738829 rs7510853 rs10154488 rs915674

NAO06985 "B/B" "B/B" "B/B" "A/A" "A/B"
NA06991 "A/B" "B/B" "B/B" "A/A" "B/B"
NA06993 "NA" "B/B" "B/B" "A/A" "B/B"
NAO06994 "A/B" "B/B" "B/B" "A/A" "A/B"
NAO7000 "B/B" "B/B" "B/B" "A/A" "B/B"



Supporting searches for genes
possessing cis eQTL

> args(best.cis.eQTLs)

function (smpack = "GGdata", rhs = ~1, folderstem = "cisScratch",
radius = 50000, shortfac = 100, chrnames = as.character(1:22),
smchrpref = "", gchrpref = "", schrpref = "ch",
geneApply = lapply,
geneannopk = "illuminaHumanvl.db",
snpannopk = "SNPlocs.Hsapiens.dbSNP.20100427",

smFilter = function(x) nsFilter(MAFfilter(x, lower = 0.05),
var.cutoff = 0.97), nperm = 2)
NULL

By default some very sharp filtering is
performed.



A new filter and an initial search

£il.75 1 = function(x) regressOut(x, ~male)
£il.75 2 = function(x) clipPCs(x, 1:10)
£il.75 3 = function(x) MAFfilter(x, lower=0.05)
£fil.75 = function(x) nsFilter(
£il1l.75 1( £i1.75 2 (£il1l.75 3(x))),
var.cutoff=.75)
library (parallel)
options (mc.cores=parallel:: :detectCores())
set.seed (1234)

b.75a <- best.cis.eQTLs (smpack = "GGdata", rhs = ~1,
chrnames = "22",

geneApply = mclapply, smFilter = £il.75)

Took 190 seconds on the student machine Monday morning.



What happened

chr22 genotype data on all 90 cell lines was extracted; SNP
with MAF < 0.05 removed

Expression data were filtered nonspecifically to probes with
IQR in top quartile of all probes, then restricted to chr22

All SNP x expression association tests were carried out,
retaining score statistics, with gender covariate

The best cis association (default radius 50kb) per gene was
extracted

Expression values permuted against genotypes twice, and
plug-in estimates of FDR for the per-gene hypotheses “gene
g has a cis eQTL” are obtained — these FDR are for the one-
chromosome search; the procedure can produce whole-
genome inferences, but these take more time



> b.75a

GGtools mcwBestCis instance. The call was:

best.cis.eQTLs(smpack = "GGdata", rhs = ~1, chrnames = "22",
geneBApply = mclapply, smFilter = £il.75)

Best loci for 123 are recorded.

Top 4 probe:SNP combinations:

GRanges with 4 ranges and 5 elementMetadata cols:

segnames ranges strand | score snpid
<Rle> <IRanges> <Rle> | <numeric> <character>
GI 4504184-S 22 [24326141, 24434284] * | 65.96 rs407257
GI 8923587-S 22 [45655081, 45787834] * | 54.66 rs738177
GI 7262293-S 22 [51013450, 51116607] * | 52.34 rs6151429
GI 6005825-5S 22 [43215772, 43461184] * 49.02 rs2038058
snploc radiusUsed fdr
<integer> <numeric> <numeric>
GI 4504184-S 24346550 50000 0
GI 8923587-S 45731539 50000 0
GI 7262293-S 51063477 50000 0
GI 6005825-S 43334295 50000 0
seqglengths:
22
51116607

use chromsUsed(), fullreport(), etc. for additional information.

Use sum(fdr(b.75a) <= 0.05) to count the number of genes with cis eQTL at FDR 0.05.



> fullreport(b.75a)[1:10]
GRanges with 10 ranges and 5 elementMetadata cols:

segnames ranges strand | score snpid
<Rle> <IRanges> <Rle> | <numeric> <character>
GI 4504184-S 22 [24326141, 24434284] * | 65.96 rs407257
GI 8923587-S 22 [45655081, 45787834] * | 54.66 rs738177
GI 7262293-S 22 [51013450, 51116607] * | 52.34 rs6151429
GI 6005825-S 22 [43215772, 43461184) * | 49.02 rs2038058
GI _25092724-S 22 [42854343, 42965829] * | 43.75 rsl6986101
GI 22035699-A 22 [39695954, 39824393] * | 41.90 rs909685
GI 24497446-A 22 [45509726, 45633888] * | 34.69 rsl32863
GI 38157977-A 22 [21871957, 22028323] * | 30.24 rs5754100
GI 34486096-S 22 [41713392, 41845328] * | 24.51 rs4822025
GI 42662524-S 22 [50939542, 51051328] * | 22.80 rsl1l31777
snploc radiusUsed fdr
<integer> <numeric> <numeric>
GI 4504184-s 24346550 50000 0
GI 8923587-S 45731539 50000 0
GI 7262293-S 51063477 50000 0
GI 6005825-S 43334295 50000 0
GI 25092724-S 42924632 50000 0
GI 22035699-A 39747671 50000 0
GI 24497446-A 45564427 50000 0
GI 38157977-A 21916166 50000 0
GI 34486096-S 41776646 50000 0
GI 42662524-S 50991033 50000 0
seqglengths:
22

51116607



Use plot EvG(probeld("GI 4504184-S"), rsid("rs407257"), g22) to visualize top hit (or
apply the filter to g22 to see the transformed relationship); the gene is GSTT1.
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GSTT1: glutathione S-transferase theta 1
Degner et al, (2012): -loglB8{P), LCLs, 70 Nigerian HAPHAP ids, DNase sensitivity QTLs {dsQTLs) by DNase-seq

Schadt et al. (2887): -logl1B8{(P), liver, 427 ids, European descent
Hyers et al, (2087): -loglB{P}, cortex fromn control brain, 279 ids, European descent

Stranger et al. (2007): -loglB{P), LCLs, 218 HAPHAP ids, 4 single pogylations.

- -

Veyrieras et al, {(2008): -logl8{P}), LCLs, 210 HAPHAP ids, nulti-population.

Veyrieras et al, (2008): posterior probability, LCLs, 218 HAPHAP ids, multi-population.

Pickrell et al, (2618): -loglB8{P), LCLs, 69 Nigerian HAPHAP ids, RNA-Seq for eQTLs.

- -

Pickrell et al, (2618): -logl18{P), LCLs, 69 Nigerian HAPHAP ids, RNA-Seq for splicing QTLs.



Enhancements, if time permits

Non-biological expression heterogeneity is a major
concern with such studies (see references to Stegle,
Leek), and alternatives to clipPCs may be of interest —
definean SVAfilter or PEERfilter

Is the trio structure a concern for inference?

How sensitive are the findings to the number of
permutations used?

How would you sharpen a p-value for a borderline
finding?
The vignette for genetw12 includes a section on multi-

SNP testing for genes, applied to genes without simple
eQTL, using SKAT.



Summary

snpStats representation and testing facilities
allow rapid surveys of SNP-phenotype
associations under various genetic models

GGtools best .cis.eQTLs supports rapid and

concise identification of eQTL in a gene-centric
framework

Filtering and modeling details affect performance
and interpretability

Additional facilities are available for trans and
multipopulation applications



NHGRI GWAS catalog

> library(gwascat)

'gwcat' data frame now available, provides NHGRI GWAS cat records of 02/02/2012.

building 'gwrngs', GRanges for studies with located variants...done.
> gwc22 = subsetByChromosome(gwrngs, "chr22")

> gwc22
gwasloc instance with 110 records and 34 attributes per record.
Excerpt:
GRanges with 5 ranges and 3 elementMetadata values:
segnames ranges strand | Disease.Trait SNPs
<R1le> <IRanges> <Rle> | <character> <character>
[1] chr22 [37258503, 37258503] * | Atopic dermatitis rs4821544
[2] chr22 [30423460, 30423460] * | IgA nephropathy rs12537
[3] chr22 [17057138, 17057138] * HIV-1 viral setpoint rs5746647
[4] chr22 [48929569, 48929569] * | Pancreatic cancer rs5768709
|

[5] chr22 [37310046, 37310046 ] * | Ankylosing spondylitis rs2075726

p.Value
<numeric>
6e-06
le-11
2e-06
le-10
9e-06



[1]

[1]
[2]
[3]
[4]
[5]

[1]
[2]
[3]
[4]
[5]

Find the GWAS loci closest to our best
cis eQTL

> nearest(ranges(fullreport(b.75a)[1:8]), ranges(gwc22))
9 103 165 990 90 27 103 79
> gwc22[unique(.Last.value)]

gwasloc instance with 6 records and 34 attributes per record.
Excerpt:
GRanges with 5 ranges and 3 elementMetadata cols:

segnames
<Rle>
chr22
chr22
chr22
chr22
chr22

[24295286,
[44332570,
[51017353,
[43500212,
[39687484,

ranges
<IRanges>
24295286 ]
443325701
51017353 ]
435002121
39687484 ]

strand

<Rle>
k

X ¥ % ¥

Disease.Trait
<character>

Plasma levels of liver enzymes (gamma-glutamyl transferase)
Plasma levels of liver enzymes

Narcolepsy
Prostate cancer
Sudden cardiac arrest

SNPs
<character>
rs2739330
rs2281135
rs5770917
rs5759167
rs54211

p.Value
<numeric>
2e-09
8e-16
6e-08
6e-29
8e-07



Focus on asthma: approximate the regulatory trait
concordance of Nica et al. (2010); a priori focus on
chrl7; find eQTL nearest the risk loci

> asgw = subsetByTraits(gwrngs, "Asthma")
> asgwl7 = subsetByChromosome(asgw, "chrl7")
> elementMetadata(asgwl7)[,c(2,8,15,21,28,31)]
DataFrame with 5 rows and 6 columns
PUBMEDID Disease.Trait Mapped_gene Strongest.SNP.Risk.Allele p.Value OR.or.beta

<character> <character> <character> <character> <numeric> <numeric>
1 21804549 Asthma GSDMB rs11078927-? 2e-16 NA
2 21150878 Asthma ORMDL3 - GSDMA rs6503525-C 5e-07 1.33
3 20860503 Asthma GSDMB rs2305480-G le-07 1.18
4 20860503 Asthma GSDMA rs3894194-A 5e-09 1.17
5 17611496 Asthma GSDMB rs7216389-T 9e-11 1.45

> library(parallel)

> set.seed(1234)

> 1k17.6 = best.cis.eQTLs("GGdata", ~male, chrnames="17",
smFilter=function(x) MAFfilter( nsFilter(x, var.cutoff=.6), lower=0.05),
geneApply=mclapply)

> nsig = sum(fdr(1lkl7.6) <= 0.05)

> nsig

[1] 65

> library(illuminaHumanvl.db)

> nrst = nearest( ranges(asgwl?7), ranges(fullreport(lkl7.6)[1:nsig]) )

> ind = unique(nrst)

> ind

[1] 14

> get(names(fullreport(1lkl7.6))[ind], illuminaHumanv1SYMBOL)

[1] "ORMDL3"



Computing the RTC

Tasks for computing the approximate RTC:

Obtain the genotypes for the GWAS SNP — cited as rs7216389

Obtain residuals for prediction of ORMDL3 expression by rs7216389 (GWAS SNP)
genotype

Compute association statistic for eQTL against this pseudo phenotype, and obtain its
rank in the collection of statistics obtained against the pseudo phenotypes generated by
obtaining residuals against all other proximal SNP

RTC = (Nprox — rank)/Nprox

Code not yet available; but for this example, it is not necessary:
> gl7 = getSS("GGdata", "17")
> gl7c = as(smList(gl7)[[1]], "character")
> table( eqgtl=glic[, "rsl1l2950743"], gwas=gl’/c]|,
"rs7216389"] )
gwas

egqtl A/A A/B B/B

A/A 24 0 0

A/B 0 49 0

B/B 0 0 16

NA 0 1 0



Summary

* gwascat package provides location
information and metadata on major SNP-

phenotype associations in replicated GWAS as
curated by NHGRI

* Pairing of eQTL and GWAS findings is
simplified with nearest ()

 RTC algorithm simple to implement in R



Working with deeply sequenced DNA from Complete
Genomics Diversity panel

library (cgdvl?7)

> data (popvec)

> popvec[l:5]

NA19700 NA19020 NA19701 NA19025 NA19703

"ASW" LA LWK" "ASW" LA LWK" "ASW"
> table (popvec)
popvec

ASW CEU CHB GIH JPT LWK MKK MXIL TSI YRI
5 5 4 4 4 4 4 5 4 7



Different individuals present different
sets of variants

> rv = getRVS("cgdvl7")

> rv
raggedVariantSet instance with 46 elements.
some sampleNames: NA06985 NA06994 ... NA21737 NA21767

> R85 = getrd(rv, "NA06985")
> length (R85)

[1] 174744
> R85[1:2]
GRanges with 2 ranges and 5 elementMetadata cols:
seqnames ranges strand | REF
<Rle> <IRanges> <Rle> | <DNAStringSet>
chrl7:1 17 [ 1, 13] * | AAGCTTCTCACCC
rs35998167 17 [302, 302] * | T
ALT QUAL geno depth
<CompressedCharacterList> <numeric> <character> <integer>
chrl7:1 . 0 . <NA>

rs35998167 TA 139 1/0 12



Filtering variants on quality

> R85 = getrd(rv, "NA06985")
> length (R85)

[1] 174744
> summary (elementMetadata (R85) SQUAL)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
0 0 98 117 166 1714

> kp = which(elementMetadata (R85) $SQUAL >= 166)
> R85hig = R85[kp]



Vighette shows how to create:
Interpret
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Summary

Complete Genomics deep sequencing resources
useful for methodologic development,
complementary to 1000 genomes and other
sequencing datasets

TSV files transformed to VCF, one per individual

Managing external VCF archives — work in
progress

Pad ragged variants to ShpMatrix — in vighette,
simplifies association analysis



We'll skip RNA-seq variants

e ggtut and cheung2010 have relevant
resources; the ggtut vignette addresses
identifying allelic imbalance in transcription



DNase-seq and dsQTL

* Very new publication from Gilad/Pritchard lab (U
Chicago)

 Data are distributed as bed files for normalized

DNasel hypersensitivity measures
— Original assay tiled at 100bp

— Filtered by authors to windows exhibiting DNasel
hypersensitivity (DHS) in top 5% of its distribution

— Imputation to 1000 genomes genotypes, “mean GT”

e Search for SNPs or indels associated with

variation in DHS across samples using 20kb radius
(and also 1kb)



a Joint dsQTL-eQTL example

DHS regulating SLFN5 RNA-seq gene expression for SLFNS
0.021 Ap : SNP location 154  : DHS location
c i ..
i) 1.04 =
=  001- - .
E 2 0549 =
g% 0 . .é % 0_.L‘“‘ . e
g § 0.02 AG : gg 1.5
O : n 1.0 4
3 8 001 : 8% .
$ & : o8&
5E o s 1
8) 0.02 GG <l( .
© £ 10-
$ 0.1 : o«
z | | : | 054 =
0 : 0 Al ..EE A " A A Aldadd, .
rs11080327 e g
..GGGAAAAAGAAACC...~ISRE/ISGF3 L, — C — S
G . U
rrr e e vy « * "* ‘ l". I 1 I L
20 60 100 160 220 280 30.595 30.600 30.605 30.610 30.615
Position within DHS (bp) Position within SLFN5 (Mb)

Figure 3 | Relationship between dsQTLs and eQTLs. a, Example of adsQTL  (right) measurer
SNP that is also an eQTL for the gene SLEN5. The SNP disrupts an interferon-  genotypeatther



Principles of managing and analyzing
the dsQTL experiment

* Versioned R package for distribution and
maintenance

* Formal coordination of sample assay data,
metadata, and genotype data

— How to connect high-dimensional assay (tiled

genome) with genotype? smlSet is a reasonable low-
cost approach for now

e Systematic extraction of location metadata from

versioned packages and environments: *CHRLOC,
*CHRLOCEND, getSNPlocs — not available



The package and some metadata

> library (dsQTL)
> data (package="dsQTL")
> data(DsSQ 17)
> DSQ 17
class: SummarizedExperiment
dim: 105960 70
exptData (1) : MIAME
assays(1l) : normDHS
rownames: NULL
rowData values names (0) :
colnames (70) : NA18486 NA18498 ... NAl1l9239 NA1l9257
colData names (0):
> exptData(DSQ 17) [[1]]
Experiment data
Experimenter name: Degner JF

Laboratory: Department of Human Genetics, University of Chicago, Chicago,
Illinois 60637, USA.

Contact information:

Title: DNasedI sensitivity QTLs are a major determinant of human expression
variation.

URL:
PMIDs: 22307276

Abstract: A 252 word abstract is available. Use 'abstract' method.



The data on chromosome 2

> data(DSQ_2)
> DSQ_2
class: SummarizedExperiment
dim: 96024 70
exptData (0) :
assays(1l) : normedDHS
rownames: NULL
rowData values names (0) :
colnames (70) : NA18486 NA18498 ... NA19239 NA19257
colData names (0) :
> assays(DSQ 2)[[1]][1:5,1:5]
NA18486 NA18498 NA18499 NA18501 NA18502
[1,] -0.2684343 -0.78076674 -0.4840237 2.3894003 -1.0813642
[2,] -1.4445813 0.92170439 0.5812017 0.8627376 0.5186581
[3,] 0.7624075 -0.12340745 -1.1821308 1.4253179 0.3125592
> rowData (DSQ 2) [1:5]

GRanges with 5 ranges and 0 elementMetadata cols:

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr2 [1202, 1301] *
[2] chr2 [1602, 1701] *
[3] chr2 [2002, 2101] *
[4] chr2 [7502, 7601] *

[5] chr2 [8802, 8901] *



Borrowing the eQTL infrastructure

> d2 = getSS("dsQTL", "roundGT 2")
> d2

SnpMatrix-based genotype set:
number of samples: 70

number of chromosomes present: 1
annotation:

Expression data dims: 96024 x 70
Total number of SNP: 1336471

Phenodata: An object of class "AnnotatedDataFrame":
none

> smList(d2) [[1]]

A SnpMatrix with 70 rows and 1336471 columns
Row names: NA18486 ... NA19257

Col names: <chr2.140 ... chr2.242750984



Quiz

* The authors present/analyze data on the DHS
sites achieving values at the 95t percentile or
above over the entire experiment

— What feature filtering principle is violated?

— How, with complete assay results, could we
explore sensitivity of findings to this choice? How
could we (probably) enhance power of the study?



spread vs level for chr2 released DHS results
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Anything strange?

> data (package=“"dsQTL")
Data sets i1in package 'dsQTL':

DSQ 17

DSQ 2

ch2locs
dsQTLCHR
dsQTLCHRLOC
dsQTLCHRLOCEND
ex (eset)
meanGT chr2



Improvised compliant infrastructure

* Need to be able to create “cis maps”, lists of
SNP proximal to feature of interest

e Standard approach: use *CHRLOC to
determine gene location, getSNPlocs to
determine SNP location

* The relevant resources don’t exist as
centralized packages, but the standard APIs
can be satisfied with stuff in arbitrary
packages



Allows reuse of available infrastructure

getSNPlocs = dsQTL: :getSNPlocs # force
nl = best.cis.eQTLs (smpack="dsQTL", radius=2000,
geneannopk="dsQTL",

snpannopk="dsQTL", chrnames="2",
smchrpref="roundGT ",

smFilter =
function(x) GTFfilter (x, lower=0.05)

[23810:23830,], geneApply=mclapply)

These DHS features are selected deliberately



> nl

GGtools mcwBestCis instance.

The call was:

best.cis.eQTLs (smpack = "dsQTL", radius = 2000, chrnames = "2",
smchrpref = "roundGT ", geneApply = mclapply, geneannopk = "dsQTL",
snpannopk = "dsQTL", smFilter = function(x) GTFfilter (x,

lower = 0.05) [23810:23830, ])

Best loci for 21 are recorded.

Top 4 probe:SNP combinations:

GRanges with 4 ranges and 5 elementMetadata cols:

segnames ranges strand | score snpid
<Rle> <IRanges> <Rle> | <numeric> <character>
i 23830 2 [45368802, 45373801] * | 38.64 chr2.45370846
i 23829 2 [45368702, 45373701] * | 29.11 chr2.45370846
i 23828 2 [45367802, 45372801] * | 19.14 chr2.45370846
i 23813 2 [45303002, 45308001] * | 6.43 chr2.45307016
snploc radiusUsed fdr
<integer> <numeric> <numeric>
i 23830 45370846 2000 0.0000000
i 23829 45370846 2000 0.0000000
i 23828 45370846 2000 0.0000000
i 23813 45307016 2000 0.1666667



> plot_EvG(probeld("i_23830"), rsid("chr2.45370846"), getSS("dsQTIL",
+ "roundGT_2"))
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Upshots

 We can use the distributed bed files and
genotypes to verify key assertions of the
paper

e best.cis.eQTLs can be hijacked to

establish QTL for regions exhibiting variability
in DNasel hypersensitivity

* Problem: the high resolution tiling takes us far
beyond the cardinality of genes x SNP
addressed by best.cis.eQTLs



Conclusions

R/bioconductor principles can be deployed against
integrative analysis tasks

— General eQTL, GWAS catalog, rare variants, dsQTL

Divide and conquer strategies are important

— |terate over arbitrary decomposition and combine as
needed, perhaps much later

— Design to make use of simple parallel execution
Stretching R: SnpMatrix byte code, specially coded

GLM score tests, out of memory (ff) archives of
compressed test results

Stretching Bioc: “faking” the structures for needed but
unavailable annotation



