The material in this course requires R version 3.3 and Bioconductor version 3.4
stopifnot(
    getRversion() >= '3.3' && getRversion() < '3.4',
    BiocInstaller::biocVersion() == "3.4"
)
Version: 0.0.3
 Compiled: Wed Jun 22 21:20:26 2016
Physically
Conceptually
Volume of data
Type of research question
Technological artifacts
Cisplatin-resistant non-small-cell lung cancer gene sets
Lessons
SummarizedExperimentUnderlying data is a matrix
assay() – e.g., matrix of counts of reads overlapping genesInclude information about rows
rowRanges() – gene identifiers, or genomic ranges describing the coordinates of each geneInclude information about columns
colData() – describing samples, experimental design, …library(airway)         # An 'ExperimentData' package...
data(airway)            # ...with a sample data set...
airway                  # ...that is a SummarizedExperiment
## class: RangedSummarizedExperiment 
## dim: 64102 8 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
head(assay(airway))     # contains a matrix of counts
##                 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003        679        448        873        408       1138       1047        770
## ENSG00000000005          0          0          0          0          0          0          0
## ENSG00000000419        467        515        621        365        587        799        417
## ENSG00000000457        260        211        263        164        245        331        233
## ENSG00000000460         60         55         40         35         78         63         76
## ENSG00000000938          0          0          2          0          1          0          0
##                 SRR1039521
## ENSG00000000003        572
## ENSG00000000005          0
## ENSG00000000419        508
## ENSG00000000457        229
## ENSG00000000460         60
## ENSG00000000938          0
head(rowRanges(airway)) # information about the genes...
## GRangesList object of length 6:
## $ENSG00000000003 
## GRanges object with 17 ranges and 2 metadata columns:
##        seqnames               ranges strand |   exon_id       exon_name
##           <Rle>            <IRanges>  <Rle> | <integer>     <character>
##    [1]        X [99883667, 99884983]      - |    667145 ENSE00001459322
##    [2]        X [99885756, 99885863]      - |    667146 ENSE00000868868
##    [3]        X [99887482, 99887565]      - |    667147 ENSE00000401072
##    [4]        X [99887538, 99887565]      - |    667148 ENSE00001849132
##    [5]        X [99888402, 99888536]      - |    667149 ENSE00003554016
##    ...      ...                  ...    ... .       ...             ...
##   [13]        X [99890555, 99890743]      - |    667156 ENSE00003512331
##   [14]        X [99891188, 99891686]      - |    667158 ENSE00001886883
##   [15]        X [99891605, 99891803]      - |    667159 ENSE00001855382
##   [16]        X [99891790, 99892101]      - |    667160 ENSE00001863395
##   [17]        X [99894942, 99894988]      - |    667161 ENSE00001828996
## 
## ...
## <5 more elements>
## -------
## seqinfo: 722 sequences (1 circular) from an unspecified genome
colData(airway)[, 1:3]  # ...and samples
## DataFrame with 8 rows and 3 columns
##            SampleName     cell      dex
##              <factor> <factor> <factor>
## SRR1039508 GSM1275862   N61311    untrt
## SRR1039509 GSM1275863   N61311      trt
## SRR1039512 GSM1275866  N052611    untrt
## SRR1039513 GSM1275867  N052611      trt
## SRR1039516 GSM1275870  N080611    untrt
## SRR1039517 GSM1275871  N080611      trt
## SRR1039520 GSM1275874  N061011    untrt
## SRR1039521 GSM1275875  N061011      trt
## coordinated subsetting
untrt <- airway[, airway$dex == 'untrt']
head(assay(untrt))
##                 SRR1039508 SRR1039512 SRR1039516 SRR1039520
## ENSG00000000003        679        873       1138        770
## ENSG00000000005          0          0          0          0
## ENSG00000000419        467        621        587        417
## ENSG00000000457        260        263        245        233
## ENSG00000000460         60         40         78         76
## ENSG00000000938          0          2          1          0
colData(untrt)[, 1:3]
## DataFrame with 4 rows and 3 columns
##            SampleName     cell      dex
##              <factor> <factor> <factor>
## SRR1039508 GSM1275862   N61311    untrt
## SRR1039512 GSM1275866  N052611    untrt
## SRR1039516 GSM1275870  N080611    untrt
## SRR1039520 GSM1275874  N061011    untrt
Packages!
Visualization
Inter-operability between packages
Examples (details later)
SummarizedExperimentDNAStringSetGenomicRangesAnnotation
Objects
methods(), getClass(), selectMethod()method?"substr,<tab>" to select help on methods, class?D<tab> for help on classesThis very open-ended topic points to some of the most prominent Bioconductor packages for sequence analysis. Use the opportunity in this lab to explore the package vignettes and help pages highlighted below; many of the material will be covered in greater detail in subsequent labs and lectures.
Basics
A package needs to be installed once, using the instructions on the landing page. Once installed, the package can be loaded into an R session
library(GenomicRanges)
and the help system queried interactively, as outlined above:
  help(package="GenomicRanges")
  vignette(package="GenomicRanges")
  vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
  ?GRangesDomain-specific analysis – explore the landing pages, vignettes, and reference manuals of two or three of the following packages.
Working with sequences, alignments, common web file formats, and raw data; these packages rely very heavily on the IRanges / GenomicRanges infrastructure that we will encounter later in the course.
?consensusMatrix, for instance. Also check out the BSgenome package for working with whole genome sequences, e.g., ?"getSeq,BSgenome-method"?readGAlignments help page and vigentte(package="GenomicAlignments",   "summarizeOverlaps")import and export functions can read in many common file types, e.g., BED, WIG, GTF, …, in addition to querying and navigating the UCSC genome browser. Check out the ?import page for basic usage.Visualization
Classes
Methods –
reverseComplement()letterFrequency()matchPDict(), matchPWM()Related packages
Example
BSgenome packages. The following calculates GC content across chr14.  require(BSgenome.Hsapiens.UCSC.hg19)
  chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"]))
  chr14_dna <- getSeq(Hsapiens, chr14_range)
  letterFrequency(chr14_dna, "GC", as.prob=TRUE)
##           G|C
## [1,] 0.336276
Ranges represent: - Data, e.g., aligned reads, ChIP peaks, SNPs, CpG islands, … - Annotations, e.g., gene models, regulatory elements, methylated regions - Ranges are defined by chromosome, start, end, and strand - Often, metadata is associated with each range, e.g., quality of alignment, strength of ChIP peak
Many common biological questions are range-based - What reads overlap genes? - What genes are ChIP peaks nearest? - …
The GenomicRanges package defines essential classes and methods
GRangesGRangesListRanges - IRanges - start() / end() / width() - List-like – length(), subset, etc. - ‘metadata’, mcols() - GRanges - ‘seqnames’ (chromosome), ‘strand’ - Seqinfo, including seqlevels and seqlengths
Intra-range methods - Independent of other ranges in the same object - GRanges variants strand-aware - shift(), narrow(), flank(), promoters(), resize(), restrict(), trim() - See ?"intra-range-methods"
Inter-range methods - Depends on other ranges in the same object - range(), reduce(), gaps(), disjoin() - coverage() (!) - see ?"inter-range-methods"
Between-range methods - Functions of two (or more) range objects - findOverlaps(), countOverlaps(), …, %over%, %within%, %outside%; union(), intersect(), setdiff(), punion(), pintersect(), psetdiff()
Example
require(GenomicRanges)
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1)                            # 1-based coordinates!
## GRanges object with 3 ranges and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [11, 15]      +
##   [2]        A  [21, 25]      +
##   [3]        A  [23, 27]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
range(gr)                               # intra-range
## GRanges object with 1 range and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [10, 26]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
reduce(gr)                              # inter-range
## GRanges object with 2 ranges and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [10, 14]      +
##   [2]        A  [20, 26]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
coverage(gr)
## RleList of length 1
## $A
## integer-Rle of length 26 with 6 runs
##   Lengths: 9 5 5 2 3 2
##   Values : 0 1 0 1 2 1
setdiff(range(gr), gr)                  # 'introns'
## GRanges object with 1 range and 0 metadata columns:
##       seqnames    ranges strand
##          <Rle> <IRanges>  <Rle>
##   [1]        A  [15, 19]      +
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
IRangesList, GRangesList - List: all elements of the same type - Many *List-aware methods, but a common ‘trick’: apply a vectorized function to the unlisted representaion, then re-list
    grl <- GRangesList(...)
    orig_gr <- unlist(grl)
    transformed_gr <- FUN(orig)
    transformed_grl <- relist(, grl)
    
Reference
Classes – GenomicRanges-like behaivor
Methods
readGAlignments(), readGAlignmentsList()summarizeOverlaps()Example
require(GenomicRanges)
require(GenomicAlignments)
require(Rsamtools)
## our 'region of interest'
roi <- GRanges("chr14", IRanges(19653773, width=1)) 
## sample data
require('RNAseqData.HNRNPC.bam.chr14')
bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE)
## alignments, junctions, overlapping our roi
paln <- readGAlignmentsList(bf)
j <- summarizeJunctions(paln, with.revmap=TRUE)
j_overlap <- j[j %over% roi]
## supporting reads
paln[j_overlap$revmap[[1]]]
## GAlignmentsList object of length 8:
## [[1]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand      cigar qwidth    start      end width njunc
##   [1]    chr14      -  66M120N6M     72 19653707 19653898   192     1
##   [2]    chr14      + 7M1270N65M     72 19652348 19653689  1342     1
## 
## [[2]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand     cigar qwidth    start      end width njunc
##   [1]    chr14      - 66M120N6M     72 19653707 19653898   192     1
##   [2]    chr14      +       72M     72 19653686 19653757    72     0
## 
## [[3]] 
## GAlignments object with 2 alignments and 0 metadata columns:
##       seqnames strand     cigar qwidth    start      end width njunc
##   [1]    chr14      +       72M     72 19653675 19653746    72     0
##   [2]    chr14      - 65M120N7M     72 19653708 19653899   192     1
## 
## ...
## <5 more elements>
## -------
## seqinfo: 93 sequences from an unspecified genome
Classes – GenomicRanges-like behavior
Functions and methods
readVcf(), readGeno(), readInfo(), readGT(), writeVcf(), filterVcf()locateVariants() (variants overlapping ranges), predictCoding(), summarizeVariants()genotypeToSnpMatrix(), snpSummary()Example
  ## input variants
  require(VariantAnnotation)
  fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
  vcf <- readVcf(fl, "hg19")
  seqlevels(vcf) <- "chr22"
  ## known gene model
  require(TxDb.Hsapiens.UCSC.hg19.knownGene)
  coding <- locateVariants(rowRanges(vcf),
      TxDb.Hsapiens.UCSC.hg19.knownGene,
      CodingVariants())
  head(coding)
## GRanges object with 6 ranges and 9 metadata columns:
##     seqnames               ranges strand | LOCATION  LOCSTART    LOCEND   QUERYID        TXID
##        <Rle>            <IRanges>  <Rle> | <factor> <integer> <integer> <integer> <character>
##   1    chr22 [50301422, 50301422]      - |   coding       939       939        24       75253
##   2    chr22 [50301476, 50301476]      - |   coding       885       885        25       75253
##   3    chr22 [50301488, 50301488]      - |   coding       873       873        26       75253
##   4    chr22 [50301494, 50301494]      - |   coding       867       867        27       75253
##   5    chr22 [50301584, 50301584]      - |   coding       777       777        28       75253
##   6    chr22 [50302962, 50302962]      - |   coding       698       698        57       75253
##             CDSID      GENEID       PRECEDEID        FOLLOWID
##     <IntegerList> <character> <CharacterList> <CharacterList>
##   1        218562       79087                                
##   2        218562       79087                                
##   3        218562       79087                                
##   4        218562       79087                                
##   5        218562       79087                                
##   6        218563       79087                                
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
Related packages
Reference
assays()colData() data frame for desciption of samplesrowRanges() GRanges / GRangeList or data frame for description of featuresexptData() to describe the entire object
library(SummarizedExperiment)
library(airway)
data(airway)
airway
## class: RangedSummarizedExperiment 
## dim: 64102 8 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
colData(airway)
## DataFrame with 8 rows and 9 columns
##            SampleName     cell      dex    albut        Run avgLength Experiment    Sample
##              <factor> <factor> <factor> <factor>   <factor> <integer>   <factor>  <factor>
## SRR1039508 GSM1275862   N61311    untrt    untrt SRR1039508       126  SRX384345 SRS508568
## SRR1039509 GSM1275863   N61311      trt    untrt SRR1039509       126  SRX384346 SRS508567
## SRR1039512 GSM1275866  N052611    untrt    untrt SRR1039512       126  SRX384349 SRS508571
## SRR1039513 GSM1275867  N052611      trt    untrt SRR1039513        87  SRX384350 SRS508572
## SRR1039516 GSM1275870  N080611    untrt    untrt SRR1039516       120  SRX384353 SRS508575
## SRR1039517 GSM1275871  N080611      trt    untrt SRR1039517       126  SRX384354 SRS508576
## SRR1039520 GSM1275874  N061011    untrt    untrt SRR1039520       101  SRX384357 SRS508579
## SRR1039521 GSM1275875  N061011      trt    untrt SRR1039521        98  SRX384358 SRS508580
##               BioSample
##                <factor>
## SRR1039508 SAMN02422669
## SRR1039509 SAMN02422675
## SRR1039512 SAMN02422678
## SRR1039513 SAMN02422670
## SRR1039516 SAMN02422682
## SRR1039517 SAMN02422673
## SRR1039520 SAMN02422683
## SRR1039521 SAMN02422677
airway[, airway$dex %in% "trt"]
## class: RangedSummarizedExperiment 
## dim: 64102 4 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample?select?exonsBy page to retrieve all exons grouped by gene or transcript.open(), read chunk(s), close().yieldSize argument to Rsamtools::BamFile()Rsamtools::ScanBamParam()ShortRead::FastqSampler()lapply()-like operationsParallel evaluation in Bioconductor
bplapply() for lapply()-like functions, increasingly used by package developers to provide easy, standard way of gaining parallel evaluation.R / Bioconductor
Publications (General Bioconductor)
Other
Acknowledgements
The research reported in this presentation was supported by the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health under Award numbers U24CA180996 and U41HG004059, and the National Science Foundation under Award number 1247813. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.
sessionInfo()sessionInfo()
## R version 3.3.0 (2016-05-03)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.4 LTS
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      stats4    parallel  stats     graphics  grDevices utils     datasets  methods  
## [10] base     
## 
## other attached packages:
##  [1] airway_0.107.2                          BioC2016Introduction_0.0.3             
##  [3] Homo.sapiens_1.3.1                      GO.db_3.3.0                            
##  [5] OrganismDbi_1.15.1                      AnnotationHub_2.5.4                    
##  [7] Gviz_1.17.4                             biomaRt_2.29.2                         
##  [9] org.Hs.eg.db_3.3.0                      BiocParallel_1.7.4                     
## [11] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 GenomicFeatures_1.25.14                
## [13] AnnotationDbi_1.35.3                    VariantAnnotation_1.19.2               
## [15] RNAseqData.HNRNPC.bam.chr14_0.11.0      GenomicAlignments_1.9.4                
## [17] Rsamtools_1.25.0                        SummarizedExperiment_1.3.5             
## [19] Biobase_2.33.0                          BSgenome.Hsapiens.UCSC.hg19_1.4.0      
## [21] BSgenome_1.41.2                         rtracklayer_1.33.7                     
## [23] GenomicRanges_1.25.8                    GenomeInfoDb_1.9.1                     
## [25] Biostrings_2.41.4                       XVector_0.13.2                         
## [27] IRanges_2.7.11                          S4Vectors_0.11.7                       
## [29] BiocGenerics_0.19.1                     ggplot2_2.1.0                          
## [31] BiocStyle_2.1.10                       
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.2.0                    splines_3.3.0                 Formula_1.2-1                
##  [4] shiny_0.13.2                  interactiveDisplayBase_1.11.3 latticeExtra_0.6-28          
##  [7] RBGL_1.49.1                   yaml_2.1.13                   RSQLite_1.0.0                
## [10] lattice_0.20-33               biovizBase_1.21.0             chron_2.3-47                 
## [13] digest_0.6.9                  RColorBrewer_1.1-2            colorspace_1.2-6             
## [16] htmltools_0.3.5               httpuv_1.3.3                  Matrix_1.2-6                 
## [19] plyr_1.8.4                    XML_3.98-1.4                  zlibbioc_1.19.0              
## [22] xtable_1.8-2                  scales_0.4.0                  nnet_7.3-12                  
## [25] survival_2.39-4               magrittr_1.5                  mime_0.4                     
## [28] evaluate_0.9                  foreign_0.8-66                graph_1.51.0                 
## [31] BiocInstaller_1.23.4          tools_3.3.0                   data.table_1.9.6             
## [34] formatR_1.4                   matrixStats_0.50.2            stringr_1.0.0                
## [37] munsell_0.4.3                 cluster_2.0.4                 ensembldb_1.5.8              
## [40] RCurl_1.95-4.8                dichromat_2.0-0               bitops_1.0-6                 
## [43] labeling_0.3                  rmarkdown_0.9.6               gtable_0.2.0                 
## [46] codetools_0.2-14              DBI_0.4-1                     reshape2_1.4.1               
## [49] R6_2.1.2                      gridExtra_2.2.1               knitr_1.13                   
## [52] Hmisc_3.17-4                  stringi_1.1.1                 Rcpp_0.12.5                  
## [55] rpart_4.1-10                  acepack_1.3-3.3