
This is page 1
Printer: Opaque this

Exercises and solutions for chapter ’Working

with Character Data’

August 11, 2008

Exercise 1
Using the code above, create a simple function that maps from DNA to the
amino acid sequence.

Solutions: A very bare bones solution is given below. You might want to
add some checking (is the input really a DNA sequence?). It can only really
deal with inputs of single DNA sequences (largely due to the semantics of
substring.

> DNA2AA = function(DNAseq) {

+ nc = nchar(DNAseq)

+ Dtriples = substring(DNAseq, seq(1, nc,

+ by = 3), seq(3, nc, 3))

+ paste(GENETIC_CODE[Dtriples], collapse = "")

+ }

Exercise 2
What happens if the stop, or last, argument to substr or substring is larger
than the number of characters? Is it different for the replacement version?
In the replacement version, what happens if the length of the string to
assign is longer than the character vector.

Exercise 3
Compare the function strbreak with strwrap and strtrim. What are the
differences in terms of the output generated?

Exercise 4
Write a function for translating from RNA to DNA. Test it and dna2rna on
a vector of inputs.



2

Exercise 5
Write a function to test whether a sequence is a DNA sequence or an RNA
sequence. Modify the function compSeq above to use the test and perform
the appropriate translation, depending on the type of input sequence.

Solutions: It will be much easier to solve this problem, using regular
expressions, see Section ??, the code here works, but is very inefficient and
should not be used in any real application.

> isDNA = function(x) {

+ xU = toupper(x)

+ spx = strsplit(xU, NULL)

+ sapply(spx, function(z) all(z %in% c("A",

+ "C", "G", "T")))

+ }

One can then write a similar function to test whether a character vector
represents RNA.

Exercise 6
Look at the manual page for strsplit to get an idea of how to write a
function that reverses the order of characters in the character strings of a
character vector. Use this to write a reverseComplement function.

Solutions: The definition, from the strsplit manual page is given next.

> strReverse <- function(x) sapply(lapply(strsplit(x,

+ NULL), rev), paste, collapse = "")

And our reverse complement function would look something like:

> reverseComplement = function(x) strReverse(compSeq(x))

Exercise 7
Test the claims made above about matching of the empty string; show that
with pmatch there is no match, while with charmatch there is.

Exercise 8
Write a function that takes a character vector as input and checks to see
which elements have only nucleotide characters in them.



3

Solutions: The function onlyNuc, below, returns a logical vector of
the same length as its input, indicating which of the elements of the input
vector contain only the four nucleotides.

> onlyNuc = function(x) {

ans = rep(TRUE, length(x))

noNuc = grep("[^ACTGactg]", x)

ans[noNuc] = FALSE

ans

}

Exercise 9
Create a valid regular expression that checks to make sure that both the
month and day specifications are correct.

Solutions: There are of course, many different ways to do that.
Among them, for the month specification is to use alternation, for example
(0[1-9]|1[0-2])

> regexpr("(0[1-9]|1[0-2])\\/\\d\\d\\/\\d\\d\\d\\d",

"today is 12/01/1977", perl = TRUE)

[1] 10
attr(,"match.length")
[1] 10
> regexpr("(0[1-9]|1[0-2])\\/\\d\\d\\/\\d\\d\\d\\d",

"today is 21/01/1977", perl = TRUE)

[1] -1
attr(,"match.length")
[1] -1

Exercise 10
What is the purpose of the * in the regular expressions? Can you extend
this to deal with white space as defined by [:space:]? Write a function
similar to strwhite that replaces two or more leading blanks with a single
space. Modify strwhite to also strip \n from the end of a line.

Exercise 11
Write a version of complementSeq that works for either DNA or RNA us-
ing chartr. How does the speed compare with that of the version in the
matchprobes package? Write a version of reverseSeq using strsplit, rev
and paste. How does the speed of that function compare with the one in
the matchprobes package?



4

Solutions:

> cS = function(x, DNA = TRUE) {

if (DNA)

chartr("GCAT", "CGTA", x)

else chartr("GCAU", "CGUA", x)

}

The strrev function in Biostrings is answer to the second programming
problem. Use system.time on some reasonably long strings to obtain timing
comparisons.

Exercise 12
Find all of the palindromes that have all four bases present. Are their
sequences also highly repetitive?

Solutions:

> allThere = function(x) all(x[1:4] > 0)

> x1 = apply(ans, 1, allThere)

> chr22_pals[x1]

Views on a 49691432-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNN
views:

start end width
[1] 32511111 32511207 97 [CATATATGTGTATAC...ATATGTGTATATAC]
[2] 32511112 32511238 127 [ATATATGTGTATACA...CATATGTGTATATA]
[3] 32511144 32511238 95 [ATATATGTGTATACA...CATATGTGTATATA]

And yes, they do seem to be highly repetative.

Exercise 13
Find all the complemented palindromes on Chromosome 22.

Solutions:

> cpals = findComplementedPalindromes(chr22NoN, min.armlength = 40,

max.looplength = 20)

> cpals

Views on a 49691432-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNN...NNNNNNNNNNNNNNNNNNNNNNNNN
views:

start end width
[1] 15384014 15384111 98 [TATATATATATATAC...TATATATATATATA]



5

[2] 15384014 15384139 126 [TATATATATATATAC...TATATATATATATA]
[3] 15384072 15384165 94 [TATATATATATACAT...TGTATATATATATA]
[4] 26634205 26634296 92 [GAGAATATTTATCAC...TGATAAATATTCTC]

Exercise 14
Over evolutionary time methylated cytosines (C) are converted to thymines
(T) due to spontaneous deamination. Modify the penalty matrix mat above
to penalize less for this conversion than for the others. How does that change
the two alignments?

Solutions: We change the cost to −1, and observe that the effect is
somewhat more on the alignment with a low gap penalty. With the high
gap penalty there seems to be no difference between using the first penalty
matrix and the new one.

> mat2 = mat

> mat2["C", "T"] = mat2["T", "C"] = -1L

> dnaAlign3 = needwunsQS(Sc, Sp, mat2, gappen = 1)

> dnaAlign4 = needwunsQS(Sc, Sp, mat2, gappen = 6)

> nchar(dnaAlign4)

[1] 1587


