
Preprocessing of untargeted (LC-MS) metabolomics
data

Johannes Rainer 1

1Institute for Biomedicine, Eurac Research, Bolzano, Italy

July 2019

Contents

1 Abstract . 2

2 Introduction . 2

2.1 Prerequisites . 2

2.2 Mass spectrometry . 2

2.3 Definitions and common naming convention 3

3 Workflow: preprocessing of untargeted metabolomics data . . . 4

3.1 Data import and representation 4

3.2 Basic data access and visualization 6

3.3 Centroiding of profile MS data. 9

3.4 Preprocessing of LC-MS data 12

4 Bonus material - peak detection fun 27

5 Session information . 29

References . 31

Preprocessing of untargeted (LC-MS) metabolomics data

1 Abstract

In this document we discuss mass spectrometry (MS) data handling and access using Bio-
conductor’s MSnbase package (Gatto and Lilley 2012) and walk through the preprocessing
of an (untargeted) LC-MS toy data set using the xcms package (Smith et al. 2006). The
preprocessing comprises chromatographic peak detection, sample alignment and peak corre-
spondence. Particular emphasis is given on defining data-set dependent values for the most
important settings of popular preprocessing methods.

2 Introduction

Preprocessing of untargeted metabolomics data is the first step in the analysis of GC/LS-MS
based untargeted metabolomics experiments. The aim of the preprocessing is the quantification
of signals from ion species measured in a sample and matching of these entities across samples
within an experiment. The resulting two-dimensional matrix with feature abundances in all
samples can then be further processed, e.g. by normalizing the data to remove sampling
differences, batch effects or injection order-dependent signal drifts. Another crucial step in
untargeted metabolomics analysis is the annotation of the (m/z-retention time) features to
the actual ions and metabolites they represent. Note that data normalization and annotation
are not covered in this document.
People familiar with the concepts of mass spectrometry or LC-MS data analysis may jump
directly to the next section.

2.1 Prerequisites

The analysis in this document requires an R version >= 3.6.0 and recent versions of the
MSnbase and xcms packages.
library(BiocManager)

BiocManager::install(c("xcms",

"MSnbase",

"msdata",

"magrittr",

"png"))

2.2 Mass spectrometry

Mass spectrometry allows to measure abundances of charged molecules (ions) in a sample.
Abundances are determined as ion counts for a specific mass-to-charge ratio m/z. The
measured signal is represented as a spectrum: intensities along m/z.

2

https://bioconductor.org/packages/3.9/MSnbase
https://bioconductor.org/packages/3.9/xcms

Preprocessing of untargeted (LC-MS) metabolomics data

Many ions have the same or a very similar m/z making it difficult or impossible to discriminate
them. MS is thus frequently coupled with a second technology to separate analytes based on
other properties than their mass (or rather m/z). Common choices are gas chromatography
(GC) or liquid chromatography (LC). Such an e.g. LC-MS setup performs scans at discrete
time points resulting in a set of spectra for a given sample, with allows to separate compounds
(ions) on m/z and on retention time dimension.

In such GC/LC-MS based untargeted metabolomics experiments the data is analyzed along
the retention time dimension and chromatographic peaks (which are supposed to represent
the signal from a ion species) are identified and quantified.

2.3 Definitions and common naming convention

Naming conventions and terms used in this document are:
• chromatographic peak: peak containing the signal from an ion in retention time

dimension (different from a mass peak that represents the signal along the m/z dimension
within a spectrum).

• chromatographic peak detection: process in which chromatographic peaks are identified
within each file.

• alignment: process that adjusts for retention time differences between measure-
ments/files.

3

Preprocessing of untargeted (LC-MS) metabolomics data

• correspondence: grouping of chromatographic peaks (presumably from the same ion)
across files.

• feature: chromatographic peaks grouped across files.

3 Workflow: preprocessing of untargeted metabolomics
data

This workflow describes the basic data handling (I/O) of mass spectrometry data using the
MSnbase package, and the LC/GC-MS data preprocessing using xcms. It showcases the new
functionality and user interface functions of xcms, that re-use functionality from the MSnbase

package. The first part of the workflow is focused on data import, access and visualization
which is followed by the description of a simple data centroiding approach and finally the xcms-
based LC-MS data preprocessing that comprises chromatographic peak detection, alignment
and correspondence. The workflow does not cover data normalization procedures, compound
identification and differential abundance analysis.

3.1 Data import and representation

The example data set of this workflow consists of two files in mzML format with signals
from pooled human serum samples measured with a ultra high performance liquid chromatog-
raphy (UHPLC) system (Agilent 1290) coupled with a Q-TOF MS (TripleTOF 5600+ AB
Sciex) instrument. Chromatographic separation was based on hydrophilic interaction liquid
chromatography (HILIC) separating metabolites depending on their polarity. The setup thus
allows to measure small polar compounds and hence metabolites from the main metabolic
pathways. The input files contain all signals measured by the MS instrument (so called profile
mode data). To reduce file sizes, the data set was restricted to an m/z range from 105 to
134 and retention times from 0 to 260 seconds.
In the code block below we first load all required libraries and define the location of the
mzML files, which are part of the msdata package. We also define a data.frame describing
the samples/experiment and pass this to the readMSData function which imports the data.
The option mode = "onDisk" tells the function to read only general metadata into memory.
The m/z and intensity values are not imported but retrieved from the original files on demand,
which enables also analyses of very large experiments.
library(xcms)

library(magrittr)

#' Define the file names.

fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)

#' Define a data.frame with additional information on the files.

pd <- data.frame(file = basename(fls),

injection_idx = c(1, 19),

sample = c("POOL_1", "POOL_2"),

group = "POOL")

data <- readMSData(fls, pdata = new("NAnnotatedDataFrame", pd),

mode = "onDisk")

4

https://bioconductor.org/packages/3.9/MSnbase
https://bioconductor.org/packages/3.9/xcms

Preprocessing of untargeted (LC-MS) metabolomics data

Next we set up parallel processing. This ensures that all required cores are registered and
available from the beginning of the analysis. All data access and analysis functions of xcms
and MSnbase are parallelized on a per-file basis and will use this setup by default.
#' Set up parallel processing using 2 cores

if (.Platform$OS.type == "unix") {

register(bpstart(MulticoreParam(2)))

} else {

register(bpstart(SnowParam(2)))

}

The MS experiment data is now represented as an OnDiskMSnExp object. Phenotype information
can be retrieved with the pData function, single columns in the phenotype table using $.
Below we access sample descriptions.
#' Access phenotype information

pData(data)

file injection_idx sample group

1 20171016_POOL_POS_1_105-134.mzML 1 POOL_1 POOL

2 20171016_POOL_POS_3_105-134.mzML 19 POOL_2 POOL

#' Or individual columns directly using the $ operator

data$injection_idx

[1] 1 19

General information on each spectrum in the experiment can be accessed with the fData

function, that returns a data.frame each row with metadata information for one spectrum.
#' Access spectrum header information

head(fData(data), n = 3)

fileIdx spIdx smoothed seqNum acquisitionNum msLevel polarity

F1.S001 1 1 NA 1 1 1 1

F1.S002 1 2 NA 2 2 1 1

F1.S003 1 3 NA 3 3 1 1

originalPeaksCount totIonCurrent retentionTime basePeakMZ

F1.S001 578 898185 0.280 124.0860

F1.S002 1529 1037012 0.559 124.0859

F1.S003 1600 1094971 0.838 124.0859

basePeakIntensity collisionEnergy ionisationEnergy lowMZ highMZ

F1.S001 154089 0 0 105.0435 133.9837

F1.S002 182690 0 0 105.0275 133.9836

F1.S003 196650 0 0 105.0376 133.9902

precursorScanNum precursorMZ precursorCharge precursorIntensity

F1.S001 0 0 0 0

F1.S002 0 0 0 0

F1.S003 0 0 0 0

mergedScan mergedResultScanNum mergedResultStartScanNum

F1.S001 0 0 0

F1.S002 0 0 0

F1.S003 0 0 0

mergedResultEndScanNum injectionTime filterString

F1.S001 0 0 <NA>

5

Preprocessing of untargeted (LC-MS) metabolomics data

F1.S002 0 0 <NA>

F1.S003 0 0 <NA>

spectrumId centroided

F1.S001 sample=1 period=1 cycle=1 experiment=1 FALSE

F1.S002 sample=1 period=1 cycle=2 experiment=1 FALSE

F1.S003 sample=1 period=1 cycle=3 experiment=1 FALSE

ionMobilityDriftTime isolationWindowTargetMZ

F1.S001 NA NA

F1.S002 NA NA

F1.S003 NA NA

isolationWindowLowerOffset isolationWindowUpperOffset spectrum

F1.S001 NA NA 1

F1.S002 NA NA 2

F1.S003 NA NA 3

3.2 Basic data access and visualization

The MS data in an OnDiskMSnExp object is organized by spectrum (similar to mzML files),
with Spectrum objects used as containers for the m/z and intensity values. General spectrum
information can be retrieved using the msLevel, centroided, rtime or polarity functions
that return the respective value for all spectra from all files. Here, the fromFile function can
be helpful which returns for each spectrum the index of the file in which it was measured.
This is shown in the code block below.
#' Get the retention time

head(rtime(data))

F1.S001 F1.S002 F1.S003 F1.S004 F1.S005 F1.S006

0.280 0.559 0.838 1.117 1.396 1.675

#' Get the retention times splitted by file.

rts <- split(rtime(data), fromFile(data))

#' The result is a list of length 2. The number of spectra per file can

#' then be determined with

lengths(rts)

1 2

931 931

The spectra function can be used to retrieve the list of all spectra (from all files). This
will load the full data from all raw files, which can take, depending on the size of the files
and number of spectra, relatively long time and requires, depending on the experiment, a
considerable amount of memory. In most cases we will however work with sub-sets of the data,
and retrieving that can, in the case of indexed mzML, mzXML and CDF files, be very fast.
Data objects can be subsetted using the filter functions: filterFile, filterRtime, filterMz
or filterMsLevel that filter the data by file, retention time range, m/z range or MS level.
To illustrate this we retrieve below all spectra measured between 180 and 181 seconds. These
contain the signal from all compounds that eluted from the LC in that time window. Note
that we use the pipe operator %>% from the magrittr package for better readability.

6

Preprocessing of untargeted (LC-MS) metabolomics data

#' Get all spectra measured between 180 and 181 seconds

#' Use %>% to avoid nested function calls

sps <- data %>%

filterRt(rt = c(180, 181)) %>%

spectra

The result is a list of Spectrum objects. Below we determine the number of spectra we have
got.
#' How many spectra?

length(sps)

[1] 6

We can use the fromFile function to determine from which file/sample each spectrum is.
#' From which file?

sapply(sps, fromFile)

F1.S646 F1.S647 F1.S648 F2.S646 F2.S647 F2.S648

1 1 1 2 2 2

We have thus 3 spectra per file. Next we plot the data from the last spectrum (i.e. the 3rd
spectrum in the present retention time window from the second file).
plot(sps[[6]])

We can immediately spot several mass peaks in the spectrum, with the largest one at a m/z of
about 130 and the second largest at about 106, which matches the expected mass to charge
ratio for the [M+H]+ ion (adduct) of Serine. Serine in its natural state is not charged and
can therefore not be measured directly with a MS instrument. Uncharged compounds, such
as Serine, have thus to be first ionized to create charged molecules (e.g. using electrospray-
ionization as in the present data set). Such ionization would create [M+H]+ ions of Serine,
i.e. molecules that consist of Serine plus a hydrogen resulting in single charged ions (with a
mass equal to sum of the masses of Serine and hydrogen).
MS data is generally organized by spectrum, but in LC-MS experiments we analyze the data
along the retention time axis and hence orthogonally to the spectral data representation. To
extract data along the retention time dimension we can use the chromatogram function. This
function aggregates intensities for each scan/retention time along the m/z axis (i.e. within
each spectrum) and returns the retention time - intensity duplets in a Chromatogram object,
one per file. The Chromatogram object supports, similar to the Spectrum object, the rtime and
intensity functions to access the respective data. Below we use the chromatogram function
to extract the total ion chromatogram (TIC) for each file and plot it. The TIC represents the
sum of all measured signals per spectrum (i.e. per discrete time point) and provides thus a
general information about compound separation by liquid chromatography.
#' Get chromatographic data (TIC) for an m/z slice

chr <- chromatogram(data)

chr

Chromatograms with 1 row and 2 columns

1 2

<Chromatogram> <Chromatogram>

[1,] length: 931 length: 931

phenoData with 4 variables

7

https://en.wikipedia.org/wiki/Serine

Preprocessing of untargeted (LC-MS) metabolomics data

0

20000

40000

60000

110 120 130
M/Z

In
te

ns
ity

Retention time 180.79300000002

Figure 1: Spectrum at a retention time of about 180 seconds

featureData with 1 variables

#' Plot the tic

plot(chr)

The object returned by the chromatogram function arranges the individual Chromatogram
objects in a two-dimensional array, columns being samples (files) and rows data slices. Below
we extract the (total ion) intensities from the TIC of the first file.
ints <- intensity(chr[1, 1])

head(ints)

F1.S001 F1.S002 F1.S003 F1.S004 F1.S005 F1.S006

898185 1037012 1094971 1135015 1106233 1181489

The object contains also all phenotype information from the original data variable. This can
be accessed in the same way than for OnDiskMSnExp objects (or most other data objects in
Bioconductor).
#' Access the full phenotype data

pData(chr)

8

Preprocessing of untargeted (LC-MS) metabolomics data

0 50 100 150 200 250

50
00

00
10

00
00

0
15

00
00

0

105 − 134

retention time

in
te

ns
ity

Figure 2: Total ion chromatogram

file injection_idx sample group

1 20171016_POOL_POS_1_105-134.mzML 1 POOL_1 POOL

2 20171016_POOL_POS_3_105-134.mzML 19 POOL_2 POOL

Depending on the parameter aggregationFun, the function can produce total ion chro-
matograms (TIC, sum of the signal within a spectrum) with aggregationFun = "sum", or
base peak chromatograms (BPC, maximum signal per spectrum) with aggregationFun =

"max". The chromatogram function can also be used to generate extracted ion chromatograms
(EIC), which contain the signal from a specific m/z range and retention time window, pre-
sumably representing the signal of a single ion species. Below we extract and plot the ion
chromatogram for Serine after first filtering the data object to the retention time window and
m/z range containing signal for this compound.
#' Extract and plot the XIC for Serine

data %>%

filterRt(rt = c(175, 189)) %>%

filterMz(mz = c(106.02, 106.07)) %>%

chromatogram(aggregationFun = "max") %>%

plot()

The area of such a chromatographic peak is supposed to be proportional to the amount of
the corresponding ion in the respective sample and identification and quantification of such
peaks is one of the goals of the GC/LC-MS data preprocessing.

3.3 Centroiding of profile MS data

MS instruments allow to export data in profile or centroid mode. Profile data contains the
signal for all discrete m/z values (and retention times) for which the instrument collected
data (Smith et al. 2014). MS instruments continuously sample and record signals and a mass
peak for a single ion in one spectrum will thus consist of a multiple intensities at discrete m/z
values. Centroiding is the process to reduce these mass peaks to a single representative signal,
the centroid. This results in much smaller file sizes, without loosing too much information.
xcms, specifically the centWave chromatographic peak detection algorithm, was designed for

9

Preprocessing of untargeted (LC-MS) metabolomics data

176 178 180 182 184 186 188

0
10

00
0

30
00

0
50

00
0

106.0201 − 106.0698

retention time

in
te

ns
ity

Figure 3: Extracted ion chromatogram for the Serine [M+H]+ ion in both files

centroided data, thus, prior to data analysis, profile data, such as the example data used here,
should be centroided. The MSnbase package provides all tools to perform this centroiding
(and data smoothing) in R: pickPeaks and smooth.
Below we inspect the profile data for the [M+H]+ ion adduct of Serine. We again subset
the data to the m/z and retention time range containing signal from Serine and plot the
data with the option type = "XIC", that generates a combined chromatographic and map
visualization of the data (i.e. a plot of the individual m/z, rt and intensity data tuples with
data points colored by their intensity in the m/z - retention time space).
#' Filter the MS data to the signal from the Serine ion and plot it using

#' type = "XIC"

data %>%

filterRt(rt = c(175, 189)) %>%

filterMz(mz = c(106.02, 106.07)) %>%

plot(type = "XIC")

The plot shows all data points measured by the instrument. Each column of data points
in the lower panel represents the signal measured at one discrete time point, stored in one
spectrum. We can see a distribution of the signal for serine in both retention time and also in
m/z dimension.

10

Preprocessing of untargeted (LC-MS) metabolomics data

0

10000

20000

30000

40000

50000

20171016_POOL_POS_1_105−134.mzML

In
te

ns
ity

176 178 180 182 184 186 188

106.02

106.03

106.04

106.05

106.06

106.07

Retention time

m
/z

0

10000

20000

30000

40000

50000

20171016_POOL_POS_3_105−134.mzML

In
te

ns
ity

176 178 180 182 184 186 188

106.02

106.03

106.04

106.05

106.06

106.07

Retention time

m
/z

Figure 4: Profile data for Serine

Next we smooth the data in each spectrum using a Savitzky-Golay filter, which usually
improves data quality by reducing noise. Subsequently we perform the centroiding based on a
simple peak-picking strategy that reports the maximum signal for each mass peak in each
spectrum.
#' Smooth the signal, then do a simple peak picking.

data_cent <- data %>%

smooth(method = "SavitzkyGolay", halfWindowSize = 6) %>%

pickPeaks()

#' Plot the centroided data for Serine

data_cent %>%

filterRt(rt = c(175, 189)) %>%

filterMz(mz = c(106.02, 106.07)) %>%

plot(type = "XIC")

0

10000

20000

30000

20171016_POOL_POS_1_105−134.mzML

In
te

ns
ity

176 178 180 182 184 186 188

106.045

106.050

106.055

106.060

106.065

106.070

Retention time

m
/z

0

10000

20000

30000

40000
20171016_POOL_POS_3_105−134.mzML

In
te

ns
ity

176 178 180 182 184 186 188

106.04

106.05

106.06

106.07

Retention time

m
/z

Figure 5: Centroided data for Serine

11

Preprocessing of untargeted (LC-MS) metabolomics data

The centroiding reduced the data to a single data point for an ion in each spectrum. For more
advanced centroiding options that can also fine-tune the m/z value of the reported centroid
see the pickPeaks help or the centroiding vignette in MSnbase.
The raw data was imported using the onDisk-mode that does not read the full MS data into
memory. Any data manipulation (such as the data smoothing or peak picking above) has thus
to be applied on-the-fly to the data each time m/z or intensity values are retrieved. To make
any data manipulation on an OnDiskMSnExp object persistent we need to export the data to
mzML files and re-read the data again. Below we thus save the centroided data as mzML
files and import it again.
#' Write the centroided data to files with the same names in the current

#' directory

fls_new <- basename(fileNames(data))

writeMSData(data_cent, file = fls_new)

#' Read the centroided data.

data_cent <- readMSData(fls_new, pdata = new("NAnnotatedDataFrame", pd),

mode = "onDisk")

3.4 Preprocessing of LC-MS data

Preprocessing of GC/LC-MS data in untargeted metabolomics experiments aims at quantifying
the signal from individual ion species in a data set and consists of the 3 steps chromatographic
peak detection, alignment (also called retention time correction) and correspondence (also
called peak grouping). The resulting matrix of feature abundances can then be used as
an input in downstream analyses including data normalization, identification of features of
interest and annotation of features to metabolites.

3.4.1 Chromatographic peak detection

Chromatographic peak detection aims to identify peaks along the retention time axis that
represent the signal from individual compounds’ ions. This can be performed with the find

ChromPeaks function and one of the available algorithms that can be configures with the
respective parameter object: passing a MatchedFilterParam to findChromPeaks performs peak
detection as described in the original xcms article (Smith et al. 2006). With CentWaveParam a
continuous wavelet transformation (CWT)-based peak detection is performed that can detect
close-by and partially overlapping peaks with different (retention time) widths (Tautenhahn,
Böttcher, and Neumann 2008). With MassifquantParam a Kalman filter-based peak detection
can be performed (Conley et al. 2014). Additional peak detection algorithms for direct
injection data are also available, but not discussed here.
We use the centWave algorithm that performs peak detection in two steps: first it identifies
regions of interest in the m/z - retention time space and subsequently detects peaks in
these regions using a continuous wavelet transform (see the original publication for more
details). The algorithm can be configured with several parameters (see ?CentWaveParam), the
most important ones being peakwidth and ppm. peakwidth defines the minimal and maximal
expected width of the peak in retention time dimension and depends thus on the setting of
the employed LC-MS system making this parameter highly data set dependent. Appropriate
values can be estimated based on extracted ion chromatograms of e.g. internal standards

12

Preprocessing of untargeted (LC-MS) metabolomics data

or known compounds in the data. Below we extract the chromatographic data for Serine
and perform a peak detection on the Chromatogram object using the default parameters for
centWave.
#' Get the XIC for serine

srn_chr <- chromatogram(data_cent, rt = c(165, 200),

mz = c(106.03, 106.06),

aggregationFun = "max")

#' Plot the data

par(mfrow = c(1, 1), mar = c(4, 4.5, 1, 1))

plot(srn_chr)

165 170 175 180 185 190 195 200

0
10

00
0

20
00

0
30

00
0

40
00

0 106.0334 − 106.0593

retention time

in
te

ns
ity

Figure 6: XIC for Serine

#' Get default centWave parameters

cwp <- CentWaveParam()

#' "dry-run" peak detection on the XIC.

findChromPeaks(srn_chr, param = cwp)

XChromatograms with 1 row and 2 columns

13

Preprocessing of untargeted (LC-MS) metabolomics data

1 2

<XChromatogram> <XChromatogram>

[1,] peaks: 0 peaks: 0

phenoData with 4 variables

featureData with 5 variables

- - - xcms preprocessing - - -

No peaks were identified by the call above. Looking at the default values for the centWave
parameters helps understanding why peak detection failed:
cwp

Object of class: CentWaveParam

Parameters:

ppm: 25

peakwidth: 20, 50

snthresh: 10

prefilter: 3, 100

mzCenterFun: wMean

integrate: 1

mzdiff: -0.001

fitgauss: FALSE

noise: 0

verboseColumns: FALSE

roiList length: 0

firstBaselineCheck TRUE

roiScales length: 0

The default settings for peakwidth are 20 to 50 seconds, while from the plot above it is
apparent that the chromatographic peak for Serine is about 4 seconds wide. We thus adapt the
settings to accommodate peaks ranging from 2 to 10 seconds and re-run the peak detection.
In general, it is advised to investigate peak widths for several ions in the data set to determine
the most appropriate peakwidth setting.
cwp <- CentWaveParam(peakwidth = c(2, 10))

srn_chr <- findChromPeaks(srn_chr, param = cwp)

#' Plot the data and higlight identified peak area

plot(srn_chr)

With our data set-specific peakwidth we were able to detect the peak for Serine. The
identified chromatographic peaks have been added to the result object srn_chr and can be
extracted/inspected with the chromPeaks function.
chromPeaks(srn_chr)

rt rtmin rtmax into intb maxo sn row column

[1,] 181.356 179.124 183.867 71660.11 70213.14 37664.94 63 1 1

[2,] 181.072 178.840 183.304 67756.66 67576.23 38517.76 606 1 2

The matrix returned by chromPeaks contains the retention time and m/z range of the peak
("rtmin", "rtmax", "mzmin" and "mzmax" as well as the integrated peak area ("into"), the
maximal signal ("maxo") and the signal to noise ratio ("sn").

14

Preprocessing of untargeted (LC-MS) metabolomics data

165 170 175 180 185 190 195 200

0
10

00
0

20
00

0
30

00
0

40
00

0

106.0334 − 106.0593

retention time

in
te

ns
ity

Figure 7: XIC for Serine with detected chromatographic peak (colored in grey)

Another important parameter for centWave is ppm which is used in the initial identification of
the regions of interest. In contrast to random noise, the real signal from an ion is expected to
yield stable m/z values in consecutive scans (the scattering of the m/z values around the real
m/z value of the ion is supposed to be inversely related with its intensity). In centWave, all
data points that differ by less than ppm in consecutive spectra are combined into a region of
interest that is then subject to the CWT-based peak detection (same as performed above on
the XIC). To illustrate this, we plot the data for Serine with the option type = "XIC".
#' Restrict the data to signal from Serine

srn <- data_cent %>%

filterRt(rt = c(179, 186)) %>%

filterMz(mz = c(106.04, 106.06))

#' Plot the data

plot(srn, type = "XIC")

15

Preprocessing of untargeted (LC-MS) metabolomics data

0

10000

20000

30000

20171016_POOL_POS_1_105−134.mzML

In
te

ns
ity

179 180 181 182 183 184 185 186

106.0490

106.0495

106.0500

106.0505

106.0510

106.0515

106.0520

Retention time

m
/z

0

10000

20000

30000

40000
20171016_POOL_POS_3_105−134.mzML

In
te

ns
ity

179 180 181 182 183 184 185 186

106.0480

106.0485

106.0490

106.0495

106.0500

106.0505

Retention time

m
/z

We can observe some scattering of the data points in m/z dimension (lower panel in the
plot above), that decreases with increasing intensity of the signal. We next calculate the
differences in m/z values between consecutive scans in this data subset.
#' Extract the Serine data for one file as a data.frame

srn_df <- as(filterFile(srn, 1), "data.frame")

#' The difference between m/z values from consecutive scans expressed

#' in ppm (parts per million)

diff(srn_df$mz) * 1e6 / mean(srn_df$mz)

[1] 13.695973646 -27.391665930 1.112565444 13.695804399 0.000000000

[6] -0.158840806 0.000000000 0.000000000 -0.682098923 0.000000000

[11] 0.000000000 0.007189239 -13.695795336 13.695795336 -12.807200180

[16] 0.000000000 0.000000000 13.443799681 0.000000000 -13.695795190

[21] 13.957010392 0.000000000 0.000000000 -14.085629933

The difference in m/z values for the Serine data is thus between 0 and 27 ppm. This should
ideally be evaluated for several compounds and should be set to a value that allows to capture
the full chromatographic peaks for most of the tested compounds. We can next perform the
peak detection using our settings for the ppm and peakwidth parameters on the full data set.
#' Perform peak detection

cwp <- CentWaveParam(peakwidth = c(2, 10), ppm = 30)

data_cent <- findChromPeaks(data_cent, param = cwp)

The result from the findChromPeaks call is an XCMSnExp object which contains all preprocessing
results and, by extending the OnDiskMSnExp object, inherits all of its functionality which was
described so far. The results from the peak detection analysis can be accessed with the

16

Preprocessing of untargeted (LC-MS) metabolomics data

chromPeaks function, that, with the optional rt and mz parameters, allows to extract identified
chromatographic peaks from specific areas in the data. Below we extract all identified peaks
for a certain m/z - rt area.
#' Access the peak detection results from a specific m/z - rt area

chromPeaks(data_cent, mz = c(106, 107), rt = c(150, 190))

mz mzmin mzmax rt rtmin rtmax into

CP127 106.0625 106.0606 106.0636 173.264 171.869 175.217 567.5094

CP157 106.0506 106.0505 106.0506 181.356 179.124 183.867 71660.1062

CP456 106.0633 106.0609 106.0652 172.701 170.469 174.375 558.1327

CP498 106.0496 106.0494 106.0508 181.072 178.840 183.304 67756.6562

intb maxo sn sample

CP127 563.6306 426.6084 46 1

CP157 71559.5369 37664.9371 751 1

CP456 553.5792 381.6084 58 2

CP498 67645.5242 38517.7622 898 2

For each identified peak the m/z and rt value of the apex is reported (columns "mz" and
"rt") as well as their ranges ("mzmin", "mzmax", "rtmin", "rtmax"), the integrated signal of
the peak (i.e. the peak area "into"), the maximal signal of the peak ("maxo"), the signal to
noise ratio ("sn") and the index of the sample in which the peak was detected ("sample").
For quality assessment we could now calculate summary statistics on the identified peaks to
e.g. identify samples with much less detected peaks. Also, we can use the plotChromPeaks

function to provide some general information on the location of the identified chromatographic
peaks in the m/z - rt space.
par(mfrow = c(1, 2))

plotChromPeaks(data_cent, 1)

plotChromPeaks(data_cent, 2)

0 50 100 150 200 250

10
5

11
0

11
5

12
0

12
5

13
0

13
5

20171016_POOL_POS_1_105−134.mzML

retention time

m
z

0 50 100 150 200 250

10
5

11
0

11
5

12
0

12
5

13
0

13
5

20171016_POOL_POS_3_105−134.mzML

retention time

m
z

Figure 8: Location of the identified chromatographic peaks in the m/z - rt space

3.4.2 Alignment

While chromatography helps to discriminate better between analytes it is also affected
by variances that can lead to shifts in retention times between measurement runs. The
alignment step aims to adjust these retention time differences between samples within an

17

Preprocessing of untargeted (LC-MS) metabolomics data

experiment. Below we plot the base peak chromatograms of both files of our toy data set to
visualize these differences. Note that with peakType = "none" we disable plotting of identified
chromatographic peaks that would be drawn by default on chromatograms extracted from an
object containing peak detection results.
#' Extract base peak chromatograms

bpc_raw <- chromatogram(data_cent, aggregationFun = "max")

plot(bpc_raw, peakType = "none")

0 50 100 150 200 250

0
50

00
0

15
00

00

105 − 134

retention time

in
te

ns
ity

Figure 9: BPC of all files

While both samples were measured with the same setup on the same day the two chro-
matograms are slightly shifted.
Alignment can be performed in xcms with the adjustRtime function that supports the
peakGroups (Smith et al. 2006) and the obiwarp (Prince and Marcotte 2006) method. The
settings for the algorithms can be defined with the PeakGroupsParam and the ObiwarpParam

parameter objects, respectively.
For our example we use the peakGroups method that aligns samples based on the retention
times of hook peaks, which should be present in most samples and which, because they are
supposed to represent signal from the same ion species, can be used to estimate retention time
shifts between samples. Prior to the alignment we thus have to group peaks across samples,
which is accomplished by the peakDensity correspondence analysis method. Details about
this method and explanations on the choices of its parameters are provided in the next section.
After having performed this initial correspondence analysis, we perform the alignment using
settings minFraction = 1 and span = 0.6. minFraction defines the proportion of samples in
which a candidate hook peak has to be detected/present. A value of 0.9 would e.g. require for
a hook peak to be detected in in 90% of all samples of the experiment. Our data represents
replicated measurements of the same sample pool and we can therefore require hook peaks
to be present in each file. The parameter span defines the degree of smoothing of the loess
function that is used to allow different regions along the retention time axis to be adjusted by
a different factor. A value of 0 will most likely cause overfitting, while 1 would perform a
constant, linear shift. Values between 0.4 and 0.6 seem to be reasonable for most experiments.
#' Define the settings for the initial peak grouping - details for

#' choices in the next section.

pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,

minFraction = 1, binSize = 0.02)

18

Preprocessing of untargeted (LC-MS) metabolomics data

data_cent <- groupChromPeaks(data_cent, pdp)

#' Define settings for the alignment

pgp <- PeakGroupsParam(minFraction = 1, span = 0.6)

data_cent <- adjustRtime(data_cent, param = pgp)

Adjusted retention times are stored, along with the raw retention times, within the result
object. Any function accessing retention times (such as rtime) will by default return adjusted
retention times from an XCMSnExp object, if present. Note that also the retention times of
the identified chromatographic peaks were adjusted by the adjustRtime call. After alignment
it is suggested to evaluate alignment results e.g. by inspecting differences between raw and
adjusted retention times.
#' Plot the difference between raw and adjusted retention times

plotAdjustedRtime(data_cent)

0 50 100 150 200 250

−
1.

0
−

0.
5

0.
0

0.
5

rtadj

rt
ad

j−
rt

ra
w

Figure 10: Alignment results
Shown is the difference between raw and adjusted retention times and the hook peaks that were used for
the alignment (shown as points).

The difference between raw and adjusted retention time should be reasonable. In our example
it is mostly below one second, which is OK since the samples were measured within a short
time period and differences are thus expected to be small. Also, hook peaks should ideally
be present along the full retention time range. Next we plot the base peak chromatograms
before and after alignment.
par(mfrow = c(2, 1))

#' Plot the raw base peak chromatogram

plot(bpc_raw, peakType = "none")

#' Plot the BPC after alignment

plot(chromatogram(data_cent, aggregationFun = "max"), peakType = "none")

The base peak chromatograms are nicely aligned after retention time adjustment. The impact
of the alignment should also be evaluated on known compounds or internal standards. We
thus plot below the XIC for Serine before and after alignment.
#' Use adjustedRtime parameter to access raw/adjusted retention times

par(mfrow = c(1, 2), mar = c(4, 4.5, 1, 0.5))

plot(chromatogram(data_cent, mz = c(106.04, 106.06),

rt = c(179, 186), adjustedRtime = FALSE))

19

Preprocessing of untargeted (LC-MS) metabolomics data

0 50 100 150 200 250

0
50

00
0

15
00

00

105 − 134

retention time

in
te

ns
ity

0 50 100 150 200 250

0
50

00
0

15
00

00

105 − 134

retention time

in
te

ns
ity

Figure 11: BPC before (top) and after (bottom) alignment

plot(chromatogram(data_cent, mz = c(106.04, 106.06),

rt = c(179, 186)))

179 180 181 182 183 184 185 186

0
10

00
0

20
00

0
30

00
0

40
00

0 106.0480 − 106.0519

retention time

in
te

ns
ity

179 180 181 182 183 184 185 186

0
10

00
0

20
00

0
30

00
0

40
00

0 106.0480 − 106.0519

retention time

in
te

ns
ity

Figure 12: XIC for Serine before (left) and after (right) alignment

The Serine peaks are also nicely aligned after adjustment. Note that if we were not happy with
the alignment results we could simply retry with different settings after removing old results
with the dropAdjustedRtime function. This function restores also the original retention times
of the identified chromatographic peaks.

3.4.3 Correspondence

The final step of the LC-MS preprocessing with xcms is the correspondence analysis, in which
chromatographic peaks from the same ion are grouped across samples to form a feature.
xcms implements two methods for this purpose: peak density (Smith et al. 2006) and
nearest (Katajamaa, Miettinen, and Oresic 2006) that can be configured by passing either

20

Preprocessing of untargeted (LC-MS) metabolomics data

a PeakDensityParam or a NearestPeaksParam object to the groupChromPeaks function. For
our example we use the peak density method that iterates through m/z slices in the data and
groups chromatographic peaks to features in each slice (within the same or across samples)
depending on their retention time and the distribution of chromatographic peaks along the
retention time axis. Peaks representing signal from the same ion are expected to have a
similar retention time and, if found in many samples, this should also be reflected by a higher
peak density at the respective retention time. To illustrate this we extract below an m/z
slice containing the Serine peak and use the plotChromPeakDensity function to visualize the
distribution of peaks along the retention time axis and to simulate a correspondence analysis
based on the provided settings.
#' Extract an ion chromatogram containing the signal from serine

chr <- chromatogram(data_cent, mz = c(106.04, 106.06),

aggregationFun = "max")

#' Get default parameters for the grouping

pdp <- PeakDensityParam(sampleGroups = data_cent$group)

#' Dry-run correspondence and show the results.

plotChromPeakDensity(chr, param = pdp)

0
10

00
0

20
00

0
30

00
0

40
00

0

106.0403 − 106.0598

in
te

ns
ity

0 50 100 150 200 250

retention time

sa
m

pl
e

1
2

Figure 13: BPC for a m/z slice and defined features within this slice based on default settings

The upper panel in the plot above shows the chromatographic data with the identified peaks.
The lower panel shows the retention time of identified peaks (x-axis) per sample (y-axis) with
the black solid line representing their distribution along the x-axis. Peak groups (features)
are indicated with grey rectangles. The peak density correspondence method groups all
chromatographic peaks under the same density peak into a feature. With the default settings
we were able to group the Serine peak of each sample into a feature. The parameters for the
peak density correspondence analysis are:

• binSize: m/z width of the bin/slice of data in which peaks are grouped.
• bw defines the smoothness of the density function.

21

Preprocessing of untargeted (LC-MS) metabolomics data

• maxFeatures: maximum number of features to be defined in one bin.
• minFraction: minimum proportion of samples (of one group!) for which a peak has to

be present.
• minSamples: minimum number of samples a peak has to be present.

The parameters minFraction and minSamples depend on the experimental layout and should
be set accordingly. binSize should be set to a small enough value to avoid peaks from
different ions, but with similar m/z and retention time, being grouped together. The most
important parameter however is bw and, while its default value of 30 was able to correctly
group the Serine peaks, it should always be evaluated on other, more complicated, signals too.
Below we evaluate the performance of the default parameters on an m/z slice that contains
signal from multiple ions with the same m/z, including isomers Betaine and Valine ([M+H]+
m/z 118.08625).
#' Plot the chromatogram for an m/z slice containing Betaine and Valine

mzr <- 118.08625 + c(-0.01, 0.01)

chr <- chromatogram(data_cent, mz = mzr, aggregationFun = "max")

#' Correspondence in that slice using default settings

pdp <- PeakDensityParam(sampleGroups = data_cent$group)

plotChromPeakDensity(chr, param = pdp)

0
10

00
0

30
00

0

118.0772 − 118.0962

in
te

ns
ity

0 50 100 150 200 250

retention time

sa
m

pl
e

1
2

Figure 14: Correspondence analysis with default settings on a m/z slice containing signal from mul-
tiple ions

With default settings all chromatographic peaks present in the m/z slice were grouped into
the same feature. Signal from different ions would thus be treated as a single entity. Below
we repeat the analysis with a strongly reduced value for bw.
#' Reducing the bandwidth

pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8)

plotChromPeakDensity(chr, param = pdp)

22

Preprocessing of untargeted (LC-MS) metabolomics data

0
10

00
0

30
00

0

118.0772 − 118.0962

in
te

ns
ity

0 50 100 150 200 250

retention time

sa
m

pl
e

1
2

Figure 15: Correspondence analysis with reduced bw setting on a m/z slice containing signal from
multiple ions

With a bw of 1.8 we successfully grouped the peaks into different features. We can now use
these settings for the correspondence analysis on the full data set.
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,

minFraction = 0.4, binSize = 0.02)

#' Perform the correspondence analysis

data_cent <- groupChromPeaks(data_cent, param = pdp)

Next we evaluate the results from the correspondence analysis on a different m/z slice
containing isomers Leucine and Isoleucine ([M+H]+ m/z 132.10191). Setting simulate =

FALSE in plotChromPeakDensity will show the actual results from the correspondence analysis.
#' Plot the chromatogram for an m/z slice containing Leucine and Isoleucine

mzr <- 132.10191 + c(-0.01, 0.01)

chr <- chromatogram(data_cent, aggregationFun = "max", mz = mzr)

plotChromPeakDensity(chr, simulate = FALSE)

Despite being very close, chromatographic peaks of isomers were successfully grouped into
separate features.
Results from the correspondence analysis can be accessed with the featureDefinition

function. This function returns a data frame with the retention time and m/z ranges of the
apex positions from the peaks assigned to the feature and their respective indices in the
chromPeaks matrix.
#' Definition of the features

featureDefinitions(data_cent)

DataFrame with 373 rows and 9 columns

mzmed mzmin mzmax rtmed

23

Preprocessing of untargeted (LC-MS) metabolomics data

0
20

00
0

60
00

0

132.0933 − 132.1113

in
te

ns
ity

0 50 100 150 200 250

retention time

sa
m

pl
e

1
2

Figure 16: Result of correspondence on a slice containing the isomers Leucine and Isoleucine

<numeric> <numeric> <numeric> <numeric>

FT001 105.041765759115 105.0417381237 105.04179339453 167.690828441715

FT002 105.041534700049 105.041534700049 105.041534700049 157.678493020291

...

FT372 133.972794276215 133.972754801636 133.972833750795 206.86375484864

FT373 133.974012650623 133.974012650623 133.974012650623 201.504155299324

rtmin rtmax npeaks POOL peakidx

<numeric> <numeric> <numeric> <numeric> <list>

FT001 167.461570484448 167.920086398982 2 2 c(125, 431)

FT002 157.678493020291 157.678493020291 1 1 124

...

FT372 206.353905400883 207.373604296396 2 2 c(283, 639)

FT373 201.504155299324 201.504155299324 1 1 640

Also, we can calculate simple per-feature summary statistic with the featureSummary function.
This function reports for each feature the total number and the percentage of samples in
which a peak was detected and the total numbers and percentage of these samples in which
more than one peak was assigned to the feature.
#' Per-feature summary.

head(featureSummary(data_cent))

count perc multi_count multi_perc rsd

FT001 2 100 0 0 0.01492685

FT002 1 50 0 0 NA

FT003 2 100 0 0 0.22934418

FT004 2 100 0 0 0.17149504

FT005 2 100 0 0 0.04142419

FT006 2 100 0 0 0.33421678

24

Preprocessing of untargeted (LC-MS) metabolomics data

The final result from the LC-MS data preprocessing is a matrix with feature abundances, rows
being features, columns samples. Such a matrix can be extracted with the featureValues

function from the result object. The function takes two additional parameters value and
method: value defines the column in the chromPeaks table that should be reported in the
matrix, and method the approach to handle cases in which more than one peak in a sample
is assigned to the feature. Below we set value = "into" (the default) to extract the total
integrated peak area and method = "maxint" to report the peak area of the peak with the
largest intensity for features with multiple peaks in a sample.
#' feature intensity matrix

fmat <- featureValues(data_cent, value = "into", method = "maxint")

head(fmat)

20171016_POOL_POS_1_105-134.mzML 20171016_POOL_POS_3_105-134.mzML

FT001 3159.7569 3093.752

FT002 4762.3987 NA

FT003 744.8752 1033.232

FT004 20211.2634 15839.550

FT005 10220.8762 10837.710

FT006 19653.1073 31816.844

While we do have abundances reported for most features, we might also have missing
values for some, like for feature FT002 in the second sample above. Such NAs occur if no
chromatographic peak was assigned to a feature, either because peak detection failed, or
because the corresponding ion is absent in the respective sample. One possibility to deal with
such missing values is data imputation. With the fillChromPeaks function, xcms provides
however an alternative approach that integrates the signal measured at the m/z - retention
time region of the feature in the original files of samples for which an NA was reported hence
filling-in missing peak data. The region from which signal is recovered is defined by the
columns "mzmin", "mzmax", "rtmin" and "rtmax" in the featureDefinitions data frame,
which represent the minimal and maximal positions of the apexes of all chromatographic
peaks assigned to the feature. Because only peak apex positions are considered, this region
might not be representative of the actual chromatographic peaks. The feature region can
however be increased in m/z and/or retention time retention: parameter fixedRt enables for
example the expansion of the feature area in retention time dimension by a constant value. In
the example below we fill-in missing peak data expanding the feature region by the median
width of all chromatographic peaks in the data.
#' Number of missing values

sum(is.na(fmat))

[1] 137

#' Determine the median retention time width of detected peaks

rt_med <- median(chromPeaks(data_cent)[, "rtmax"] -

chromPeaks(data_cent)[, "rtmin"])

fpp <- FillChromPeaksParam(fixedRt = rt_med / 2)

data_cent <- fillChromPeaks(data_cent, param = fpp)

#' How many missing values after

sum(is.na(featureValues(data_cent)))

[1] 12

25

Preprocessing of untargeted (LC-MS) metabolomics data

fmat_fld <- featureValues(data_cent, value = "into", method = "maxint")

head(fmat_fld)

20171016_POOL_POS_1_105-134.mzML 20171016_POOL_POS_3_105-134.mzML

FT001 3159.7569 3093.752

FT002 4762.3987 5234.356

FT003 744.8752 1033.232

FT004 20211.2634 15839.550

FT005 10220.8762 10837.710

FT006 19653.1073 31816.844

With fillChromPeaks we could rescue signal for all but 14 features with missing values. Note
that filled-in peak information can also be removed any time with the dropFilledChromPeaks

function. Also, setting filled = FALSE in the featureValues function would return only data
from detected peaks.
The data analysis would now continue with the feature matrix and could comprise normalization
of the abundances, identification of the compounds and differential abundance analysis.
One final thing worth mentioning is that XCMSnExp objects keep, next to the preprocessing
results, also a history of all processing steps and all parameter objects used during the analysis.
The process history can be accessed with the processHistory function.
#' Overview of the performed processings

processHistory(data_cent)

[[1]]

Object of class "XProcessHistory"

type: Peak detection

date: Tue Jul 23 19:27:25 2019

info:

fileIndex: 1,2

Parameter class: CentWaveParam

MS level(s) 1

##

[[2]]

Object of class "XProcessHistory"

type: Peak grouping

date: Tue Jul 23 19:27:30 2019

info:

fileIndex: 1,2

Parameter class: PeakDensityParam

MS level(s) 1

##

[[3]]

Object of class "XProcessHistory"

type: Retention time correction

date: Tue Jul 23 19:27:31 2019

info:

fileIndex: 1,2

Parameter class: PeakGroupsParam

MS level(s) 1

##

[[4]]

26

Preprocessing of untargeted (LC-MS) metabolomics data

Object of class "XProcessHistory"

type: Peak grouping

date: Tue Jul 23 19:27:36 2019

info:

fileIndex: 1,2

Parameter class: PeakDensityParam

MS level(s) 1

##

[[5]]

Object of class "XProcessHistory"

type: Missing peak filling

date: Tue Jul 23 19:27:38 2019

info:

fileIndex: 1,2

Parameter class: FillChromPeaksParam

MS level(s) 1

The parameter object for one analysis step can be accessed with processParam:
#' Access the parameter class for a processing step

processParam(processHistory(data_cent)[[1]])

Object of class: CentWaveParam

Parameters:

ppm: 30

peakwidth: 2, 10

snthresh: 10

prefilter: 3, 100

mzCenterFun: wMean

integrate: 1

mzdiff: -0.001

fitgauss: FALSE

noise: 0

verboseColumns: FALSE

roiList length: 0

firstBaselineCheck TRUE

roiScales length: 0

4 Bonus material - peak detection fun

In this section we apply the lessons learned from previous sections, in particular how to adapt
peak detection setting on a rather noisy chromatographic data. Below we load the example
data from a text file.
data <- read.table("data/Chromatogram.txt", sep = "\t", header = TRUE)

head(data)

rt intensity

1 100 0

2 110 0

3 120 1

27

Preprocessing of untargeted (LC-MS) metabolomics data

4 130 2

5 140 4

6 150 6

Our data has two columns, one with retention times and one with intensities. We can now
create a Chromatogram object from that and plot the data.
chr <- Chromatogram(rtime = data$rt, intensity = data$intensity)

par(mar = c(2, 2, 0, 0))

plot(chr)

200 400 600 800 1000 1200

0
50

10
0

20
0 Inf − −Inf

There are two peaks present in the data, with the signal from the latter being particularly
noisy. The goal is now to perform the peak detection and to identify the two peaks. A first
try with the default settings for centWave clearly shows that we have to tune the parameters
(note that the setting of sn = 0 is required for the present data set as there are not enough
background data points for the algorithm to estimate the noise level properly).
Which parameter would you now adapt to the data? What would be your choices? Go ahead
and try different settings or setting combination to see if you can succeed in detecting the
two peaks. Eventually you might even try a different peak detection algorithm (e.g. Matched
FilterParam).
xchr <- findChromPeaks(chr, param = CentWaveParam(sn = 0))

par(mar = c(2, 2, 0, 0))

plot(xchr)

200 400 600 800 1000 1200

0
50

10
0

15
0

20
0 Inf − −Inf

With the default parameters centWave clearly failed to identify the two large peaks, defining
only smaller fragments of them as potential peaks. Especially the second peak with its peculiar
tri-forked shape seems to cause troubles. This would be even for a hydrophilic liquid interaction
chromatography (HILIC), known to potentially result in noisy odd-shaped peaks, a rather
unusual peak shape. In fact, the signal we were analyzing here is not of chromatographic
origin:

 Inf − −Inf

28

Preprocessing of untargeted (LC-MS) metabolomics data

Our example data represents a panorama picture featuring mountains from the Dolomites,
the Paternkofel (left peak, colored red) and the famous Drei Zinnen (right tri-forked peak
colored green).

5 Session information

devtools::session_info()

- Session info --

setting value

version R version 3.6.1 (2019-07-05)

os macOS Mojave 10.14.6

system x86_64, darwin18.7.0

ui X11

language (EN)

collate en_US.UTF-8

ctype en_US.UTF-8

tz CET

date 2019-07-23

##

- Packages --

package * version date lib source

affy 1.62.0 2019-05-02 [1] Bioconductor

affyio 1.54.0 2019-05-02 [1] Bioconductor

assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.1)

backports 1.1.4 2019-04-10 [1] CRAN (R 3.6.1)

Biobase * 2.44.0 2019-05-02 [1] Bioconductor

BiocGenerics * 0.30.0 2019-05-02 [1] Bioconductor

BiocManager 1.30.4 2018-11-13 [1] CRAN (R 3.6.1)

BiocParallel * 1.18.0 2019-05-03 [1] Bioconductor

BiocStyle * 2.12.0 2019-05-02 [1] Bioconductor

bookdown 0.12 2019-07-11 [1] CRAN (R 3.6.1)

callr 3.3.1 2019-07-18 [1] CRAN (R 3.6.1)

cli 1.1.0 2019-03-19 [1] CRAN (R 3.6.1)

codetools 0.2-16 2018-12-24 [1] CRAN (R 3.6.1)

colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.1)

crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.1)

DEoptimR 1.0-8 2016-11-19 [1] CRAN (R 3.6.1)

desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.1)

devtools 2.1.0 2019-07-06 [1] CRAN (R 3.6.1)

digest 0.6.20 2019-07-04 [1] CRAN (R 3.6.1)

doParallel 1.0.14 2018-09-24 [1] CRAN (R 3.6.1)

dplyr 0.8.3 2019-07-04 [1] CRAN (R 3.6.1)

evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.1)

foreach 1.4.4 2017-12-12 [1] CRAN (R 3.6.1)

fs 1.3.1 2019-05-06 [1] CRAN (R 3.6.1)

ggplot2 3.2.0 2019-06-16 [1] CRAN (R 3.6.1)

glue 1.3.1 2019-03-12 [1] CRAN (R 3.6.1)

gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.1)

htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.6.1)

29

https://en.wikipedia.org/wiki/Paternkofel
https://en.wikipedia.org/wiki/Tre_Cime_di_Lavaredo

Preprocessing of untargeted (LC-MS) metabolomics data

impute 1.58.0 2019-05-02 [1] Bioconductor

IRanges 2.18.1 2019-05-31 [1] Bioconductor

iterators 1.0.10 2018-07-13 [1] CRAN (R 3.6.1)

knitr * 1.23 2019-05-18 [1] CRAN (R 3.6.1)

labeling 0.3 2014-08-23 [1] CRAN (R 3.6.1)

lattice 0.20-38 2018-11-04 [1] CRAN (R 3.6.1)

lazyeval 0.2.2 2019-03-15 [1] CRAN (R 3.6.1)

limma 3.40.2 2019-05-17 [1] Bioconductor

magrittr * 1.5 2014-11-22 [1] CRAN (R 3.6.1)

MALDIquant 1.19.3 2019-05-12 [1] CRAN (R 3.6.1)

MASS 7.3-51.4 2019-03-31 [1] CRAN (R 3.6.1)

MassSpecWavelet 1.50.0 2019-05-02 [1] Bioconductor

Matrix 1.2-17 2019-03-22 [1] CRAN (R 3.6.1)

memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.1)

MSnbase * 2.10.1 2019-05-31 [1] Bioconductor

multtest 2.40.0 2019-05-02 [1] Bioconductor

munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.1)

mzID 1.22.0 2019-05-02 [1] Bioconductor

mzR * 2.18.0 2019-05-02 [1] Bioconductor

ncdf4 1.16.1 2019-03-11 [1] CRAN (R 3.6.1)

pcaMethods 1.76.0 2019-05-02 [1] Bioconductor

pillar 1.4.2 2019-06-29 [1] CRAN (R 3.6.1)

pkgbuild 1.0.3 2019-03-20 [1] CRAN (R 3.6.1)

pkgconfig 2.0.2 2018-08-16 [1] CRAN (R 3.6.1)

pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.6.1)

plyr 1.8.4 2016-06-08 [1] CRAN (R 3.6.1)

png * 0.1-7 2013-12-03 [1] CRAN (R 3.6.1)

preprocessCore 1.46.0 2019-05-02 [1] Bioconductor

prettyunits 1.0.2 2015-07-13 [1] CRAN (R 3.6.1)

processx 3.4.1 2019-07-18 [1] CRAN (R 3.6.1)

ProtGenerics * 1.16.0 2019-05-02 [1] Bioconductor

ps 1.3.0 2018-12-21 [1] CRAN (R 3.6.1)

purrr 0.3.2 2019-03-15 [1] CRAN (R 3.6.1)

R6 2.4.0 2019-02-14 [1] CRAN (R 3.6.1)

RANN 2.6.1 2019-01-08 [1] CRAN (R 3.6.1)

RColorBrewer * 1.1-2 2014-12-07 [1] CRAN (R 3.6.1)

Rcpp * 1.0.1 2019-03-17 [1] CRAN (R 3.6.1)

remotes 2.1.0 2019-06-24 [1] CRAN (R 3.6.1)

rlang 0.4.0 2019-06-25 [1] CRAN (R 3.6.1)

rmarkdown * 1.14 2019-07-12 [1] CRAN (R 3.6.1)

robustbase 0.93-5 2019-05-12 [1] CRAN (R 3.6.1)

rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.1)

S4Vectors * 0.22.0 2019-05-02 [1] Bioconductor

scales 1.0.0 2018-08-09 [1] CRAN (R 3.6.1)

sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.1)

stringi 1.4.3 2019-03-12 [1] CRAN (R 3.6.1)

stringr 1.4.0 2019-02-10 [1] CRAN (R 3.6.1)

survival 2.44-1.1 2019-04-01 [1] CRAN (R 3.6.1)

testthat 2.1.1 2019-04-23 [1] CRAN (R 3.6.1)

tibble 2.1.3 2019-06-06 [1] CRAN (R 3.6.1)

tidyselect 0.2.5 2018-10-11 [1] CRAN (R 3.6.1)

30

Preprocessing of untargeted (LC-MS) metabolomics data

tinytex 0.14 2019-06-25 [1] CRAN (R 3.6.1)

usethis 1.5.1 2019-07-04 [1] CRAN (R 3.6.1)

vsn 3.52.0 2019-05-02 [1] Bioconductor

withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.1)

xcms * 3.6.1 2019-05-16 [1] Bioconductor

xfun 0.8 2019-06-25 [1] CRAN (R 3.6.1)

XML 3.98-1.20 2019-06-06 [1] CRAN (R 3.6.1)

yaml 2.2.0 2018-07-25 [1] CRAN (R 3.6.1)

zlibbioc 1.30.0 2019-05-02 [1] Bioconductor

##

[1] /Users/jo/R/2019-07/CSAMA2019/lib/R/library

References

Conley, Christopher J, Rob Smith, Ralf J O Torgrip, Ryan M Taylor, Ralf Tautenhahn, and
John T Prince. 2014. “Massifquant: open-source Kalman filter-based XC-MS isotope trace
feature detection.” Bioinformatics 30 (18): 2636–43.
Gatto, Laurent, and Kathryn S Lilley. 2012. “MSnbase-an R/Bioconductor package for isobaric
tagged mass spectrometry data visualization, processing and quantitation.” Bioinformatics 28
(2): 288–89.
Katajamaa, Mikko, Jarkko Miettinen, and Matej Oresic. 2006. “MZmine: toolbox for
processing and visualization of mass spectrometry based molecular profile data.” Bioinformatics
22 (5): 634–36.
Prince, John T, and Edward M Marcotte. 2006. “Chromatographic alignment of ESI-LC-MS
proteomics data sets by ordered bijective interpolated warping.” Analytical Chemistry 78 (17):
6140–52.
Smith, Colin A, Elizabeth J Want, Grace O’Maille, Ruben Abagyan, and Gary Siuzdak. 2006.
“XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak
alignment, matching, and identification.” Analytical Chemistry 78 (3): 779–87.
Smith, Rob, Andrew D Mathis, Dan Ventura, and John T Prince. 2014. “Proteomics,
lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist’s point of
view.” BMC Bioinformatics 15 Suppl 7 (Suppl 7): S9.
Tautenhahn, Ralf, Christoph Böttcher, and Steffen Neumann. 2008. “Highly sensitive feature
detection for high resolution LC/MS.” BMC Bioinformatics 9 (1): 504.

31

	1 Abstract
	2 Introduction
	2.1 Prerequisites
	2.2 Mass spectrometry
	2.3 Definitions and common naming convention

	3 Workflow: preprocessing of untargeted metabolomics data
	3.1 Data import and representation
	3.2 Basic data access and visualization
	3.3 Centroiding of profile MS data
	3.4 Preprocessing of LC-MS data

	4 Bonus material - peak detection fun
	5 Session information
	References

