This very open-ended topic points to some of the most prominent Bioconductor packages for sequence analysis. Use the opportunity in this lab to explore the package vignettes and help pages highlighted below; many of the material will be covered in greater detail in subsequent labs and lectures.
Domain-specific analysis – explore the landing pages, vignettes, and reference manuals of two or three of the following packages.
Working with sequences, alignments, common web file formats, and raw data; these packages rely very heavily on the IRanges / GenomicRanges infrastructure.
?consensusMatrix, for instance. Also check out the BSgenome package for working with whole genome sequences, e.g., ?"getSeq,BSgenome-method"?readGAlignments help page and vigentte(package="GenomicAlignments",   "summarizeOverlaps")import and export functions can read in many common file types, e.g., BED, WIG, GTF, …, in addition to querying and navigating the UCSC genome browser. Check out the ?import page for basic usage.Visualization
The goal of this section is to highlight practices for writing correct, robust and efficient R code.
identical(), all.equal())NA values, …system.time() or the microbenchmark package.Rprof() function, or packages such as lineprof or aprofVectorize – operate on vectors, rather than explicit loops
x <- 1:10
log(x)     ## NOT for (i in seq_along(x)) x[i] <- log(x[i])
##  [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101 2.0794415 2.1972246
## [10] 2.3025851Pre-allocate memory, then fill in the result
result <- numeric(10)
result[1] <- runif(1)
for (i in 2:length(result))
       result[i] <- runif(1) * result[i - 1]
result
##  [1] 0.4951848784 0.2865352417 0.1203113475 0.0282785626 0.0117993505 0.0040204726 0.0025406804
##  [8] 0.0011436998 0.0010444164 0.0002276832for looplm.fit() rather than repeatedly fitting the same design matrix.tabulate(), rowSums() and friends, %in%, …Here’s an obviously inefficient function:
f0 <- function(n, a=2) {
    ## stopifnot(is.integer(n) && (length(n) == 1) &&
    ##           !is.na(n) && (n > 0))
    result <- numeric()
    for (i in seq_len(n))
        result[[i]] <- a * log(i)
    result
}
Use system.time() to investigate how this algorithm scales with n, focusing on elapsed time.
system.time(f0(10000))
##    user  system elapsed 
##   0.284   0.004   0.285
n <- 1000 * seq(1, 20, 2)
t <- sapply(n, function(i) system.time(f0(i))[[3]])
plot(t ~ n, type="b")
Remember the current ‘correct’ value, and an approximate time
n <- 10000
system.time(expected <- f0(n))
##    user  system elapsed 
##   0.272   0.000   0.270
head(expected)
## [1] 0.000000 1.386294 2.197225 2.772589 3.218876 3.583519
Revise the function to hoist the common multiplier, a, out of the loop. Make sure the result of the ‘optimization’ and the original calculation are the same. Use the microbenchmark package to compare the two versions
f1 <- function(n, a=2) {
    result <- numeric()
    for (i in seq_len(n))
        result[[i]] <- log(i)
    a * result
}
identical(expected, f1(n))
## [1] TRUE
library(microbenchmark)
microbenchmark(f0(n), f1(n), times=5)
## Unit: milliseconds
##   expr      min       lq     mean   median       uq      max neval cld
##  f0(n) 246.0423 264.9063 261.8002 264.9214 265.3211 267.8099     5   a
##  f1(n) 219.2913 221.7509 246.0515 261.9951 263.2040 264.0162     5   a
Adopt a ‘pre-allocate and fill’ strategy
f2 <- function(n, a=2) {
    result <- numeric(n)
    for (i in seq_len(n))
        result[[i]] <- log(i)
    a * result
}
identical(expected, f2(n))
## [1] TRUE
microbenchmark(f0(n), f2(n), times=5)
## Unit: milliseconds
##   expr       min        lq      mean   median        uq      max neval cld
##  f0(n) 214.56280 236.09284 268.35744 244.4207 323.00509 323.7058     5   b
##  f2(n)  11.68582  11.75021  12.18971  11.8478  12.04433  13.6204     5  a
Use an *apply() function to avoid having to explicitly pre-allocate, and make opportunities for vectorization more apparent.
f3 <- function(n, a=2)
    a * sapply(seq_len(n), log)
identical(expected, f3(n))
## [1] TRUE
microbenchmark(f0(n), f2(n), f3(n), times=10)
## Unit: milliseconds
##   expr        min         lq       mean     median         uq        max neval cld
##  f0(n) 210.639096 212.705845 254.638491 214.667187 315.358004 321.404387    10   b
##  f2(n)  11.724926  11.803303  12.009622  11.916915  12.079235  12.733139    10  a 
##  f3(n)   6.126175   6.152834   6.335576   6.339932   6.441334   6.720913    10  a
Now that the code is presented in a single line, it is apparent that it could be easily vectorized. Seize the opportunity to vectorize it:
f4 <- function(n, a=2)
    a * log(seq_len(n))
identical(expected, f4(n))
## [1] TRUE
microbenchmark(f0(n), f3(n), f4(n), times=10)
## Unit: microseconds
##   expr        min         lq       mean     median         uq        max neval cld
##  f0(n) 207472.674 210034.700 251660.864 212280.688 312108.901 317604.029    10   b
##  f3(n)   6043.009   6085.972   6148.863   6122.600   6228.416   6292.337    10  a 
##  f4(n)    364.354    365.775    374.082    373.359    382.867    392.421    10  a
f4() definitely seems to be the winner. How does it scale with n? (Repeat several times)
n <- 10 ^ (5:8)                         # 100x larger than f0
t <- sapply(n, function(i) system.time(f4(i))[[3]])
plot(t ~ n, log="xy", type="b")
Any explanations for the different pattern of response?
Lessons learned:
*apply() functions help avoid need for explicit pre-allocation and make opportunities for vectorization more apparent. This may come at a small performance cost, but is generally worth itWhen data are too large to fit in memory, we can iterate through files in chunks or subset the data by fields or genomic positions.
Iteration
open(), read chunk(s), close().yieldSize argument to Rsamtools::BamFile()GenomicFiles::reduceByYield()Restriction
Rsamtools::ScanBamParam()Rsamtools::PileupParam()VariantAnnotation::ScanVcfParam()Parallel evalutation
BiocParallel provides a standardized interface for simple parallel evaluation. The package builds provides access to the snow and multicore functionality in the parallel package as well as BatchJobs for running cluster jobs.
General ideas:
bplapply() instead of lapply()Argument BPPARAM influences how parallel evaluation occurs
MulticoreParam(): threads on a single (non-Windows) machineSnowParam(): processes on the same or different machinesBatchJobsParam(): resource scheduler on a clusterDoparParam(): parallel execution with foreach()This small example motivates the use of parallel execution and demonstrates how bplapply() can be a drop in for lapply.
Use system.time() to explore how long this takes to execute as n increases from 1 to 10. Use identical() and microbenchmark to compare alternatives f0() and f1() for both correctness and performance.
fun sleeps for 1 second, then returns i.
library(BiocParallel)
fun <- function(i) {
    Sys.sleep(1)
    i
}
## serial
f0 <- function(n)
    lapply(seq_len(n), fun)
## parallel
f1 <- function(n)
    bplapply(seq_len(n), fun)