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Progress in science is driven by technology

Sequencing - DNA-Seq, RNA-
Seq, ChiP-Seq, HiC

Microscopy & remote
sensing- molecular
Interactions and life-cycles In
single, live cells

Large scale perturbation
libraries - RNAI, drugs

We work on the methods in
statistical computing,
integrative bioinformatics and
mathematical modelling to turn
these data into biology.




Research areas

 Statistics - differential expression; alternative exon usage
» 3D structure of DNA (HiC & Co.)

( » Single-cell transcriptomics and noise

( Simon Anders, Aleksandra Pekoswka, Alejandro Reyes, Jan Swedlow; Tibor
Pakozdi

collaborations with L. Steinmetz, P Bertone, E. Furlong, T. Hiiragi
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 Somatic mutation detection (incl subclonal)

* Phylogeny inference

Julian Gehring, Paul Pyl

collaborations with C.v.Kalle/M.Schmid, H. Glimm (NCT); J. Korbel

. W

ynetic eractions, pharm e gén )
 Large-scale combinatorial RNAi & automated microscopy phenotyping
 Cancer mutations & drugs
Joseph Barry, Bernd Fischer, Felix Klein, Malgorzata Oles
collaborations with M.Boutros (DKFZ), T.Zenz (NCT), M. Knop (Uni)

cs of statistic
e Tools & infrastructure for software ‘publication’
e Teaching
® Bernd Klaus, Andrzej Oles
Y collaborations M.Morgan (FHCRC), R.Gentleman (Genentech)
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Two applications of RNA-Seq

* Discovery
* find new transcripts
* find transcript boundaries
* find splice junctions

 Comparison
Given samples from different experimental
conditions, find effects of the treatment on
* gene expression strengths
* isoform abundance ratios, splice patterns,
transcript boundaries
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Counting rules

 Count reads, not bases
* Discard a read if
* it cannot be uniquely mapped

* its alignment overlaps with
several genes

* the alignment quality score is
bad

e (for paired-end reads) the
mates do not map to the same
gene
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The Poisson distribution is used for
counting processes

c = V)
sliRN o 1
— =cCcv. = ——
_ L VA
) _ =
(qp)
O
_ o o
¢ ] Q\
o _
] ) S
_ o _
Il -
__=.|:||:| LI ___|:||:||:| 8
A=10 © A =50



Analysis method: ANOVA

NZ : AU POISSOH(MZ]) Noise part

10g Hij — 55 E ﬁikxkj Systematic part
k
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uii expected count of region i in sample j
sj library size factor

x;; design matrix

Pix (differential) effect for region i

50—

region i




For Poisson-distributed data, the variance is equal to the
mean.

No need to estimate the variance. This is convenient.

E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al.
(2010), Bullard et al. (2010), ...

108 — |
1016 -
Poisson: v~ u1

107 -

1072

variance

2%
10/\0 ] - . .‘ °

®
1072 o ", -

Data: Nagalakshmi et al.

10747 " Science 2008

| | | | |
100 10M 102 10°3 10™M

mean



So we need a better way

data are discrete, positive, skewed
= no (log-)normal model

small numbers of replicates

= no rank based or permutation methods

= want to use parametric stochastic model to infer tail
behaviour (approximately) from low-order moments (mean,
variance)

large dynamic range (O ... 10°)
= heteroskedasticity matters
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The NB distribution models a Poisson process
whose rate is itself randomly varying
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Two component noise model

var = J + c?

N

shot noise (Poisson) biological noise

pasilla knockdown vs control
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Generalised linear model of the
negative binomial family

Nij  ~ NB(M@']’; Oéz’j) Noise part

part

log Hi; = S;i+ E 5ik$kj Systematic
k

uii expected count of gene 7 in sample j

sj library size effect

xi; design matrix

Pir  (differential) expression effects for gene i



What is a generalized linear model?

Y ~D(m, s)

A GLM consists of three elements:

1. A probability distribution D (from the exponential
family), with mean E[Y] = m and dispersion s

2. A linear predictor n =X
3. A link function g such that g(m) = n.

Ordinary linear model: g = identity, D = Normal
DESeq(2), edgeR, ...: g = log, D = Negative Binomial



design with a blocking factor

Sample treated seXx

S no male
S2 no male
S3 no male
S4 no female
S5 no female
S6 yes male
S7 yes male
S8 yes female
S9 yes female
S10 yes female




GLM with blocking factor

K,,;j ~ NB(Sj,Uz'jy aij) i: genes

J: samples

full model for gene i:
_ A0 S S 1T T
log pij = b; + p; X + b, L

reduced model for gene i:

log pi; = B + @S%S



GLMs: Interaction
Kij ~ NB(sjij, i)
full model for gene r:
O S LS T T I S T
log pij = B; + By x; + p; xj + ;x5 x;

reduced model for gene i:

log pij = 67 + Bya> + B @)




GLMs: paired designs

* Often, samples are paired (e.g., a tumour and
a healthy-tissue sample from the same patient)

* Then, using pair identity as blocking factor improves
power.

full model:
0  for [ = 1(healthy)

o — (30
log Hijl = /Bz T { ,B;F for | = 2(tUln0ur)

reduced model: i gene

' subject
loo (1:: = 3Y J SU
g Hij 6 7 [ tissue state



Generalized linear models

Simple design:
Two groups, e.g. control and treatment

Common complex designs:

* Designs with blocking factors
» Factorial designs

* Designs with interactions
 Paired designs



GLMs: Dual-assay designs (e.g.: CLIP-Seq + RNA-Seq)

How does affinity of an RNA-binding protein to
MRNA change under a (drug, RNAI) treatment?

For each sample, we are interested in the
ratio of CLIP-Seq to RNA-Seq reads. How is it affected by

treatment?

full model:
count ~ assaylype + treatment + assayType : treatment

reduced model:
count ~ assaylype + treatment

Zarnack et al., Cell 2013






Why we discard non-unique alignments

gene A gene B

control condition

treatment condition




Modelling Variance

To assess the variability in the data from one gene, we have
* the observed standard deviation for that gene

e that of all the other genes

=ridge (Tikhonov) regularisation, empirical Bayes




dispersion

Dispersion estimation:
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The mechanics: empirical Bayes shrinkage of gene-wise
dispersion estimates and of (hon-intercept) Bs

AOMLE = argmax g(a Y. ,[1) “naive” GLM likelihood
X
1 t
CR(()() = — 5 log(det(X "/VX)) Cox-Reid bias term

) ? ias- d likelhood
acr = argmax ({(aly, 1) + CR(«)) bias-corrected likelhoo

Y

prior(a) = log(fx(log(a): 1og(age), 02,;,,) Porenaby information

acr-MAp = argmax (£(aly, 1) + CR(«) 4 prior(«)) penalized
o likelihood
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regularized log-transformation:
visualization, clustering, PCA
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GSEA with shrunken log fold changes

logs fold change
0
4

1e-01 1e+01 1e+03 1e+05

mean of normalized counts

Fly cell culture, knock-down of pasilla versus control (Brooks et al., 2011)
turquoise circles:
Reactome Path “APC/C-mediated degradation of cell cycle proteins”
56 genes, avg LFC: -0.15, p value: 410" (t test)



Genes and transcripts

So far, we looked at read counts per gene.
A gene’s read count may increase
because the gene produces more transcripts

because the gene produces longer transcripts

How to look at gene sub-structure?



Alternative isoform
regulation
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Count table for a gene

number of reads mapped to each exon in a gene

treated 1 treated 2 control 1 control 2

EO1 398 556 561 456
EQ2 112 180 153 137
EO03 238 306 298 226
E04 162 171 183 146
EO05 192 272 234 199
E06 314 464 419 331
EOQ7 373 525 481 404
EO8 323 427 475 373
E09 194 213 273 176
E10 90 90 530 398
E11 172 207 283 227
E12 290 397 606 368
E13 33 48 33 33
E1l4 0 33 2 37
E15 248 314 468 287
E16 554 841 1024 680

[...



Normalized counts

Differential exon usage
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DEXSeq

Kz’jl ~ NB(Sj,Uijl; 047;1)
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DEXSeq

test for changes in the (relative) usage of exons:

number of reads mapping to the exon

number of reads mapping to the other exons
of the same gene
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Differential usage of
exons or of isoforms?




Group 1 Group 2 DEXSeq 1.1.5 cuffdiff 1.3.0
proper comparison, PFC vs CB:
PFC 1 -PFC 6 CB1,CB2 650 114
PFC 1, PFC 2 CB1,CB2 56 230
PFC 1, PFC 3 CB1,CB2 18 361
PFC 1, PFC 4 CB1,CB2 26 370
PFC 1, PFC 5 CB1,CB2 32 215
PFC 1, PFC 6 CB1,CB?2 27 380
mock comparisons, PFC vs PFC :

PFC 1, PFC3 PFC 2, PFC 4 3 405
PFC 1, PFC 2 PFC 3, PFC 4 0 399
PFC 1, PFC4 PFC 2, PFC 3 244 590
PFC 1, PFC3 PFC 2, PFC 5 2 628
PFC 1, PFC 2 PFC 3, PFC 5 1 499
PFC 1, PFC5 PFC 2, PFC 3 2 555
PFC 1, PFC4 PFC 2, PFC 5 2 460
PFC 1, PFC 2 PFC 4, PFC 5 2 504
PFC 1, PFC5 PFC 2, PFC 4 2 308
PFC 1, PFC4 PFC 3, PFC 5 10 497
PFC 1, PFC3 PFC 4, PFC5 5 554
PFC 1, PFC5 PFC 3, PFC 4 0 353
PFC 2, PFC 4 PFC 3, PFC 5 1 476
PFC 2, PFC3 PFC 4, PFC 5 10 823
PFC 2, PFC5 PFC 3, PFC 4 0 526

Table S2: Results of the comparison for the Brawand et al. data.

More genes
with less
replicates

More genes
with

same-same
comparison
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Splicing
Graphs

16.283 mb

16.281 mb
16.282 mb

16.28 mb
©

16.275 mb 16.277 mb 16.279 mb
16.276 mb 16.278 mb

16.274 mb

Heber, Steffen ... Pevzner, Pavel A. Splicing
graphs and EST assembly problem
Bioinformatics, 18, S181-S188, 2002.

SplicingGraphs package on Bioconductor

®©@E®OE

Figure 1: Splicing graph representation of the four transcript variants of gene CIB3
(Entrez ID 117286). Left: transcript representation. Right: splicing graph repre-



Noisy Splicing Drives mRNA Isoform Diversity in Human
Cells

Joseph K. Pickrell’*, Athma A. Pai'*, Yoav Gilad'*, Jonathan K. Pritchard’*

1 Department of Human Genetics, The University of Chicago, Chicago, lllinois, United States of America, 2 Howard Hughes Medical Institute, The University of Chicago,
Chicago, lllinois, United States of America

Abstract

While the majority of multiexonic human genes show some evidence of alternative splicing, it is unclear what fraction of
observed splice forms is functionally relevant. In this study, we examine the extent of alternative splicing in human cells
using deep RNA sequencing and de novo identification of splice junctions. We demonstrate the existence of a large class of
low abundance isoforms, encompassing approximately 150,000 previously unannotated splice junctions in our data. Newly-
identified splice sites show little evidence of evolutionary conservation, suggesting that the majority are due to erroneous
splice site choice. We show that sequence motifs involved in the recognition of exons are enriched in the vicinity of
unconserved splice sites. We estimate that the average intron has a splicing error rate of approximately 0.7% and show that
introns in highly expressed genes are spliced more accurately, likely due to their shorter length. These results implicate
noisy splicing as an important property of genome evolution.

PLoS Genetics 2010

“... we extrapolate that the majority of
different mMRNA isoforms present in a cell
are not functionally relevant, though most

copies of a pre-mRNA produce truly
functional isoforms.”

Gene expression
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Figure 2. An example of splice junctions identified in a gene. In the top panel, we plot the average expression level at each base in a regior
surrounding HERPUDI1. In blue are bases annotated as exonic, and in black are those annotated as not exonic. In the middle panel, we plot the
positions of all splice junctions in the region identified in our data. In black are splice junctions that are present in gene databases; in red are those
that are not. The number of sequencing reads supporting each junction is written to the right of each junction, and junctions are ordered from top tc
bottom of the plot according to their coverage. In the bottom panel, we show the gene models in the region from Ensembl. The blue boxes show the
positions of exons, and the black lines the positions of introns.

doi:10.1371/journal.pgen.1001236.9002



Regulation of (alternative) exon usage

Tissues ABC ABC ABC ABC ABC
species 2 [l | B [ L1 ]
Tissue-dependent Not tissue . SOEIE Not sequence Species-dependent
) tissue-dependent :
regulation dependent regulation conserved regulation

Data: multiple replicate samples each from:
* 6 primate species (hsa, ppa, ptr, ggo, ppy, mml) X
« 5 tissues (heart, kidney, liver, brain, cerebellum)

Brawand et al. Nature 2011 (Kaessmann Lab, Lausanne, CH)



Tissue and species dependence of relative exon usage
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Drift and conservation of differential exon usage

across tissues in primate species
t°2, Toby J. Gibson®, Lars M. Steinmetz®<, PNAS 20 1 3

Alejandro Reyes®', Simon Anders®', Robert J. Weatherit
and Wolfgang Huber®3
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Gene expression

- 60
- 40
- 20 brain B human
cerebellum C ~ bonobo
-0 heart H  chimpanzee
Kidney K gorilla
- =20 liver L orangutan
rhesus monkey
- —40
- —60

Exon usage (subset 1)

Exon usage (subset 2)

60 -
40 -
20 -

0 -

20 -

40 -

—-60 -

| | | | | | |
—-60-40-20 0 20 40 60

PC1

| | | | | | |
—-60-40-20 0 20 40 60



Classification of exons
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Conservation: a core set of tissue-dependent
exons across primates

number of exons with CTDR}

0 5 10 15 20 25 30 35
divergence from human (mya)



Strong patterns of tissue-dependent
exon usage are frequently conserved
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iIssue-dependent usage patterns are associated with splicing
factor binding motifs and suggest a cis-regulatory code
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Summary tissue-dependent exon
usage

Detection of tissue-dependent regulation and its conservation
across species at unprecedented scale and precision.

Most of tissue-dependent alternative exon usage in primates is
* low amplitude

° noise

* little evidence for conservation

However, a significant fraction is

* high amplitude

* conserved

« associated with function in mRNA life-cycle & localisation,
translation regulation, protein interaction & function



Summary differential expression

* Text-book statistical concepts are (almost) sufficient for
differential expression: ANOVA, hypothesis testing,
generalized linear models

* In addition: small-n large-p - information sharing across
genes, empirical Bayes, shrinkage

* In practice, visualisation (“drill down”) and quality
control (batch effects) are very important

 Exon-level analysis
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