Ranges (and Data Integration)

Martin Morgan®
Fred Hutchinson Cancer Research Center
Seattle, WA

20 November 2013

!mtmorgan®@fhcrc.org

mailto:mtmorgan@fhcrc.org

Introduction

Importance of range concepts: conceptually. ..

>

>

Genomic data and annotation can be represented by ranges

Biological questions reflect range-based queries

Examples

>

>

>

How many reads overlap each gene?
How many reads span splice junctions?
Where do regulatory elements bind in ChlP-seq experiments?

Which regulatory elements are closest to differentially
expressed genes?

What sequences are common under discovered regulatory
marks?

Key reference

Lawrence et al., 2013, Software for Computing and Annotating
Genomic Ranges. PLoS Comput Biol 9(8): 10031182

> Initial developers: Michael Lawrence, Hervé Pages, Patrick
Aboyoun

*http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371Y%
2Fjournal.pcbi.1003118

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003118

Outline

Ranges
IRanges
GRanges
Other Idioms

Ranges

What is a range?

V V.V V + + VvV

» ‘start’ and ‘end’ coordinate vectors

» Closed interval (i.e., include end points)

v

Zero-width convention

» Can be ‘named’

library(IRanges)
eg <- IRanges(start= c(1, 10, 20),
end = c(4, 10, 19),
names= c("A", "B", "C"))
bigger
start <- floor(runif (10000, 1, 1000))
end <- start + floor (runif (10000, 0, 100))
ir <- IRanges(start, end)

‘Accessors’ and simple manipulation

Accessors
» start, end, width, names
‘Vector'-like behavior
> length, [
> length(ir)
> ir[1:4]

> start(ir[1:4])
> ir[width(ir) > 10 & width(ir) < 20]

Operations

1. Intra-range: operate on each range independently, e.g., shift
2. Inter-range: operate on several ranges of a single instance,

e.g., reduce, coverage

3. Between-range: operate on two instances, e.g., findOverlaps

See table in afternoon lab!

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),
end=c (15, 11, 12, 18, 26, 27, 28))

shift(ir)

rir <- reduce(ir)

findOverlaps(ir, rir)

vV V. Vv +

IRangesList

» Often useful to group /Ranges into a list, with each element
of the list containing 0 or more /Ranges instances

» Operations usually work on list element

> irl <- split(ir, width(ir))
> reduce(irl)

GRanges

Builds on IRanges, IRangesList. ..
» ‘seqnames’ (e.g., chromosome) and ‘strand’
» (optional) ‘seqlengths’ for genome information

» (optional) ‘mcols’ for ‘metadata’ data frame on each range

library(GenomicRanges)
genes <- GRanges (seqnames=c("chr3R", "chrX"),
ranges=IRanges (
start=c(19967117, 18962306),
end =c(19973212, 18962925),
names=c ("FBgn0039155", "FBgn0085359")),
strand=c("+", "-"),
seqlengths=c (chr3R=27905053L, chrX=22422827L))
mcols(genes) <-
DataFrame (EntrezId=c("42865", "2768869"),
Symbol=c("kal-1", "CG34330"))

+ 4+ V + 4+ 4+ + + + VvV

Coordinates and accessors

Genome coordinates
» 1-based

> ‘left-most’ — 'start’ of ranges on the minus strand are the
left-most coordinate, rather than the 5’ coordinate.

Accessors

> seqnames, strand, seqlengths, seqlevels and like /Ranges:
start, end, width, names

» mcols; $ for direct access to metadata

> width(genes)
> genes$Symbol

Operations

> Like /Ranges, but generally seqnames- and strand-aware
» E.g., flank identifies upstream (5') region

» E.g., findOverlaps checks seqnames and strand

> flank(genes, 1000) ## 5' flanking range

*[ist classes

» Often useful to have a list, where all elements of the list are
restricted to be of the same type — like /RangesList

» Support for common ‘atomic’ types (LogicallList, IntegerList,
NumericList, CharacterList, ...) in addition to /IRangesList,
GRangesList, ...

» Operations on list elements usually vectorized across elements
> rl <- splitAsList(1:5, c("A", "B", "A", "B", "B"))
> elementLengths(rl)
> log(rl)

Coverage and run-length encoding

V V.V Vv VvV

» ‘Coverage’ as the number of ranges (or genomic ranges)
overlapping positions on the positive integer number line.

» Could be represented as an integer vector, but often coverage
is sparse

» Represent as a run-length encoding — 6 0's followed by 2 1's,
followed by 4 2's, etc.

» Specialized functions, e.g., slice

» Fast and efficient for many genomic operations

cvg <- coverage(ir)
runlLength(cvg)
runValue (cvg)
log(cvg)
as.numeric(log(cvg))
slice(cvg, lower=2)

Outline

Data Integration

Advantages of integrated data containers

We could separately define a featuresxsamples matrix of
expression values, a data.frame describing samples, and a GRanges
object describing the ranges of interest, but. ..

» Difficult and error prone to manipulate, e.g., subset, in a
coordinated fashion.

» Different pacakges might follow different conventions for
representing data, e.g., samplesxfeatures representation of
expression values.

Instead. ..
» Create a class that integrates different data types

» Re-use established classes as much as possible

SummarizedExperiment

V V.V VvV Vv Vv Vv

v

assays: featurexsample matricies

v

colData: DataFrame of sample attributes

v

rowData: GRanges / GRangesList of features

v

Coordination between assays, colData and rowData

library(GenomicRanges)
?SummarizedExperiment

example (SummarizedExperiment)
sset

dim(assays(sset) [[1]])
colData(sset)

rowData(sset)

SummarizedExperiment — manipulation

» Use $ to access colData

» Use range-based operations, e.g., %overy, (does the left-hand
side overlap the right-hand side?) for row-based queries

> sset$Treatment

> sset[, sset$Treatment == "ChIP"]

> roi <- GRanges("chrl", IRanges(1, 249250621))
> sset[sset Jover), roi,]

Outline

Conclusions

Conclusions

Ranges
» Suitable for many biological questions
> Very rich and flexible software
» Performs well for large genomic data
Flexible integrated data containers
> Less error-prone
» Convenient

> Interoperability between packages

	Ranges
	IRanges
	GRanges
	Other Idioms

	Data Integration
	Conclusions

