Martin Morgan
October 29, 2014
Data movement
Input & manipulation: Biostrings
>NM_078863_up_2000_chr2L_16764737_f chr2L:16764737-16766736
gttggtggcccaccagtgccaaaatacacaagaagaagaaacagcatctt
gacactaaaatgcaaaaattgctttgcgtcaatgactcaaaacgaaaatg
...
atgggtatcaagttgccccgtataaaaggcaagtttaccggttgcacggt
>NM_001201794_up_2000_chr2L_8382455_f chr2L:8382455-8384454
ttatttatgtaggcgcccgttcccgcagccaaagcactcagaattccggg
cgtgtagcgcaacgaccatctacaaggcaatattttgatcgcttgttagg
...
Whole genomes: 2bit and .fa formats: rtracklayer,
Rsamtools; BSgenome
Input & manipulation: ShortRead readFastq(), FastqStreamer(),
FastqSampler()
@ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1
CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT
+
HHGHHGHHHHHHHHDGG<GDGGE@GDGGD<?B8??ADAD<BE@EE8EGDGA3CB85*,77@>>CE?=896=:
@ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1
GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC
+
DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?########################
Input & manipulation: 'low-level' Rsamtools, scanBam(),
BamFile(); 'high-level' GenomicAlignments
Header
@HD     VN:1.0  SO:coordinate
@SQ     SN:chr1 LN:249250621
@SQ     SN:chr10        LN:135534747
@SQ     SN:chr11        LN:135006516
...
@SQ     SN:chrY LN:59373566
@PG     ID:TopHat       VN:2.0.8b       CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastq
Alignments: ID, flag, alignment and mate
ERR127306.7941162       403     chr14   19653689        3       72M             =       19652348        -1413  ...
ERR127306.22648137      145     chr14   19653692        1       72M             =       19650044        -3720  ...
ERR127306.933914        339     chr14   19653707        1       66M120N6M       =       19653686        -213   ...
ERR127306.11052450      83      chr14   19653707        3       66M120N6M       =       19652348        -1551  ...
ERR127306.24611331      147     chr14   19653708        1       65M120N7M       =       19653675        -225   ...
ERR127306.2698854       419     chr14   19653717        0       56M120N16M      =       19653935        290    ...
ERR127306.2698854       163     chr14   19653717        0       56M120N16M      =       19653935        2019   ...
Alignments: sequence and quality
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC        *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG        '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT        '******&%)&)))&")')'')'*((******&)&'')'))$))'')&))$)**&&****************
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT        ##&&(#')$')'%&&#)%$#$%"%###&!%))'%%''%'))&))#)&%((%())))%)%)))%*********
... GAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTT        )&$'$'$%!&&%&&#!'%'))%''&%'&))))''$""'%'%&%'#'%'"!'')#&)))))%$)%)&'"')))
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT        ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT        ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)#
Alignments: Tags
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:2  CC:Z:chr22      CP:i:16189276   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:3  CC:Z:=  CP:i:19921600   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:4  MD:Z:72 YT:Z:UU XS:A:+  NH:i:3  CC:Z:=  CP:i:19921465   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:4  MD:Z:72 YT:Z:UU XS:A:+  NH:i:2  CC:Z:chr22      CP:i:16189138   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:5  MD:Z:72 YT:Z:UU XS:A:+  NH:i:3  CC:Z:=  CP:i:19921464   HI:i:0
... AS:i:0  XM:i:0  XO:i:0  XG:i:0  MD:Z:72 NM:i:0  XS:A:+  NH:i:5  CC:Z:=  CP:i:19653717   HI:i:0
... AS:i:0  XM:i:0  XO:i:0  XG:i:0  MD:Z:72 NM:i:0  XS:A:+  NH:i:5  CC:Z:=  CP:i:19921455   HI:i:1
Input and manipulation: VariantAnnotation readVcf(),
readInfo(), readGeno() selectively with ScanVcfParam().
Header
  ##fileformat=VCFv4.2
  ##fileDate=20090805
  ##source=myImputationProgramV3.1
  ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
  ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
  ##phasing=partial
  ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
  ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
  ...
  ##FILTER=<ID=q10,Description="Quality below 10">
  ##FILTER=<ID=s50,Description="Less than 50% of samples have data">
  ...
  ##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
  ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
Location
  #CHROM POS     ID        REF    ALT     QUAL FILTER ...
  20     14370   rs6054257 G      A       29   PASS   ...
  20     17330   .         T      A       3    q10    ...
  20     1110696 rs6040355 A      G,T     67   PASS   ...
  20     1230237 .         T      .       47   PASS   ...
  20     1234567 microsat1 GTC    G,GTCT  50   PASS   ...
Variant INFO
  #CHROM POS     ...    INFO                              ...
  20     14370   ...    NS=3;DP=14;AF=0.5;DB;H2           ...
  20     17330   ...    NS=3;DP=11;AF=0.017               ...
  20     1110696 ...    NS=2;DP=10;AF=0.333,0.667;AA=T;DB ...
  20     1230237 ...    NS=3;DP=13;AA=T                   ...
  20     1234567 ...    NS=3;DP=9;AA=G                    ...
Genotype FORMAT and samples
  ... POS     ...  FORMAT      NA00001        NA00002        NA00003
  ... 14370   ...  GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
  ... 17330   ...  GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3   0/0:41:3
  ... 1110696 ...  GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2   2/2:35:4
  ... 1230237 ...  GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
  ... 1234567 ...  GT:GQ:DP    0/1:35:4       0/2:17:2       1/1:40:3
Input: rtracklayer import()
GTF: gene model
Component coordinates
  7   protein_coding  gene        27221129    27224842    .   -   . ...
  ...
  7   protein_coding  transcript  27221134    27224835    .   -   . ...
  7   protein_coding  exon        27224055    27224835    .   -   . ...
  7   protein_coding  CDS         27224055    27224763    .   -   0 ...
  7   protein_coding  start_codon 27224761    27224763    .   -   0 ...
  7   protein_coding  exon        27221134    27222647    .   -   . ...
  7   protein_coding  CDS         27222418    27222647    .   -   2 ...
  7   protein_coding  stop_codon  27222415    27222417    .   -   0 ...
  7   protein_coding  UTR         27224764    27224835    .   -   . ...
  7   protein_coding  UTR         27221134    27222414    .   -   . ...
Annotations
  gene_id "ENSG00000005073"; gene_name "HOXA11"; gene_source "ensembl_havana"; gene_biotype "protein_coding";
  ...
  ... transcript_id "ENST00000006015"; transcript_name "HOXA11-001"; transcript_source "ensembl_havana"; tag "CCDS"; ccds_id "CCDS5411";
  ... exon_number "1"; exon_id "ENSE00001147062";
  ... exon_number "1"; protein_id "ENSP00000006015";
  ... exon_number "1";
  ... exon_number "2"; exon_id "ENSE00002099557";
  ... exon_number "2"; protein_id "ENSP00000006015";
  ... exon_number "2";
  ...
Biostrings classes for DNA or amino acid sequences
Methods
reverseComplement()letterFrequency()matchPDict(), matchPWM()Related packages
FaFile class for indexed on-disk representationTwoBitFile) class for indexed
on-disk representationExample
BSgenome packages. The following
calculates GC content across chr14.suppressPackageStartupMessages({  
    library(BSgenome.Hsapiens.UCSC.hg19)
})
chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
chr14_dna <- getSeq(Hsapiens, chr14_range)
letterFrequency(chr14_dna, "GC", as.prob=TRUE)
##           G|C
## [1,] 0.336276
Ranges represent:
Many common biological questions are range-based
The GenomicRanges package defines essential classes and methods
GRanges
GRangesList
Ranges
start() / end() / width()length(), subset, etc.mcols()Seqinfo, including seqlevels and seqlengthsIntra-range methods
shift(), narrow(), flank(), promoters(), resize(),
restrict(), trim()?"intra-range-methods"Inter-range methods
range(), reduce(), gaps(), disjoin()coverage() (!)?"inter-range-methods"Between-range methods
findOverlaps(), countOverlaps(), …, %over%, %within%,
%outside%; union(), intersect(), setdiff(), punion(),
pintersect(), psetdiff()Example
suppressPackageStartupMessages({
    library(GenomicRanges)
})
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1)                            # 1-based coordinates!
## GRanges object with 3 ranges and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [11, 15]      +
##   [2]        A  [21, 25]      +
##   [3]        A  [23, 27]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
range(gr)                               # intra-range
## GRanges object with 1 range and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [10, 26]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
reduce(gr)                              # inter-range
## GRanges object with 2 ranges and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [10, 14]      +
##   [2]        A  [20, 26]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
coverage(gr)
## RleList of length 1
## $A
## integer-Rle of length 26 with 6 runs
##   Lengths: 9 5 5 2 3 2
##   Values : 0 1 0 1 2 1
setdiff(range(gr), gr)                  # 'introns'
## GRanges object with 1 range and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [15, 19]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
IRangesList, GRangesList
Many *List-aware methods, but a common 'trick': apply a vectorized function to the unlisted representaion, then re-list
grl <- GRangesList(...)
orig_gr <- unlist(grl)
transformed_gr <- FUN(orig)
transformed_grl <- relist(, grl)
Reference
Classes – GenomicRanges-like behaivor
Methods
readGAlignments(), readGAlignmentsList()
summarizeOverlaps()Example
suppressPackageStartupMessages({
    library(GenomicRanges)
    library(GenomicAlignments)
    library(Rsamtools)
})
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1)) 
## sample data
suppressPackageStartupMessages({
    library('RNAseqData.HNRNPC.bam.chr14')
})
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
## GAlignmentsList object of length 8:
## [[1]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand      cigar qwidth    start      end width njunc
##   [1]    chr14      -  66M120N6M     72 19653707 19653898   192     1
##   [2]    chr14      + 7M1270N65M     72 19652348 19653689  1342     1
## 
## [[2]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand     cigar qwidth    start      end width njunc
##   [1]    chr14      - 66M120N6M     72 19653707 19653898   192     1
##   [2]    chr14      +       72M     72 19653686 19653757    72     0
## 
## [[3]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand     cigar qwidth    start      end width njunc
##   [1]    chr14      +       72M     72 19653675 19653746    72     0
##   [2]    chr14      - 65M120N7M     72 19653708 19653899   192     1
## 
## ...
## <5 more elements>
## -------
## seqinfo: 93 sequences from an unspecified genome
Classes – GenomicRanges-like behavior
Functions and methods
readVcf(), readGeno(), readInfo(),
readGT(), writeVcf(), filterVcf()locateVariants() (variants overlapping ranges),
predictCoding(), summarizeVariants()genotypeToSnpMatrix(), snpSummary()Example
## input variants
suppressPackageStartupMessages({
    library(VariantAnnotation)
})
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
seqlevels(vcf) <- "chr22"
## known gene model
suppressPackageStartupMessages({
   library(TxDb.Hsapiens.UCSC.hg19.knownGene)
})
coding <- locateVariants(rowData(vcf),
    TxDb.Hsapiens.UCSC.hg19.knownGene,
    CodingVariants())
head(coding)
## GRanges object with 6 ranges and 9 metadata columns:
##       seqnames               ranges strand | LOCATION  LOCSTART    LOCEND
##          <Rle>            <IRanges>  <Rle> | <factor> <integer> <integer>
##   [1]    chr22 [50301422, 50301422]      - |   coding       939       939
##   [2]    chr22 [50301476, 50301476]      - |   coding       885       885
##   [3]    chr22 [50301488, 50301488]      - |   coding       873       873
##   [4]    chr22 [50301494, 50301494]      - |   coding       867       867
##   [5]    chr22 [50301584, 50301584]      - |   coding       777       777
##   [6]    chr22 [50302962, 50302962]      - |   coding       698       698
##         QUERYID      TXID     CDSID      GENEID       PRECEDEID
##       <integer> <integer> <integer> <character> <CharacterList>
##   [1]        24     75253    218562       79087                
##   [2]        25     75253    218562       79087                
##   [3]        26     75253    218562       79087                
##   [4]        27     75253    218562       79087                
##   [5]        28     75253    218562       79087                
##   [6]        57     75253    218563       79087                
##              FOLLOWID
##       <CharacterList>
##   [1]                
##   [2]                
##   [3]                
##   [4]                
##   [5]                
##   [6]                
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
Related packages
Reference
This very open-ended topic points to some of the most prominent Bioconductor packages for sequence analysis. Use the opportunity in this lab to explore the package vignettes and help pages highlighted below; many of the material will be covered in greater detail in subsequent labs and lectures.
Basics
A package needs to be installed once, using the instructions on the landing page. Once installed, the package can be loaded into an R session
suppressPackageStartupMessages({
    library(GenomicRanges)
})
and the help system queried interactively, as outlined above:
  help(package="GenomicRanges")
  vignette(package="GenomicRanges")
  vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
  ?GRanges
Domain-specific analysis – explore the landing pages, vignettes, and reference manuals of two or three of the following packages.
Working with sequences, alignments, common web file formats, and raw data; these packages rely very heavily on the IRanges / GenomicRanges infrastructure that we will encounter later in the course.
?consensusMatrix,
for instance. Also check out the BSgenome package for working
with whole genome sequences, e.g., ?"getSeq,BSgenome-method"?readGAlignments help
page and vigentte(package="GenomicAlignments",
"summarizeOverlaps")import and export functions can read in many
common file types, e.g., BED, WIG, GTF, …, in addition to querying
and navigating the UCSC genome browser. Check out the ?import page
for basic usage.Visualization
fastqc is a Java program commonly used for summarizing quality of
fastq files. It has a straight-forward graphical user interface. Here
we will use the command-line version.
From within Rstudio, choose 'Tools –> Shell…', or log on to your Amazon machine instance using a Mac / linux terminal or on Windows the PuTTY program.
Run fastqc on sample fastq files, sending the output to the
~/fastqc_report directory.
fastqc fastq/*fastq --threads 8 --outdir=fastqc_reports
Study the quality report and resulting on-line documentation:
In the Files tab, click on fastqc_reports. Click on the HTML file 
there and then click on “View in Web Browser”.
ShortRead provides similar functionality, but from within R. The following shows that R can handle large data, and illustrates some of the basic ways in which one might interact with functionality provided by a Bioconductor package.
## 1. attach ShortRead and BiocParallel
suppressPackageStartupMessages({
    library(ShortRead)
    library(BiocParallel)
})
## 2. create a vector of file paths
fls <- dir("~/fastq", pattern="*fastq", full=TRUE)
## 3. collect statistics
stats0 <- qa(fls)
## 4. generate and browse the report
if (interactive())
    browseURL(report(stats0))
Check out the qa report from all lanes
data(qa_all)
if (interactive())
    browseURL(report(qa_all))
This data is from the airway Bioconductor annotation package; see the vignette for details
Integrative Genomics Viewer
Start IGV and select the “hg19” genome.
The sequence names used in the reference genome differ from those used by IGV to represent the identical genome. We need to map between these different sequence names, following the instructions for Creating a Chromosome Name Alias File.
Copy the file hg19_alias.tab from the location specified in class
into the directory <user_home>/igv/genomes/. Restart IGV.
Start igv.
Choose hg19 from the drop-down menu at the top left of the screen
Use File -> Load from URL menu to load a bam file. The URLs will
be provided during class.
Zoom in to a particular gene, e.g., SPARCL1, by entering the gene symbol in the box toward the center of the browser window. Adjust the zoom until reads come in to view, and interpret the result.
Bioconductor: we'll explore how to map between different types of identifiers, how to navigate genomic coordinates, and how to query BAM files for aligned reads.
Attach 'Annotation' packages containing information about gene
symbols org.Hs.eg.db and genomic coordinates
(e.g., genes, exons, cds, transcripts) r
Biocannopkg(TxDb.Hsapiens.UCSC.hg19.knownGene). Arrange for the
'seqlevels' (chromosome names) in the TxDb package to match those
in the BAM files.
Use an appropriate org.* package to map from gene symbol to
Entrez gene id, and the appropriate TxDb.* package to retrieve
gene coordinates of the SPARCL1 gene. N.B. – The following uses a
single gene symbol, but we could have used 1, 2, or all gene
symbols in a vectorized fashion.
Attach the GenomicAlignments package for working
with aligned reads. Use range() to get the genomic coordinates
spanning the first and last exon of SPARCL1. Input paired reads
overlapping SPARCL1.
What questions can you easily answer about these alignments? E.g., how many reads overlap this region of interest?
## 1.a 'Annotation' packages
suppressPackageStartupMessages({
    library(TxDb.Hsapiens.UCSC.hg19.knownGene)
    library(org.Hs.eg.db)
})
## 1.b -- map 'seqlevels' as recorded in the TxDb file to those in the
## BAM file
fl <- "~/igv/genomes/hg19_alias.tab"
map <- with(read.delim(fl, header=FALSE, stringsAsFactors=FALSE),
    setNames(V1, V2))
seqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene, force=TRUE) <- map
## 2. Symbol -> Entrez ID -> Gene coordinates
sym2eg <- select(org.Hs.eg.db, "SPARCL1", "ENTREZID", "SYMBOL")
exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")
sparcl1exons <- exByGn[[sym2eg$ENTREZID]]
## 3. Aligned reads
suppressPackageStartupMessages({
    library(GenomicAlignments)
})
fl <- "~/bam/SRR1039508_sorted.bam"
sparcl1gene <- range(sparcl1exons)
param <- ScanBamParam(which=sparcl1gene)
aln <- readGAlignmentPairs(fl, param=param)
As another exercise we ask how many of the reads we've input are compatible with the known gene model. We have to find the transcripts that belong to our gene, and then exons grouped by transcript
## 5.a. exons-by-transcript for our gene of interest
txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID,
    "TXID", "GENEID")$TXID
exByTx <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids]
## 5.b compatible alignments
hits <- findCompatibleOverlaps(query=aln, subject=exByTx)
good <- seq_along(aln) %in% queryHits(hits)
table(good)
## good
## FALSE  TRUE 
##    14    55
Finally, let's go from gene model to protein coding sequence. (a) Extract CDS regions grouped by transcript, select just transcripts we're interested in, (b) attach and then extract the coding sequence from the appropriate reference genome. Translating the coding sequences to proteins.
## reset seqlevels
restoreSeqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene)
## TxDb object:
## | Db type: TxDb
## | Supporting package: GenomicFeatures
## | Data source: UCSC
## | Genome: hg19
## | Organism: Homo sapiens
## | UCSC Table: knownGene
## | Resource URL: http://genome.ucsc.edu/
## | Type of Gene ID: Entrez Gene ID
## | Full dataset: yes
## | miRBase build ID: GRCh37
## | transcript_nrow: 82960
## | exon_nrow: 289969
## | cds_nrow: 237533
## | Db created by: GenomicFeatures package from Bioconductor
## | Creation time: 2014-09-26 11:16:12 -0700 (Fri, 26 Sep 2014)
## | GenomicFeatures version at creation time: 1.17.17
## | RSQLite version at creation time: 0.11.4
## | DBSCHEMAVERSION: 1.0
## a. cds coordinates, grouped by transcript
txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID,
    "TXID", "GENEID")$TXID
cdsByTx <- cdsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids]
## b. coding sequence from relevant reference genome
suppressPackageStartupMessages({
    library(BSgenome.Hsapiens.UCSC.hg19)
})
dna <- extractTranscriptSeqs(BSgenome.Hsapiens.UCSC.hg19, cdsByTx)
protein <- translate(dna)
Visit the “GenomicRanges HOWTOs” vignette.
browseVignettes("GenomicRanges")
Read section 1, and do exercises 2.2, 2.4, 2.5, 2.8, 2.12, and 2.13. Perhaps select additional topics of particular interest to you.
R / Bioconductor
Publications and presentations
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8): e1003118. doi: 10.1371/journal.pcbi.1003118
Lawrence, M. 2014. Software for Enabling Genomic Data Analysis. Bioc2014 conference slides.