
EBImage
April 19, 2009

EBImage-deprecated EBImage deprecated functions

Description

The functions listed below are deprecated and their new variants should be used instead. The func-
tions are likely to be defunct with the next Bioconductor release, 2.2. The functions are deprecated
due to the naming issues (the use of a dot) and new variants carry the same arguments as the depre-
cated ones.

Substitutions for the deprecated functions

’choose.image’ => chooseImage

’edge.features’ => edgeFeatures

’edge.profile’ => edgeProfile

’haralick.features’ => haralickFeatures

’haralick.matrix’ => haralickMatrix

’hull.features’ => hullFeatures

’read.image’ => readImage

’write.image’ => writeImage

’zernike.moments’ => zernikeMoments

EBImage-package Package overview

Description

EBImage is the image processing and analysis package for R. Its primary goal is to enable au-
tomated analysis of large sets of images such as those obtained in high throughput automated mi-
croscopy.

The package uses ImageMagick library for image I/O operations and for many image processing
routines. Algorithms for image analysis are implemented natively including algorithms for feature
extraction.

Image data are stored in objects of the class Image, which is derived as an S4 class from array
and inherits all of its properties and methods.

The project page is http://www.ebi.ac.uk/~osklyar/EBImage

1

http://www.ebi.ac.uk/~osklyar/EBImage

2 EBImage-package

Package content

Classes

• Class ’Image’, its accessor method

• Class ’IndexedImage’

• Common generic methods for class ’Image’

• ’Image’ object creation, copying and assertion

• Image read/write operations

Image processing

• Enhancing images and colors

• Image color manipulation

• Generate a tiled image from a stack

• Image and color channel thresholding

• Image transformation, rotation, resize etc.

• Noise removal, blurring and smoothing of images

Image analysis

• Distance map transform of binary images

• Morphological trasnsformations of binary images

• Segmentation and edge detection

• Voronoi-based segmentation on image manifolds

• Watershed transformation and watershed-based object detection

Feature extraction

• Extraction of Haralick texture features and co-occurance matrices (GLCM)

• Extraction of edge profiles and edge features

• Extraction of hull features

• Extraction of Zernike moments

• Extraction of image moments and moment invariants

• Combined feature extraction for objects in indexed images

• Object removal in indexed images

• Marking detected objects in indexed images

• Generate a stack of images for detected objects

• Matching objects in two indexed images

Tools

• Color and image color mode conversions

• Drawing primitives on images, annotation

• Interactive image display

image,Image-method 3

Authors

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, Copyright 2005-2007

Wolfgang Huber, 〈huber@ebi.ac.uk〉
Mike Smith, 〈msmith@ebi.ac.uk〉

European Bioinformatics Institute
European Molecular Biology Laboratory
Wellcome Trust Genome Campus
Hinxton
Cambridge CB10 1SD
UK

The code of propagate is based on the CellProfiler with permission granted to distribute
this particular part under LGPL, the corresponding copyright (Jones, Carpenter) applies.

The source code is released under LGPL (see the LICENSE file in the package root for the complete
license wording). ImageMagick and GTK used from the package are distributed separately by the
respective copyright holders.

This library is free software; you can redistribute it and/or modify it
under the terms of the

GNU Lesser General Public License

as published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version. This library is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU Lesser General Public License for more details. For LGPL license wording see
http://www.gnu.org/licenses/lgpl.html

image,Image-method Generic methods for objects of class Image

Description

Image supports all (or almost all) operations that are defined for array. However, the default
behavior of some generics was redefined in the package to better suit the class. Those are:

Generic methods

show(object) Prints a summary of image and properties (as described in ’Accessor methods’
section). Prints also an excerpt of data keeping it to the minimum just to have a visual control
over the atomic data type. UseimageData(x) to print or assign the full dataset. If image
was put through the object detection algorithm a summary of detected objects will be printed
instead of data.

as.array(x) Removed to avoid incompatibilities with R < 2.5. Use imageData instead.

as.matrix(x, ...) Removed to avoid incompatibilities with R < 2.5. Use as.matrix(imageData(x))
instead.

http://www.gnu.org/licenses/lgpl.html

4 channel

hist(x, ...) A histogramme method.
median(x, na.rm=FALSE) stats:median redefinition for images (bug workaround: with-

out it median takes forever to execute without no apparent reason)
image(x, ...) Draws image data using graphics::image keeping image aspect ratio.
[Redefined versions (multiple signatures) of the array subsetting operator. These return objects

of class Image without dropping dimensions.
Arith Redefined arithmetic operators acting on any combination of Image with another Image

or array will return an object of class Image.
as.Image)(x, ...) S4 method for the signature x=array. Is equivalent to Image(x)

when x is array.

Other important methods that directly applicable due to inheritance from the array class, just to
stress that they can and should be used:

dim(x) and dim(x) <- value Gets and sets image dimensions.
fft(z, inverse = FALSE) Performs the Fast Fourier Transformation on an Image.
sqrt(x) etc. Miscellaneous mathematical functions.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

See Also

Image, Image

channel Color and image color mode conversions

Description

channel allows to convert colors of images and color values given in vectors, arrays or matrices
from one mode to another. The supported source and target modes are TrueColor (data of type:
integer) and Grayscale (numeric) and X11 strings (character).

The mode of the argument is determined automatically from its type.

Usage

S4 methods for signatures 'x=Image,mode=character'
and 'x=ANY,mode=character'
channel(x, mode, ...)

rgbImage(r, g, b)
channelMix(r, g, b)

Arguments

x Either an object of Image or a vector of numeric, integer or character.
mode A character value specifying the target mode for conversion. See ’Conversion

Modes’ below.
... Reserved.
r,g,b Objects of class Image.

channel 5

Details

Conversion modes:

rgb The result is a true color representation of the input. Its class is or includes integer, i.e. an
integer array or a TrueColor integer-based image.

gray The result is a gray scale representation of the input. Its class is or includes numeric.
Synonym: grey

red, green, blue The result is a gray scale representation of the input from only the red,
the green or the blue channel was extracted, correspondingly. The result’s class is numeric-
based. As synonyms single letters r, g, b can be used correspondingly.

asred, asgreen, asblue The result is a true color with all the data in one channel only, the
red, green or blue, correspondingly. The result’s class is integer-based. As synonyms 2r,
2g, 2b can be used.

x11 The result is a character, which elements represent the input colors as X11 strings, i.e.
RGB hex codes starting with a sharp sign.

Conversion modes are case insensitive!

If the input is a character vector, its values may contain color names instead of color hex codes,
like red, purple, white etc. However, the result of the X11 mode will always contain hex
codes.

channelMix uses the following formula to calculate the mix: mix = sqrt(r^2+g^+b^2).
Any of the values can be missing.

Value

For an argument of Image the function returns a new object of Image in all modes except ’X11’.
In case of ’X11’ it returns a character vector of the same length as the image.

For vectors the function returns a vector of the same size in the target mode.

rgbImage generated a TrueColor image using r, g and b as values for red, green and blue chan-
nels correspondingly.

channelMix generates a grayscale image as if the image was converted from a TrueColor one
that was composed using r, g and b.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉

See Also

Image, Image, Image

Examples

cl <- channel("pink", "rgb")
r <- channel(channel(cl, "red"), "asred")
g <- channel(channel("pink", "green"), "asgreen")
b <- channel(channel(cl, "blue"), "asblue")
rgb <- r + g + b
print(rgb == cl)
clg <- channel(cl, "gray")
print(channel(cl, "x11"))

6 Image-class

further example in 'paintObjects'

Image-class Defintion of class ’Image’, its accessor methods

Description

The class Image enables the storage and manipulation of image data for grayscale and true color
(RGB) images in R. The class is based on (derived from) array and inherits all its properties and
methods, e.g. mathematical operations, subsetting, histograms etc. Image processing and analysis
routines are defined as S4 methods for objects of the class Image.

Class Definition

The class is defined as follows:

S4 class definition

setClass("Image",
representation (

colormode = "integer",
filename = "character",
compression = "character",
resolution = "numeric",
features = "list"

),
contains = "array"

)

Additionally, two constants are defined and exported that can be used to specify or test image data
type:

Grayscale = as.integer(0)
TrueColor = as.integer(1)

Creating objects

Objects can be created using new("Image") supplying slot data as necessary. Additionally,
wrapper functions are defined to simplify the construction of Image objects in different situations:
the default constructor, Image, the readImage constructor that creates an object from reading
image files and the copy constructor.

Accessor methods

Accessor methods are class methods that are defined to retrieve data values from objects of a given
class or to assigne those. These should be used instead of directly referring to the slots. Unfor-
tunately, R does not have a concept of private or protected class members: all slots have "public"
access in terms of other object-oriented languages. Therefore, data encapsulation in sense of hiding
the particular structure of the class is impossible. At the same time, it is still recommended to use
accessor functions instead of directly accessing slots. One can also assume that any slot that does
not have an accessor method should not be accessed directly by the user.

The following accessor methods are defined as S4 methods for class Image:

Image-class 7

colorMode(x), colorMode(x) <- value Gets and sets image color mode. value is one
of the constants above. Default: Grayscale.

compression(x), compression(x) <- value Gets and sets compression algorithm used
when image saved in a format supporting compression. For exapmple, TIFF images support
ZIP and LZW lossless compressions, whereas JPEG uses JPEG compression by default. Pos-
sible values of type character are ’NONE’, ’LZW’, ’ZIP’, ’JPEG’, ’BZIP’
and ’GROUP4’. Some of these may be unavailable on your system if ImageMagick was
compiles without their support. Default: ’LZW’.

features(x) Is a read only method that returns a list or matrices with descriptors of detected
objects. If object detection was executed on the image, an empty list is returned. Otherwise,
the number of elements matches the number of frames in the image. Default: list().

fileName(x), fileName(x) <- value Gets and sets the file name. When reading images
this value is updated, when writing it can be used as default if no alternative is specified.
When reading a stack, the first file name in the list of stack images will be assigned. Default:
’no-name’.

imageData(x), imageData(x) <- value Gets and sets image data. Image data is a 3D
array with the last dimension matching the number of 2D images in a stack. The atomic type
of the array is defined by colorMode().

resolution(x), resolution(x) <- value Gets and sets values of image resoultion: a
numeric vector of two values of resolution in x and y dimensions. Generally resolution is
understood in pixel-per-inch (ppi) or dots-per-inch (dpi), however some microscopes can save
these values in images in different units. It is the responsibility of the user to identify the unit
and keep the units comparable between different images in the same project if required: the
package does not take care of this. The default values are equal for both directions, 2.5e+6
dpi.

Details

Image data are stored as 3D arrays with first two dimensions specifying frame size and third the
number of frames. A single 2D image has the number of frames 1. In subsetting, the value of drop
parameter is set to FALSE, thus image dimensionality is preserved at 3.

Image is derived from array, therefore, the data is stored in arrays. Image can store ei-
ther grayscale or true color data at the moment. Grayscale data is stored in numeric arrays,
whereas true color data is stored in integer arrays. Correspondingly, the data is created with
array(as.numeric(val),dim(val)) for grayscale and array(as.integer(val),dim(val))
for true color images. Grayscale values are assumed to be in the range [0,1], although this is not
a requirement in sense of data storage. Although, many image processing functions will assume
data in this range or will generate invalid results for the data out of this range.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2007

See Also

Image, Image, Image, Image, Image, Image,

Examples

New Grayscale image of a black-to-white vertical gradient
w <- 120

8 IndexedImage-class

a <- Image((0:(w^2))/w^2, c(w,w))
if (interactive()) display(a)
print(a)

Converts image to TrueColor
b <- a
colorMode(b) <- TrueColor
print(b)

Fills values with intensities over 0.5 (50%) with red
b[a > 0.5] = as.integer(255)
if (interactive()) display(b)

IndexedImage-class Defintion of class ’IndexedImage’

Description

The class IndexedImage is used to store the results of functions that index image into separate
objects using integer 1-based indexing. Such an image is essentially the same as Image in the gray
scale mode. The class was defined to ensure correct types in calls to other object detection and
processing routines.

Class Definition

S4 class definition
setClass("IndexedImage", contains="Image")

Creating objects

Objects of this class are not supposed to be created directly, rather as the result of calls to watershed
or propagate, or other functions that index objects in images.

Details

No accessor methods are defined for this class, however all of the parents’ ones are available, i.e.
those of Image and array.

One coersion routine is defined in addition, which simply sets the class attribute to Image:

S4 method for signature 'x=IndexedImage'
as.Image(x, ...)

When used with IndexedImage’s display by default normalizes the image.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

Image, Image, Image

Image 9

Examples

load images
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)

class(io)

Image Image creation, copying and assertion

Description

Functions to create, copy and assert images.

Usage

Image(data=array(0,c(0,0,1)), dim=base::dim(data), colormode, ...)

is.Image(x)
stopIfNotImage(x)

S4 methods for signature 'x=Image'
copy(x, ...)
header(x, ...)

S4 methods for signatures 'x=Image,y=Image'
and 'x=list,y=missing'
combine(x, y, ...)

S4 methods for signatures 'x=Image,y=Image'
and 'x=Image,y=missing'
assert(x, y, strict=FALSE, ...)

Arguments

x, y Objects of class Image. There is also a combine method for lists of equally
sized Image objects, in that case y should be missing.

data Data to fill the image, typically an array, but can be any object for which as.numeric
or as.integer is defined.

dim A numeric vector of image dimensions with length of 2 or 3. If its length is 2,
the third dimension is set to 1.

10 Image

colormode An integer value for the image data color mode. It is recommended to use the
predefined symbols TrueColor or Grayscale.

strict A logical scalar. If TRUE, the size of all three dimensions of two images will be
compared, if FALSE, the function will compare only the first two dimensions
(i.e. stacks can have different size in z-direction, but x- and y-size should be the
same).

... With Image, further arguments to new; with combine, further images to be
combined.

Details

Image This is a wrapper around new, for convenience.

copy Makes an identical copy of an object of Image enforcing allocation of new memory for the
image data. Note that in R, a simple assignment like a<-b does lead to copying of the data
until either a or b are further modified.

combine Acts similarly to rbind and cbind. It allows to combine images to stacks adding
further images at the back of the first one. Properties of the first image in the argument x are
transferred to the result. All images must be of the same size (in first two dimensions) and
color mode. If applied to a list of images, it calls do.call("combine", x)

header Acts similarly to copy, but does not copy the actual image data, only all the other slots.
This function can be useful for creating new images from existing large ones preserving at-
tributes.

is.Image Returns TRUE if argument is a valid Image and FALSE otherwise.

assert Compares dimensions and color modes of two images. If argument strict is FALSE
images are allowed to have different number of frames.

Value

The constructors Image, copy, combine and header return a new object of Image.

assert and is.Image return a logical.

stopIfNotImage will return invisible NULL if its argument is of Image and an error message
otherwise.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2007

See Also

Image, Image, Image

Examples

i1 = Image()
sx = exp(24i*pi*seq(-1, 1, length=300)^2)
i2 = Image(outer(Im(sx), Re(sx)))
if (interactive()) display(normalize(i2))
i3 <- copy(i2)
is.Image(i2)

see 'stackObjects' for example on combine

denoise 11

denoise Noise removal, blurring and smoothing or images

Description

This set of functions allows for the removal of noise, blurring and smoothing of images. The func-
tions operate of images in any image mode. The functions and the corresponding help descriptions
are ported from ImageMagick, see the reference below.

Usage

Noise removal:
S4 method for signature 'Image':
denoise(x, r=0, ...)
S4 method for signature 'Image':
mediansmooth(x, r=2, ...)
S4 method for signature 'Image':
despeckle(x, ...)

Sharpening images:
S4 method for signature 'Image':
sharpen(x, r=0, s=0.5, ...)
S4 method for signature 'Image':
umask(x, r=0, s=0.5, amount=5, t=2, ...)

Blurring images:
S4 method for signature 'Image':
blur(x, r=0, s=0.5, ...)
S4 method for signature 'Image':
gblur(x, r=0, s=0.5, ...)

Adding noise to images:
S4 method for signature 'Image':
noise(x, type="G", ...)

Arguments

x An object of Image.

r A numeric value for the radius of the pixel neighbourhood. Passing 0 enables
automatic radius selection, default.

s A numeric value for the standard deviation of the Laplacian (sharpen) or
Gaussian (umask, blur, gblur), in pixels. For reasonable results, in most
functions r must be larger than s.

amount A numeric value for the percentage difference between the original and the
blurred image that is added back into the original in the un-sharp mask algo-
rithm.

t A numeric value for the threshold in pixels needed to apply the amount in the
un-sharp mask algorithm.

12 denoise

type The type of noise to add. Supported noise types are: Uniform, Gaussian
(default), Multi, Impulse, Laplace and Poisson. The value can be
specified by one letter. Case insensitive.

... Reserved.

Details

despeckle reduces the speckle-type, single-pixel, noise.

mediansmooth smooths the noisy image by replacing each pixel by a median of pixel values in
taken over the neighbouring as defined by radius.

blur, gblur produce a blurred image. The blur method differs from the Gaussian blur,
gblur, in that it uses a separable kernel which is faster but mathematically equivalent to the non-
separable kernel.

sharpen, umask sharpen an image. umask uses the un-sharp mask algorithm, in which the
image is convolved with a Gaussian operator of the given radius and standard deviation, s.

Value

A transformed image in an object of Image.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2007

References

ImageMagick: http://www.imagemagick.org.

See Also

Image, Image

Examples

w <- 120
a <- Image((0:(w^2))/w^2, c(w,w))
if (interactive()) display(a)
b <- normalize(noise(a) * 0.1)
if (interactive()) display(b)
dn <- despeckle(b)
if (interactive()) display(dn)
bl <- blur(dn, 4, 2)
if (interactive()) display(bl)

http://www.imagemagick.org

display 13

display Interactive image display

Description

Display images on the screen of a local or remote display.

Usage

display(x, no.GTK=FALSE, ...)

S4 method for signature 'Image':
animate(x, ...) ## not available on Windows
S4 method for signature 'IndexedImage':
animate(x, ...) ## not available on Windows
S4 method for signature 'array':
animate(x, ...) ## not available on Windows

Arguments

x An object of Image, IndexedImage or array.

no.GTK A logical value, if TRUE an ImageMagick display will be used instead of the
GTK display (read details below). On Windows the ImageMagick display is not
available.

... Reserved.

Details

The argument main can be used with the GTK display to substitute the default window title. By
default, the GTK display shows the expression used in call to display for the window title.

When used with IndexedImage display additionally accepts a colorize argument. If it is
provided with any value of any class, then objects are mapped on the display using random RGB
colors.

If available the GTK display will be used by default. This mode allows display of multiple images
simultaneously. If the GTK mode is not used, an ImageMagick-internal display function, is used.
This mode is for compatibility purposes only and should not be used if GTK is available. Because
ImageMagick does not provide any programmatic ways to control and close display windows,
the display in this mode is limited to one it time. The display window must be explicitly closed
before a new image can be displayed. If EBImage was installed without GTK support, the function
will fall back to the ImageMagick display automatically. In this case there is no need to supply
no.GTK argument.

So far animate uses the AnimateImages function from ImageMagick, which behavior is
analogous to that of the ImageMagick display. This function is not available on Windows due to
the lack of support in the ImageMagick API.

GTK display does not use GTK widgets available from other R packages, the functionality is coded
in EBImage. Therefore, the package must be compiled with GTK support in order to enable it.

Value

An invisible NULL.

14 distmap

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2007

References

ImageMagick: http://www.imagemagick.org; GTK: http://www.gtk.org; GTK on
Windows: http://gladewin32.sf.net

See Also

Image, Image, Image, Image, Image

Examples

load images of nuclei (seed points later)
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)
if (interactive()) {
display(io)
display(io, main="Watershed segmentation", colorize=T)

}

distmap Distance map transform of binary images

Description

The function computes a distance map transformation of a binary image, i.e. of an image whose
pixels are labeled as foreground and background. In the distance map, each pixel contains the
distance from that pixel to the nearest background pixel, or to the border of the image. Note: this is
a trivial brute force implementation. Please look elsewhere for efficient implementations; see also
the references.

Usage

S4 method for signature 'Image':
distmap(x, t=0.05, exact=FALSE, bg=0.05, ...)

http://www.imagemagick.org
http://www.gtk.org
http://gladewin32.sf.net

drawtext 15

Arguments

x A Grayscale object of Image. x is considered as a binary image, consisting
of 0’s for background and all other values for foreground.

t A numeric vector of length 1, the background threshold in the range [0,1).
Pixels with intensity smaller than t are considered as background.

bg A numeric numeric vector of length 1, the allowed minimum of the fraction of
background pixels in the image. Deprecated.

exact ???
... Further arguments.

Value

A Grayscale object of Image with pixels containing the floor values of their distances to the
nearest background points.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006

References

2D Euclidean Distance Transform Algorithms: A Comparative Survey. R. Fabbri, L. da F. Costa,
J.C. Torelli and O.M. Bruno. ACM Computing Surveys, Vol. 40, No. 1, Article 2 (Feb. 2008).

The Image Processing Handbook. John Russ. 5th edition, 2006, CRC Press.

VIGRA by Ullrich Koethe: http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra

See Also

Image, Image, Image, Image

Examples

Not run: see ?watershed for an example

drawtext Drawing primitives on images

Description

The family of functions to draw primitives on images. At the moment, there is only one functions
out of the planned family to draw text.

Usage

S4 methods for signatures 'img=Image,xy=numeric,label=character'
and 'img=Image,xy=matrix,label=character' and
S4 method for signature 'Image, list, list':
drawtext(img, xy, labels, font, col, ...)

drawfont(family=switch(.Platform$OS.type, windows="Arial", "helvetica"),
style="n", size=14, weight=200, antialias=TRUE)

16 drawtext

Arguments

img An object of Image. With indexed images, please ensure that the color range is
in [0,1].

xy (x,y) coordinates of labels. For single frames a matrix with the first column
being x and second y or a corresponding numeric vector as it would be used
to construct such a matrix. For multiple frames, a list of corresponding matri-
ces/vectors.

labels A character vector of labels to be output. For multiple frames a list of such
characters.

font An S3 object of class DrawFont as returned by drawfont. If omitted, the
drawfont functions is called internally to obtain the default values.

col A character vector of font colors. One per frame, recycled between frames if
required.

... Reserved.

family A character value for the font family to use. On Linux/UNIX machines one
can try to use helvetica, times, courier and symbol. On Windows
machines, one can specify installed TrueType fonts, like Arial.

style A character value for the font style to use. Can be specified by providing the
first letter only. Supported are: normal (default), italic, oblique.

size A numeric value for the font size.

weight A numeric value for the font weight (bold font). Supported values between 100
and 900.

antialias A logical value for whether the font should be anti-aliased.

Value

An object of Image even if the supplied img was of any derived class. If supplied was an
IndexedImage, ensure that it was normalized to the range [0, 1] before calling drawtext: the
function is for annotation purposes only and using it with IndexedImage’s is likely to destroy
indexing information!

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

Image

Examples

FIXME: This example is currently excluded from MacOS builds as it fails in
ImageMagick string assertion. Although I tried to find the reason for
the problem, I do not have a test environment (MacOS). Please test it and
report what goes wrong here and at which stage.

if (length(grep("apple", Sys.getenv("R_PLATFORM"))) == 0) {
load images
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = normalize(readImage(f), separate=TRUE)

enhance 17

segment
mask = thresh(ii, 25, 25, 0.02)
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects in images and remove bad ones
io = watershed(distmap(mask), 1.5, 1)
ft = hullFeatures(io)
mf = moments(io, ii) ## need these for intensity and size
for (i in seq_along(ft)) ft[[i]] = cbind(ft[[i]], mf[[i]])
io = rmObjects(io, lapply(ft, function(x)

which(x[,"h.s"] < 150 | x[,"int"] < 50 | 0.3 * x[,"h.p"] < x[,"h.edge"])
))

ft = hullFeatures(io)
get centres of objects (list, for ii is a stack of 4)
xy <- lapply(ft, function(x) x[,1:2])
create labels for objects (list, for ii is a stack of 4)
labels <- lapply(xy, function(x) as.character(1:nrow(x)))
set font properties: semi bold
f <- drawfont()
f$weight=600
draw annotations, recycle 2 colours between 4 images
annot <- drawtext(channel(ii,"rgb"), xy, labels, font=f, col=c("#F0B769","#ACEE3F"))
if (interactive()) display(annot)

}

enhance Enhancing images and colors

Description

Functions to enhance and modify colors in images.

Usage

S4 method for signature 'Image':
cgamma(x, level=1, ...)
S4 method for signature 'Image':
contrast(x, sharpen=TRUE, ...)
S4 method for signature 'Image':
enhance(x, ...)
S4 method for signature 'Image':
equalize(x, ...)
S4 method for signature 'Image':
modulate(x, value=100, ...)

Arguments

x An object of Image.

level A numeric for the gamma level.

18 edgeFeatures

sharpen A logical specifying whether the contrast should be increased (TRUE) or de-
creased (FALSE).

value A percent change in brightness, saturation, and hue. The default value to keep
the values unchanged.

... Reserved.

Details

cgamma gamma-corrects image. The same image viewed on different devices will have perceptual
differences in the way the image’s intensities are represented on the screen. Adjust all three channels
with the level parameter. Values typically range from 0.8 to 2.3.

contrast enhances the intensity differences between the lighter and darker elements of the image.

enhance applies a digital filter that improves the quality of a noisy image.

equalize applies a histogram equalization to the image.

modulate lets you control the brightness, saturation, and hue of an image. Modulate represents
the brightness, saturation, and hue as one parameter.

Value

A transformed image in an object of Image.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

References

ImageMagick: http://www.imagemagick.org.

See Also

Image

edgeFeatures Extraction of edge profiles and edge features from images of indexed
objects

Description

Edge profile is a distance profile from the geometric center of the object to all its perimeter points
calculated by taking the distance at different rotation angles (rotation around the center). The profile
is calculated for the rotation angle, theta in [-pi,pi].

Usage

S4 method for signature 'IndexedImage':
edgeProfile(x, ref, n=32, fft=TRUE, scale=TRUE, rotate=TRUE, ...)
S4 method for signature 'IndexedImage':
edgeFeatures(x, ref, ...)

http://www.imagemagick.org

edgeFeatures 19

Arguments

x An object of IndexedImage.

ref A reference Grayscale image of the same size as x. See details.

n An integer value giving the number of angle measures. The full circle of [-
pi,pi] is divided into n-1 segments, at which edges the profile is approxi-
mated.

fft A logical value. If TRUE, the resulting profile is the fft transformation of the
distance profile giving the frequences of angular changes in shape.

scale A logical value. If TRUE, the resulting profile is scaled by the effective radius
(calcualted as part of link{hull.features}) making the profile scale in-
variant.

rotate A logical value. If TRUE, the resulting profile is shifted by the object’s roation
angle (calculated from the moments on the ref image, if provided, and on the
hull otherwise.

... Reserved.

Details

The ref image can be omitted. However, if supplied it affects the centers of objects and their
angles of rotation as in moments.

The edge.features runs with n=16 calculating scale and rotation invariant features. From
the original distance profile, it returns the measure of object’s irregularity taken by calculating the
difference between the farthest and the closest to the center edge points. Then it computes the
fft and returns 4 of it’s lowest frequences, corresponding to 2*Pi, 2*Pi/2=Pi, 2*Pi/3
and 2*Pi/4=Pi/2.

The extracted feature names carry a e. prefix to indicate edge features.

Value

For a single frame, both functions return a matrix of descriptors with objects in rows and ordered
profile points (or features) in columns. For image stacks, a list of such matrices.

The matrix columns in edge.profile correspond, from left to right, to the equidistant divisions
of the range [-pi,pi] if fft is not used, otherwise to the frequences of angular changes (lower
frequences on the left, higher on the right up to the middle of the vector).

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

see example(getFeatures)

20 haralickMatrix

haralickMatrix Co-occurrence matrices (GLCM) and Haralick texture features

Description

A set of functions to compute the co-occurrence matrix (GLCM - gray level co-occurrence matrix)
and haralick texture features of objects in an indexed image.

Usage

S4 method for signature 'IndexedImage, Image':
haralickMatrix(x, ref, nc = 32, ...)
S4 method for signature 'IndexedImage, Image':
haralickFeatures(x, ref, nc = 32, ...)

Arguments

x An object of IndexedImage used as a mask.

ref A Grayscale object of Image-class. The texture is calculated from the
data in this image.

nc A numeric value. Specifies the number of gray levels to separate ref into when
calculating the co-occurrence matrix. Defaults to 32

... Reserved.

Details

haralickMatrix computes a co-occurrence matrix of dimension nc * nc for each object in
an image. The co-occurrence matrix is constructed by assigning to element [i,j] the number of
times a pixel of value i is adjacent to a pixel of value j.

In order to achieve rotational invariance the co-occurrence matrix is computed using four passes
through each object. Thus each pixel is compared to four neighbours: right, below, diagonally
down left and diagonally down right. In order to achieve symmetry in the co-occurrence matrix
the reciprocal of each of these scores is also added. Thus for each pixel we have have a score for
comparison with each of the surrounding pixels.

Finally the entire matrix is divided by the total number of comparisons, giving a probability for
each of the possible combinations.

haralickFeatures computes for each object in an image 12 Haralick texture features, calcu-
lated from the co-occurrence matrix. The feature names carry a t. prefix (t for texture). The
features and their calculations are:

asm Angular second moment: sum[_i=1^nc] sum[_j=1^nc]p(i,j)^2.

con Contrast: sum[_i=2^(2*nc)] n^2 * sum[_i=1^nc] sum[_j=1^nc] p(i,j),
for all i,j s.t ABS(i - j) = n.

cor Correlation of GLCM: sum[_i=1^nc] sum[_j=1^nc]((i * j) * p(i,j) - mu_x

* mu_y) / sigma_x * sigma_y.

var Variance: sum[_i=1^nc] sum[_j=1^nc](i - mu)^2. * p(i,j).

haralickMatrix 21

idm Inverse difference moment: sum[_i=1^nc] sum[_j=1^nc] p(i,j) / (1 + (i
- j)^2) .

sav Sum average: sum[_i=2^(2*nc)] i * Px+y(i).

sva Sum variance: sum[_i=2^(2*nc)] (i - sen)^2 * Px+y(i).

sen Sum entropy: -sum[_i=2^(2*nc)] Px+y(i) * log(p(i,j)).

ent Entropy: -sum[_i=1^nc] sum[_j=1^nc] p(i,j) * log(p(i,j)).

dva Difference variance: sum[_i=0^(nc-1)] (i^2) * Px-y(i).

den Difference entropy: sum[_i=0^(nc-1)] Px-y(i) * log(Px-y(i,j)).

f12 Measure of correlation: ABS(ent - HXY1) / HX.

f13 Measure of correlation: sqrt(1 - exp(-2 *(HXY2 - ent))).

Where:

p(i,j) The value in row i, column j of the co-occurrence matrix.

Px(i) Partial probability density function. Defined by sum[_j=1^nc] p(i,j) .

Py(j) Partial probability density function. Defined by sum[_i=1^nc] p(i,j) .

mu_x, mu_y Are the means of Px and Px, the partial probability density functions.

sigma_x, sigma_y Are the standard deviations of Px and Py.

Px+y Is the probability of the co-occurrence matrix co-ordinates summing to x+y. It is defined as
Px+y(k) = sum[_i=1^nc] sum[_j=1^nc] p(i,j), i + j = k and k = 2,3,...,2*nc.

Px-y Is the probability of the absolute value of the difference between co-occurrence matrix co-
ordinates being equal to x-y. It is defined as Px-y(k) = sum[_i=1^nc] sum[_j=1^nc]
p(i,j), ABS(i - j) = k and k = 2,3,...,2*nc.

HXY1 -sum[_i=1^nc] sum[_j=1^nc] p(i,j) * log(Px(i),Py(j)) .

HXY2 -sum[_i=1^nc] sum[_j=1^nc] Px(i)*Py(j) * log(Px(i),Py(j)) .

Value

For a single frame in x the result of haralickMatrix is an array of dimensions nc * nc * "the
number of objects in the frame".

haralickFeatures returns a matrix of dimensions "number of objects in the frame" * 12.

For multiple frames a list of each of the above will be returned.

Author(s)

Mike Smith, 〈msmith@ebi.ac.uk〉; Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

References

R. M. Haralick, K Shanmugam and Its’Hak Deinstein (1979). Textural Features for Image Classi-
fication. IEEE Transactions on Systems, Man and Cybernetics.

See Also

IndexedImage, IndexedImage, IndexedImage

Examples

see example(getFeatures)

22 hullFeatures

hullFeatures Extraction of hull features from images of indexed objects

Description

Hull features are a set of numeric descriptors of the hull of an object. These include coordinates,
perimeter, size, acircularity etc.

Usage

S4 method for signature 'IndexedImage':
hullFeatures(x, ...)

Arguments

x An object of IndexedImage.

... Reserved.

Details

The extracted features are (names carry an h. prefix to indicate hull features): x,y - coordinates
of the geometric center, s - size (area), p - perimeter, pdm - mean distance to perimeter (from
the center), pdsd - standard deviation of the distance to perimeter, effr - effective radius (is
the radius of a circle with the same area), acirc - acircularity (fraction of pixels outside of the
circle with r=reff), sf - shape factor (per / (2 * sqrt(Pi * s))), edge - number
of pixels at the edge of the image, theta - hull’s rotation angle (calculated without taking in-
tensity values into account), s2maj - 2 times semi major (square root of the larger eigenvalue
of the moments covariance matrix) - correlates with the distance from the center to the edge
along the major axis, s2min - same but for the smaller eigenvalue (minor axis), ecc - eccen-
tricity (sqrt(eig1-eig2)/smaj), I1, I2 - first and second rotation invariant moments of
the hull (as in moments).

Value

For a single frame, a matrix of descriptors with objects in rows and features in columns. For image
stacks, a list of such matrices.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

see example(getFeatures)

moments 23

moments Image moments and moment invariants, feature extraction

Description

A set of functions to compute central, scale and rotation invariant moments as well as to estimate
object rotation angles and elongations based on central moments.

Usage

S4 methods for signatures 'x=IndexedImage,ref=Image'
and 'x=IndexedImage,ref=missing'
cmoments(x, ref, ...)

S4 method for signature 'IndexedImage, Image':
smoments(x, ref, pw=3, what="s", ...)
S4 method for signature 'IndexedImage, missing':
smoments(x, ref, pw=3, what="s", ...)

S4 methods for signatures 'x=IndexedImage,ref=Image'
and 'x=IndexedImage,ref=missing'
rmoments(x, ref, ...)

S4 methods for signatures 'x=IndexedImage,ref=Image'
and 'x=IndexedImage,ref=missing'
and 'x=Image,ref=missing'
moments(x, ref, ...)

Arguments

x An object of Image; a Grayscale object of Image in the last case.

ref A Grayscale object of Image.

pw A numeric value. When calculating central os scale invariant moments using
smoments pw specifies the order of the matrix of moments to calculate.

what A character string, or the first case insensitive letter, for the type of the moments
to calculate: Central, Scale invariants, or Rotation invariants (specifying R is
essentiall the same as calling rmoments.

... Reserved.

Details

cmoments computes centers of the objects (x=M10/M00, y=M01/M00), their "mass" (inten-
sity, int=M00) and the area (number of non-background pixels).

smoments computes for each object in an image a square matrix of order pw of either central
moments (mu[i,j]) or scale invariant moments (nabla[i,j]) depending on the parameter
what.

rmoments computes for each object the Hu’s set of 7 rotation invariants.

24 zernikeMoments

moments computes for each object a summary of interesting moments and derived descriprots
that include mass (total intensity), location, elements of the covariance matrix and its eigenvalues,
rotation angle and the Hu’s 7 rotation invariants.

Functions with signature x=IndexedImage work on images with multiple indexed objects in
every frame. The index information is used to identify every object and serves as a mask resetting
for every object pixels outside of the mask to background. The intensity is retrieved from the
corresponding reference image. If it is not supplied, the intensity is set to 1 at each pixel of an
object.

moments with x=’Image’ expect input image to contain one and only one object in each frame
(such as those obtained by stackObjects).

Value

For x=IndexedImage:

For a single frame in x the result of smoments with types S and C is a 3D array with first two
dimensions building square matrices of size pw*pw and the third dimension corresponds to the
number of indexed objects in the frame. All other functions return 2D matrices with different
moments or descriptors in columns and objects in rows.

For multiple frames a list of the above will be returned.

For x=Image:

The result is a 2D matrix of with different moments or descriptors in columns and objects in rows.
(each frame is assumed to contain a single object).

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

References

M.K. Hu, Visual Pattern Recognition by Moment Invariants, IRE Trans. Info. Theory, vol. IT-8,
pp.179-187, 1962

Image moments: http://en.wikipedia.org/wiki/Image_moments

See Also

IndexedImage, IndexedImage, IndexedImage

Examples

see example(getFeatures)

zernikeMoments Extraction of Zernike moments from images of indexed objects

Description

Extraction of Zernike moments from images of indexed objects

http://en.wikipedia.org/wiki/Image_moments

zernikeMoments 25

Usage

S4 method for signature 'IndexedImage, Image':
zernikeMoments(x, ref, N = 12, R = 30, apply.Gaussian=TRUE, pseudo=FALSE, ...)

Arguments

x An object of IndexedImage.

ref An object of Image-class in the Grayscale mode.

N Integer value defining the degree of the Zernike polynomials, which in turn de-
fines the number of features calculated. Defaults to 12.

R Defines the radius of the circle around an object centre from which the features
are calculated. It also defines the standard deviation for the 2D Gausian applied
at the centre of an object. See details. Defaults to 30.

apply.Gaussian
A logical value that specifies if a local 2D Gaussian modification should be
applied to every object at its centre. Defaults to TRUE.

pseudo Specifies if an alternative algorithm should be used to calculate pseudo features.
Defaults to FALSE.

... Reserved.

Details

Zernike features are calculated as follows:

Z_nl = (n+1) / pi * ABS(sum_x,y(V*nl(x,y) * i(x,y))),

0 <= l <= n, n - l is even and i(x,y) is the intensity of the reference image at the cor-
rdinates (x,y) that fall withing a circle of radius R from the object’s centre. Coordinates taken
relative to the object’s centre. The ABS of the sum gives a real value of the complex feature and
makes it rotation invariant.

V*nl is a complex conjugate of a Zernike polynomial of degree n and angular dependence l:

Vnl(x,y) = Qnl(x,y) * exp(j*l*theta), where j = sqrt(-1), theta=atan2(y,x),
and

Qnl(x,y) = sum[_m=0^((n-l)/2)] ((-1)^m * (n-m)! * r^(n-2*m)) / (m!

* ((n-2*m+l)/2)! * ((n-2*m-l)/2)!) , where r = sqrt(x^2+y^2).

The extracted features all carry a "z"-prefix, for Zernike, and have the indexing of the form
z.0402 where 04 in this is for n=4 and 02 for l=2. The number of differnt l-values is cal-
culated automatically from N. For a given N all combinations of (n,l) are calculated. For the
default N = 12 the resulting number of features is 49. Columns in the results matrix are firstly
ordered by increasing value of n and secondly by increasing value of l.

If apply.Gaussian = TRUE then prior to calculating the Zernike features, a Gaussian is ap-
plied to the image centred at the co-ordinates of an objects centre of mass, with the standard de-
viation defined by sigma = 0.8 * R. The centres of mass are found by using moments(x,
ref). The resulting image is then:

i’(x,y) = i(x,y) * exp(-(x^2+y^2) / (2 * sigma^2)).

The expected effect: the default value of R = 30 and sigma = 0.8 * R = 24 will penalize
the edges of objects of radii more than 20 and intensity is expected to be around 0 at distances from
the centre more than 40.

26 filter2

Value

For a single frame, a matrix of descriptors with objects in rows and features in columns. For image
stacks, a list of such matrices. Frames with no objects will result in 0-populated a matrix for 1
object.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉; Mike Smith, 〈msmith@ebi.ac.uk〉, 2007

References

F. Zernike. Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkon-
trastmethode (Diffraction theory of the cut procedure and its improved form, the phase contrast
method). Physica, 1:pp. 689-704, 1934.

Jamie Shutler, Complex Zernike Moments: http://homepages.inf.ed.ac.uk/rbf/CVonline/
LOCAL_COPIES/SHUTLER3/node11.html

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

see example(getFeatures)

filter2 2D Convolution Filter

Description

2D convolution-based linear filter for images and matrix data.

Usage

S4 method for signature 'Image, matrix':
filter2(x, filter, ...)

mkball(n, shape="step")
mkbox(n)

Arguments

x An object of Image in Grayscale mode, a numeric array or a matrix.

filter A square matrix with odd dimensions.

n A positive integer of length 1, specifying the size (number of rows and columns)
of the returned square matrix.

shape A character vector of length 1, with one of two values: step for a step function,
ball for a semisphere.

... Further arguments.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html

floodFill 27

Details

The convolution filter is based on fft transforms. If x is an array, the filter is applied per frame
(as to images).

Value

filter2 returns a transformed object of the same class as x.

mkball and mkbox return a square matrix that can be used for the filter argument of filter2.
Its dimensions (number of rows and columns) are given by n. For shape="step", the entries of
the matrix are the integers 0 and 1, and the 1s correspond to the interior of a circle of radius n/2
around the center element of the matrix. For shape="ball", the non-zero elements of the matrix
are z = sqrt(radius^2 - x^2 - y^2), a parameterization of a semisphere.

Author(s)

Gregoire Pau, 〈gpau@ebi.ac.uk〉

See Also

Image, Image

floodFill Filling matrix data with flood fill algorithm

Description

Functions to fill regions in images and matrices/arrays and fill holes in indexed objects.

Usage

S4 method for signature 'array':
floodFill(x, pt, col, tolerance=1e-3, ...)
S4 method for signature 'IndexedImage':
fillHull(x, ...)

Arguments

x An array-like object (e.g. Image) to be filled. For fillHull this must be
an instance of IndexedImage.

pt An integer of 2 values for x-y coordinates of the point where fill starts.

col A value for the fill color, supposedly in the same storage mode as x. If x is
an image col will be converted to the corresponding storage mode using the
channel function, and thus can be a character value specifying the color in
X11 mode.

tolerance Color tolerance used during the fill.

... Reserved.

28 frameDist

Details

If no color is specified, the color under the coordinates of pt is used (this only has sense if tolerance
is not zero). The flood fill is implemented using the fast scan line algorithm. It is assumed that
floodFill is run either on matrices of single-framed images. If the latter is not the case, only
the first frame will be modified!

fillHull files holes in objects of IndexedImage’s.

Value

A copy of x with the fill applied.

Author(s)

Gregoire Pau, Oleg Sklyar; 2007

See Also

Image, Image

Examples

if (interactive()) {
data(imageWithHoles)

display(x, main="Original image")
display(floodFill(x,c(5,5),tolerance=0.2))
display(floodFill(x,c(40,40),tolerance=0.2))

mask = x
mask[mask>0.3]=1
mask[mask<=0.3]=0

y = floodFill(mask,c(40,40),2)
class(y) = "IndexedImage"
display(y, main="Indexed mask with holes")

y = fillHull(y)
display(y, main="Indexed mask without holes")

rgb = channel(normalize(y), "rgb")
rgb = floodFill(rgb, c(1,1), "red")
rgb = floodFill(rgb, c(50,50), "blue")
rgb = floodFill(rgb, c(150,150), "green")
display(rgb)

}

frameDist Calculate pairwise distances between image frames or frames of two
images

frameDist 29

Description

Given two images with multiple frames, frameDist calculates a matrix of distances between
frames (the more similar are the images, the smaller are the distances). Prerequisite: images should
be centered and rotationally and scale aligned. The function is recommended with stackObjects
with arguments rotate=combine=TRUE.

Usage

S4 method for signature 'Image, Image':
frameDist(x, y, r, g, b, blur=TRUE,

method="dist", verbose, ...)
S4 method for signature 'Image, missing':
frameDist(x, y, r, g, b, blur=TRUE,

method="dist", verbose, ...)

Arguments

x,y A image stacks.

r,b,g If x and y are in TrueColor mode, these values specify weights of red, green and
blue channels in the resulting distance.

blur A logical indicating whether frames ought to be blurred before comparison
(TRUE recommended).

method Method to use: dist - Euclidian distance, dot - dot product.

verbose Provides additional output as the function can be lengthy.

... Reserved.

Details

For Grayscale images, the distance of each pair of frames, xf and yf, is calculated as mean(abs(xf-
yf)), where mean is taken over the pixels with at least xf or yf being non-zero. For True-
Color images, the distance is calculated as mean(sqrt(r*rc^2+g*gc^2+b*bc^2)), where
rc,gc,bc are [0,1] ranged values of red, green and blue channels and r,g,b are the weights.
Again, the mean is taken only over non-zero pixels.

Value

A matrix of distances. If y is missing - a square symmetric matrix for the distances between frames
in the same image with diagonal elements set at Inf.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

stackObjects

30 getFeatures

getFeatures Feature extraction for objects in indexed images

Description

Functions to extract numerical descriptors for objects in indexed images. The functions here call a
set of individual feature extraction routines for every feature set like hull, texture (Haralick), edge,
moment features etc.

Usage

S4 method for signature 'IndexedImage':
getFeatures(x, ref, N=12, R=30, apply.Gaussian=TRUE, nc=256, ...)
S4 method for signature 'IndexedImage':
features(x, ...)

Arguments

x An object of IndexedImage (like those obtained from propagate or watershed.

ref A reference image containing images of the objects in Grayscale mode (intensity
values)!

N Passed to zernikeMoments. Integer value defining the degree of the Zernike
polynomials, which in turn defines the number of features calculated. Defaults
to 12.

R Passed to zernikeMoments. Defines the radius of the circle around an object
centre from which the features are calculated. It also defines the standard devia-
tion for the 2D Gausian applied at the centre of an object. See details. Defaults
to 30.

apply.Gaussian
Passed to zernikeMoments. A logical value that specifies if a local 2D Gaus-
sian modification should be applied to every object at its centre. Defaults to
TRUE.

nc Passed to haralickFeatures. A numeric value. Specifies the number of
gray levels to separate ref into when calculating the co-occurrence matrix.
Here defaults to 256.

... Reserved.

Details

ref can be missing in calls to getFeatures. In this case texture and other intensity-dependent
features will be omitted.

Value

getFeatures calculates feature matrices and returns an object of IndexedImage with its
features slot set. The typical use would be to re-assign the result to the original image itself, i.e.
x <- getFeatures(x, a).

readImage 31

features extracts the content of the features slot of the IndexedImage. If it is empty, the
function calls getFeatures without a reference image and returns the generated feature set. In
this case the features slot of the original image is not updated.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage, IndexedImage,
IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

load images
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)
ft = hullFeatures(io)
mf = moments(io, ii) ## need these for intensity and size
for (i in seq_along(ft)) ft[[i]] = cbind(ft[[i]], mf[[i]])
io = rmObjects(io, lapply(ft, function(x)

which(x[,"h.s"] < 150 | x[,"int"] < 50 | 0.3 * x[,"h.p"] < x[,"h.edge"])
))

io = getFeatures(io, ii)
str(features(io))

readImage Image I/O

Description

Functions to choose, read and write images from/to files and URL’s. Supported image formats are
determined by the ImageMagick installation.

Usage

chooseImage(colormode = Grayscale)
readImage(files, colormode = Grayscale, ...)

S4 method for signature 'Image':
writeImage(x, files, ...)

32 readImage

Arguments

x An object of Image.

files A character vector of files/URL’s to read from or to write to.

colormode An integer value for the color mode of images after they are read. By default all
images will be converted to Grayscale on read.

... Reserved.

Details

If files is missing when writing images, fileName(x) method will be used to select a single
file to write to. Otherwise, the length of this vector must be equal either 1 or the number of 2D
images in the stack.

When writing images in formats supporting non-lossless compression (like JPEG), the quality can
be spcified used a numeric quality argument with the range [1,100]. Higher values corre-
spond to better quality. Defaults to 95.

The file format is deduced from the file name extension(s), there is neither a need nor a way to
specify the format explicitly.

ImageMagick is used to perform all image I/O operations. Therefore, the package supports all
the file types supported by ImageMagick.

When reading images, files of different formats can be mixed in any consequence, including mixing
single 2D images with TIFF image stacks. The result will contain a stack of all images and stacks
cropped (filled with background if images are smaller) at the size of the first image read.

choose.image is an interactive function that does not return to R until either Ok or Cancel button
is pressed in the GUI dialog. It uses GTK+2 File Open Dialog to select images. Multiple images
can be selected and loaded at once. By default this functions reads images as TrueColor. This
function will produce an error message if the package was compiled without GTK+ support.

Value

For readImage and chooseImage a new instance of Image.

For writeImage an invisible NULL.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2006

References

ImageMagick: http://www.imagemagick.org.

See Also

Image, Image, Image

Examples

f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)

if (interactive()) {
url <- c("http://www.google.com/intl/en/images/logo.gif")
im <- readImage (url, TrueColor)

http://www.imagemagick.org

matchObjects 33

Not run: writeImage (im, "googlelogo.tif")
Not run: im1 <- channel (chooseImage(), "gray")

}

matchObjects Matching objects in two indexed images

Description

For objects detected in one image, this function finds indexes of matching obnects in the other (i.e.
indexes of objects at the locations of the centres of objects in the original image.

Usage

S4 method for signature 'IndexedImage, IndexedImage':
matchObjects(x, ref, ...)

Arguments

x An object of IndexedImage.

ref A reference image IndexedImage with objects to matched to.

... Reserved.

Value

If number of frames in x and ref is 1, then the result is an integer vector of matching indexes,
similar to match.

Otherwise, a list of such vectors, 1 per frame.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

IndexedImage, IndexedImage, IndexedImage

34 closing

closing Morphological operations on images

Description

Functions to perform morphological operations on binary images.

Usage

S4 method for signature 'Image':
dilate(x, kern=morphKern(5), iter=1, ...)
S4 method for signature 'Image':
erode(x, kern=morphKern(5), iter=1, ...)
S4 method for signature 'Image':
opening(x, kern=morphKern(5), iter=1, ...)
S4 method for signature 'Image':
closing(x, kern=morphKern(5), iter=1, ...)

morphKern(size=5, shape="round")

Arguments

x An object of Image. x should be a binary image in the Grayscale mode. If
image is not binary, all non-zero pixels will be considered as 1 to turn the image
into a binary {0,1} image.

kern Kernel mask matrix.

iter Number of iterations.

size, shape Kernel matrix size and shape.

... Reserved.

Details

morphKern can be used to generate a kernel matrix for the use with any of the morphological
operators. The function can generate round and square kernels of odd size, e.g. 5, 7, 9 etc. Even
sizes are not supported because the location of the centre pixel is undefined. Kernels can be altered
in any desired way, this is just a convenience function.

erode applies the mask positioning its centre over every background pixel (0), every pixel which
is not covered by the mask is reset to foreground (1). In this way image features grow in size.

dilate applies the mask positioning its centre over every foreground pixel (1), every pixel which
is not covered by the mask is reset to background (0). In this way image features seem shrink in
size.

opening is erosion followed by dilation and closing is dilation followed by erosion.

Value

A transformed image in an object of Image.

morphKern returns a square matrix of 0 and 1 of a given size.

normalize 35

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006

References

ImageMagick: http://www.imagemagick.org.

See Also

Image, Image, Image

Examples

see example(propagate)

normalize Functions to normalize images

Description

Functions to normalize images.

Usage

S4 method for signature 'Image':
normalize(x, separate=TRUE, ft=c(0,1), ...)

S4 methods for signature 'x=Image'
negate(x, ...)
normalize2(x, ...)

Arguments

x An object of Image-class.

separate If TRUE normalizes each frame separately.

ft A numeric vector of 2 values, target minimum and maximum intensity values
after normalization for Grayscale images.

... Reserved.

Details

negate negates the colors in the reference image. Operates on all image modes.

normalize normalizes Grayscale images to the given range.

normalize2 uses ImageMagick normalization routine to normalize Grayscale or TrueColor
images.

Value

A transformed image in an object of Image.

http://www.imagemagick.org

36 paintObjects

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

References

ImageMagick: http://www.imagemagick.org.

See Also

Image, Image

Examples

see example(getFeatures)

paintObjects Marking detected objects in reference images

Description

This function allows to mark objects detected with getFeatures or watershed in colour for
preview.

Usage

S4 method for signature 'IndexedImage, Image':
paintObjects(x, tgt, opac=c(0.4, 0.05, 0.4), col=c("#FFC72C","#5BABF6","#FF372C"), ...)

Arguments

x An object of IndexedImage in the Grayscale mode with integer-absed
object encoding, as returned by watershed.

tgt A reference grayscale image to calculate object intensity. Should be TrueColor
to produce coloured output.

opac A numeric vector of opacity values for foreground (object boundary), object
background and edges of object contacts. At least 3 values in the above sequence
must be supplied. Opacity range is [0,1] with 0 being fully transparent.

col A character vector of full colours (before opacity applied), colour names sup-
ported, to draw object boundaries, object background and edges of object con-
tacts. At least 3 values must be supplied. Default color scheme is yellow for
edges, blue for background and red for object contacts and object on image
edges.

... Reserved.

Value

A copy of tgt in the same colour mode with objects marked on top of the image. features of x
are not transfered – this result is for visualization only.

http://www.imagemagick.org

propagate 37

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

load images of nuclei (seed points later)
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)

load images of cells (the ones to segment with propagate)
f <- paste(system.file(package="EBImage"), "images/Gene1_R.tif", sep="/")
xi = readImage(f)
normalize images
xi = normalize(xi, separate=TRUE)
segment
mask = thresh(xi, 40, 40, 0.0)
refine segmentation with morphology filters
mk7 = morphKern(7)
mask = dilate(erode(closing(mask, mk7), mk5), mk7)
index objects of xi with 'propagate' using ii as seeds
xo = propagate(xi, io, mask, 1e-5, 1.5)

create an RGB preview of a combination of ii and xi
rgb = channel(ii, "asred") + channel(xi, "asgreen")
paint cells on the preview
rgb = paintObjects(xo, rgb)
paint nuclei on the preview
rgb = paintObjects(io, rgb)
if (interactive()) display(rgb)

propagate Voronoi-based segmentation on image manifolds

Description

R implementation of the Voronoi-based image segmentation on image manifolds [2].

38 propagate

Usage

S4 method for signature 'Image, IndexedImage':
propagate(x, seeds, mask=NULL, lambda=0.1,

ext=1, seed.centers=FALSE, ...)

Arguments

x An object of Image to be segmented, in the Grayscale mode.

seeds An object of IndexedImage of the same size as x in all three dimensions.
This image provides seed points for object detection.

mask An object of Image of the same size as x in all three dimensions; in the
Grayscale mode. All zero regions will be excluded from object detection.

lambda A numeric value. The regularisation parameter for the distance calculations,
determines the trade-off between the Euclidian distance in the image plane and
the contribution of the gradient of the values in x. See details.

ext Extension of the neighborhood to estimate image gradient, in pixels in every
direction from the central point, i.e. ext=1 means a 3x3 neighborhood.

seed.centers If TRUE, only centers of the seed points are left in the seeds image supplied to
the propagate algorithm.

... Reserved.

Details

The method operates by computing a discretized approximation of the Voronoi regions for given
seed points on a manifold with a metric controlled by local image features.

The metric is a Riemannian metric defined in terms of the image I and a regularization parameter
lambda. With this metric the distance between pixels used to let the given seeds grow outwards
(propagate) is

d^2 = (grad(I)^2 + lambda * (dx^2 + dy^2)) / (lambda + 1)

The above formulation was proposed by Carpenter et al, however in the calculation we use a modi-
fied distance measture, in which sharp gradients are downregulated and large distances additionally
penalized. Effectively, we use the following formula:

d = sqrt(grad(I)) + 1e-3*lambda * (dx^2+dy^2)^2

The denominator is left out for speed reasons, so is the square root of the distance.

The gradient is calculated on a neighborhood of pixels (the width of which is controlled by the ar-
gument ext) to avoid relying on single (noisy) pixels. Lambda controls the weight of the Euclidian
distance term. In case of large lambda, d turns into Euclidian distance in the (x,y)-plane. For
small lambda, the distance will be dominated by the intensity gradient.

Value

An image of Image, with the same object indexing as seeds. No new objects are created, only
those specified by seeds are propagated. Use getFeatures to assign the feature matrix.

propagate 39

License

The underlying C++ code is based on code from CellProfiler [1,3]. An LGPL license was granted
by Thouis Jones to use this part of CellProfiler’s code for the propagate function.

Author(s)

Original CellProfiler code: Anne Carpenter <carpenter@wi.mit.edu>, Thouis Jones <thouis@csail.mit.edu>,
In Han Kang <inthek@mit.edu>.

Port for this package: Oleg Sklyar <osklyar@ebi.ac.uk> and Wolfgang Huber <huber@ebi.ac.uk>.

References

[1] A. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D. Guertin,
J.H. Chang, R.A. Lindquist, J. Moffat, P. Golland and D.M. Sabatini, "CellProfiler: image analysis
software for identifying and quantifying cell phenotypes", Genome Biology 2006, 7:R100

[2] T. Jones, A. Carpenter and P. Golland, "Voronoi-Based Segmentation of Cells on Image Man-
ifolds", CVBIA05 (535-543), 2005

[3] CellProfiler: http://www.cellprofiler.org

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

load images of nuclei (seed points later)
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)
if (interactive()) display(io)

load images of cells (the ones to segment with propagate)
f <- paste(system.file(package="EBImage"), "images/Gene1_R.tif", sep="/")
xi = readImage(f)
normalize images
xi = normalize(xi, separate=TRUE)
segment
mask = thresh(xi, 40, 40, 0.0)
refine segmentation with morphology filters
mk7 = morphKern(7)
mask = dilate(erode(closing(mask, mk7), mk5), mk7)
index objects of xi with 'propagate' using ii as seeds
xo = propagate(xi, io, mask, 1e-2, 2)
if (interactive()) display(xo)

40 rmObjects

rmObjects Object removal

Description

The rmObjects functions deletes objects indexed by a list of integer vectors (indexes) from an
image with indexed objects. reenumerate re-enumerates all objects in an IndexedImage from 0
- background to the actual number of objects.

Usage

S4 methods for signatures 'x=IndexedImage,index=numeric'
and 'x=IndexedImage,index=list'
rmObjects(x, index, ...)

S4 method for signature 'IndexedImage':
reenumerate(x, ...)

Arguments

x An object of IndexedImage.

index A numeric (integer) vector of indexes of objects to remove in the frame if x
contains one frame only. For multiple frames, a list of such vectors.

... Reserved.

Value

An image of IndexedImage.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

See Also

IndexedImage, IndexedImage, IndexedImage, IndexedImage

Examples

see example(drawtext)

segment 41

segment Segmentation and edge detection

Description

Fucntions to segment images and detect edges.

Usage

S4 method for signature 'Image':
edge(x, r=0, ...)
S4 method for signature 'Image':
segment(x, cl=10, s=1.5, ...)

Arguments

x An object of Image.

r The radius of the pixel neighbourhood to take into account. The 0 value enables
automatic radius selection.

cl Minimum cluster size in pixels .

s The smoothing threshold.

... Reserved.

Details

edge returns an image of edges between different colours in the original image. Most effective on
binary images.

segment segment an image by analyzing the histograms of the color components and identify-
ing units that are homogeneous with the fuzzy C-means technique (source and implementation
ImageMagick). The smoothing threshold eliminates noise in the second derivative of the his-
togram. As the value is increased, you can expect a smoother second derivative.

Value

A transformed image in an object of Image.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2006

References

ImageMagick: http://www.imagemagick.org.

See Also

Image

http://www.imagemagick.org

42 stackObjects

stackObjects Generate a stack of images for detected objects, one object per image

Description

From an indexed image the functions generates an image stack with one image per object placing
each object in the middle of the image. Objects can be automatically rotated to align them along
the horizontal axis.

Usage

S4 methods for signatures 'x=IndexedImage,ref=Image,index=character'
and 'x=IndexedImage,ref=Image,index=list' and
S4 method for signature 'IndexedImage, Image,
numeric':
stackObjects(x, ref, index, ...)

S4 method for signature 'IndexedImage, Image,
missing':
stackObjects(x, ref, index, combine, rotate, bg.col, ext, centerby, rotateby, ...)

Arguments

x An object of IndexedImage. Images must be Grayscale and carry object
indexing information, like those returned by watershed or propagate.

ref A reference image containing images of the objects to be stacked using x both
as index and the mask. Can be in any color mode.

index Indexes of objects to stack. See details for supported types.

combine Called on a stack if images, specifies if the resulting list of image stacks with
individual objects should be combined into a single image stack. Defaults to
FALSE.

rotate Specifies if the objects should be aligned rotationally. Defaults to TRUE.

bg.col Color for pixels outside the mask defined by x. Defaults to TRUE.

ext Extension of the target bounding box. See details. If not given, ext is calculated
from data.

centerby,rotateby
If ref is a TrueColor image, these character values specify which channel
should be used to center and rotate objects. By default the image is converted
by channel(ref,"gray"). Other possible values are "red", "green"
or "blue".

... Reserved.

Details

The bounding box is set to be a square, which centre coinsides with the geometric center of the
object. The ext argument can be used to specified its size, where edge length will be given by
2*ext+1. If ext is not specified, it is calculated from the data by taking the 95% quantile of the
vector of h.s2major descriptor of hullFeatures taken over all, objects in the image. This
descriptor specifies the extension of the object along its major axis starting from its center.

stackObjects 43

The size of the bounding box is fixed for all frames to enable combining the resulting frames into a
single multiframe image.

indexmust be coersable to numeric to specify object indexes that are taken into the resulting stack.
It can be specified as numeric directly only for images with 1 frame. For images with multiple
frames it can be either a list or a character. If specified as a list, it can be a named list of
numeric indexes where names are converted to character frame indexes in an arbitrary order, or
it can be an unnamed list of the same length as the number of frames. If specifies as character,
each element must contain two numbers separated by a dot where the first number is the index of
the frame and the second one is the index of the object within the frame, e.g. "2.035" will specify
frame 2 and object 35.

Value

An image stack or a list of image stacks if x was itself a stack (contained more than one image).

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

See Also

tile, tile, tile

Examples

load images
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)
if (interactive()) display(io)

stack individual objects
s = stackObjects(io, ii, combine=FALSE)
display stack of objects of from the first image
if (interactive()) display(s[[1]])
combine stacks of objects into a single stack
s = combine(s)
tile the stack into one frame
t = tile(s)
if (interactive()) display(t)

44 thresh

thresh Image and color channel thresholding

Description

Functions to threshold images and color channels of images.

Usage

S4 method for signature 'Image':
thresh(x, w=5, h=5, offset=0.01, ...)
S4 method for signature 'Image':
athresh(x, w=10, h=10, offset=0, ...)
S4 method for signature 'Image':
cthresh(x, threshold=0, ...)

Arguments

x An object of Image. For thresh it must be in the Grayscale mode.

w, h Thresholding frame width and height in pixel.

offset Threshold offset from the mean value.

threshold Threshold value for channel thresholding (uniform).

... Reserved.

Details

If thresh and athresh are adaptive thresholind functions. While athresh can be used on
both Grayscale and TrueColor images, thresh can only be used on Grayscale images,
however it is significantly faster on them.

The value of offset in thresh is on the same scale as data, i.e. the default value is selected
assuming data in the range [0,1]. This value for athresh should be selected empirically, as this
function uses AdaptiveThreshold of ImageMagick and the scale of this parameter was not
documented; the reasonable values are usually in the orders of 500, 1000 or avobe (at least to obtain
similar thresholding to that of 0.01 with thresh on cytomicroscopic images.).

Value

A new instance of Image in the same color mode as input.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2005-2007

References

ImageMagick: http://www.imagemagick.org.

http://www.imagemagick.org

tile 45

See Also

Image, Image, Image, Image, Image

Examples

see example(watershed)

tile Generate a tiled image from a stack of images

Description

Given an image stack (or a list of such those), tile generates for each stack a single image with
frames tiled. untile does exactly the opposite dividing a tiled image into a stack.

Usage

S4 method for signature 'Image':
tile(x, nx=10, lwd=1, fg.col="#E4AF2B", bg.col="gray", ...)
S4 method for signature 'list':
tile(x, nx=10, lwd=1, fg.col="#E4AF2B", bg.col="gray", ...)
S4 method for signature 'Image, numeric':
untile(x, nim, lwd=1, ...)

Arguments

x An object of Image or a list of such objects. Images must be grayscale and carry
object indexing information, like those returned by watershed or propagate.

nx The number of tiled images in a row.

lwd The width of the grid lines between tiled images, can be 0.

fg.col The color of the grid lines (if lwd > 0). This will be converted to Grayscale if
the color mode of x is Grayscale.

bg.col The color of the background for extra tiles. This will be converted to Grayscale
if the color mode of x is Grayscale.

nim A numeric vector of 2 elements for the number of images in both directions.

... Reserved.

Details

tile for x=list is a useful addition to stackObjects, which returns a list of stacks, thus it
can be directly used on the result of the latter.

Value

An image of the same class and in the same color mode as x.

46 resize

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

See Also

stackObjects, stackObjects

Examples

see example(stackObjects)

resize Image transformation: rotation, resize, etc.

Description

Functions to rotate, mirror and resize images.

Usage

S4 method for signature 'Image':
affinet(x, sx=0, rx=0, ry=0, sy=0, tx=0, ty=0, ...)
S4 method for signature 'Image':
flip(x, ...)
S4 method for signature 'Image':
flop(x, ...)
S4 method for signature 'Image':
resample(x, w, h, ...)
S4 method for signature 'Image':
resize(x, w, h, blur=1, filter="Lanczos", ...)
S4 method for signature 'Image':
rotate(x, angle=90, col, ...)

Arguments

x An object of Image.
sx, rx, ry, sy, tx, ty

Elements of the affine matrix.

w, h Width and height of a new resized/resampled image. One of these arguments
can be missing to enable proportional resize.

blur The blur factor, where 1 (TRUE) is blurry, 0 (FALSE) is sharp.

filter Resize pixel sampling filter.

angle Image rotation angle in degrees.

col A numeric, integer or character specifying the background color of the rotated
image. Not implemented yet, defaults to black.

... Reserved.

watershed 47

Details

affinet transforms an image as dictated by the affine matrix.

flip creates a vertical mirror image by reflecting the pixels around the central x-axis.

flop creates a horizontal mirror image by reflecting the pixels around the central y-axis.

resample scales an image to the desired dimensions with pixel sampling. Unlike other scaling
methods, this method does not introduce any additional color into the scaled image.

resize scales an image to the desired dimensions using the supplied filter algorithm. Available
filters are: Point, Box, Triangle, Hermite, Hanning, Hamming, Blackman,
Gaussian, Quadratic, Cubic, Catrom, Mitchell, Lanczos, Bessel, Sinc.
Most of the filters are FIR (finite impulse response), however, Bessel, Gaussian, and Sinc are IIR
(infinite impulse response). Bessel and Sinc are windowed (brought down to zero) with the Black-
man filter.

rotate creates a new image that is a rotated copy of an existing one. Positive angles rotate
counter-clockwise (right-hand rule), while negative angles rotate clockwise. Rotated images are
usually larger than the originals and have ’empty’ triangular corners. X axis. Empty triangles left
over from shearing the image are filled with the background color.

Value

A transformed image in an object of Image.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2006-2007

References

ImageMagick: http://www.imagemagick.org.

See Also

Image

watershed Watershed transformation and watershed based object detection

Description

Watershed transformation and watershed based object detection.

Usage

S4 method for signature 'Image':
watershed(x, tolerance=1, ext=1, ...)

http://www.imagemagick.org

48 watershed

Arguments

x An object of Image in the Grayscale mode.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will be
combined with one of its neighbors, which is the highest. It is assumed that the
function is run on a distance map, therefore the default value is 1. If running the
function on an original grayscale image with intensity range [0,1] one should
modify this value, down to 0.1 or other which is image specific.

ext Extension of the neighborhood for the detection of neighboring objects. Higher
value smoothes out small objects.

... Reserved.

Details

The algorithm identifies and separates objects that stand out of the background (zero), in other
words to use the water fill, the source image is flipped upside down and the resulting valleys (values
with higher intensities) are filled in first until another object or background is met. The deepest
valleys (pixels with highest intensity) become indexed first.

Value

An object of Image in the Grayscale with separate objects indexed be positive integers starting
from 1. To preview the results visually, use display(display(result)) or use it in
combination with paintObjects.

Author(s)

Oleg Sklyar, 〈osklyar@ebi.ac.uk〉, 2007

See Also

Image, Image, Image, Image, \code{matchObjects}

Examples

load images
f <- paste(system.file(package="EBImage"), "images/Gene1_G.tif", sep="/")
ii = readImage(f)
normalize images
ii = normalize(ii, separate=TRUE)
segment
mask = thresh(ii, 25, 25, 0.02)
refine segmentation with morphology filters
mk3 = morphKern(3)
mk5 = morphKern(5)
mask = dilate(erode(closing(mask, mk5), mk3), mk5)
index objects with 'watershed'
io = watershed(distmap(mask), 1.5, 1)
if (interactive()) display(io)

Index

∗Topic classes
image,Image-method, 3
Image-class, 6
IndexedImage-class, 8

∗Topic file
channel, 4
denoise, 11
display, 13
drawtext, 15
edgeFeatures, 18
floodFill, 27
Image, 9
readImage, 31

∗Topic manip
closing, 34
enhance, 17
frameDist, 28
getFeatures, 30
haralickMatrix, 20
hullFeatures, 22
matchObjects, 33
moments, 23
normalize, 35
paintObjects, 36
propagate, 37
resize, 46
rmObjects, 40
segment, 41
stackObjects, 42
thresh, 44
tile, 45
watershed, 47
zernikeMoments, 24

∗Topic methods
image,Image-method, 3
Image-class, 6
IndexedImage-class, 8

∗Topic package
EBImage-deprecated, 1
EBImage-package, 1

’Image’ object creation,
copying and assertion, 2

[,Image-method

(image,Image-method), 3

affinet (resize), 46
affinet,Image-method (resize), 46
animate (display), 13
animate,array-method (display), 13
animate,Image-method (display), 13
animate,IndexedImage-method

(display), 13
Arith (image,Image-method), 3
array, 1, 3, 4, 6–8, 13, 27
as.Image (image,Image-method), 3
as.Image,array-method

(image,Image-method), 3
as.Image,IndexedImage-method

(IndexedImage-class), 8
assert (Image), 9
assert,Image,Image-method

(Image), 9
assert,Image,missing-method

(Image), 9
athresh (thresh), 44
athresh,Image-method (thresh), 44

blur (denoise), 11
blur,Image-method (denoise), 11

cbind, 10
cgamma (enhance), 17
cgamma,Image-method (enhance), 17
channel, 4, 27, 42
channel,ANY,character-method

(channel), 4
channel,Image,character-method

(channel), 4
channelMix (channel), 4
character, 4, 7
choose.image

(EBImage-deprecated), 1
chooseImage, 1
chooseImage (readImage), 31
Class ’Image’, its accessor

method, 2
Class ’IndexedImage’, 2

49

50 INDEX

closing, 34
closing,Image-method (closing), 34
cmoments (moments), 23
cmoments,IndexedImage,Image-method

(moments), 23
cmoments,IndexedImage,missing-method

(moments), 23
Color and image color mode

conversions, 2
colorMode (Image-class), 6
colorMode<- (Image-class), 6
combine (Image), 9
combine,Image,Image-method

(Image), 9
combine,list,missing-method

(Image), 9
Combined feature extraction for

objects in indexed
images, 2

Common generic methods for
class ’Image’, 2

compression (Image-class), 6
compression<- (Image-class), 6
contrast (enhance), 17
contrast,Image-method (enhance),

17
copy, 6
copy (Image), 9
copy,Image-method (Image), 9
cthresh (thresh), 44
cthresh,Image-method (thresh), 44

denoise, 11
denoise,Image-method (denoise), 11
despeckle (denoise), 11
despeckle,Image-method (denoise),

11
dilate (closing), 34
dilate,Image-method (closing), 34
dim, 4
display, 13, 48
Distance map transform of

binary images, 2
distmap, 14
distmap,Image-method (distmap), 14
do.call, 10
drawfont (drawtext), 15
Drawing primitives on images,

annotation, 2
drawtext, 15
drawtext,Image,list,list-method

(drawtext), 15

drawtext,Image,matrix,character-method
(drawtext), 15

drawtext,Image,numeric,character-method
(drawtext), 15

EBImage (EBImage-package), 1
EBImage-deprecated, 1
EBImage-package, 1
edge (segment), 41
edge,Image-method (segment), 41
edge.features

(EBImage-deprecated), 1
edge.features,IndexedImage-method

(EBImage-deprecated), 1
edge.profile

(EBImage-deprecated), 1
edge.profile,IndexedImage-method

(EBImage-deprecated), 1
edgeFeatures, 1, 18
edgeFeatures,IndexedImage-method

(edgeFeatures), 18
edgeProfile, 1
edgeProfile (edgeFeatures), 18
edgeProfile,IndexedImage-method

(edgeFeatures), 18
enhance, 17
enhance,Image-method (enhance), 17
Enhancing images and colors, 2
equalize (enhance), 17
equalize,Image-method (enhance),

17
erode (closing), 34
erode,Image-method (closing), 34
Extraction of edge profiles and

edge features, 2
Extraction of Haralick texture

features and
co-occurance matrices
(GLCM), 2

Extraction of hull features, 2
Extraction of image moments and

moment invariants, 2
Extraction of Zernike moments, 2

features, 36
features (getFeatures), 30
features,IndexedImage-method

(getFeatures), 30
fft, 4, 19
fileName, 32
fileName (Image-class), 6
fileName<- (Image-class), 6
fillHull (floodFill), 27

INDEX 51

fillHull,IndexedImage-method
(floodFill), 27

filter2, 26
filter2,array,matrix-method

(filter2), 26
filter2,Image,matrix-method

(filter2), 26
filter2-methods (filter2), 26
flip (resize), 46
flip,Image-method (resize), 46
floodFill, 27
floodFill,array-method

(floodFill), 27
floor, 15
flop (resize), 46
flop,Image-method (resize), 46
frameDist, 28
frameDist,Image,Image-method

(frameDist), 28
frameDist,Image,missing-method

(frameDist), 28

gblur (denoise), 11
gblur,Image-method (denoise), 11
Generate a stack of images for

detected objects, 2
Generate a tiled image from a

stack, 2
getFeatures, 30, 36, 38
getFeatures,IndexedImage-method

(getFeatures), 30
Grayscale, 10, 15, 20, 23, 34–36, 38, 44, 48
Grayscale (Image-class), 6

haralick.features
(EBImage-deprecated), 1

haralick.features,IndexedImage,Image-method
(EBImage-deprecated), 1

haralick.matrix
(EBImage-deprecated), 1

haralick.matrix,IndexedImage,Image-method
(EBImage-deprecated), 1

haralickFeatures, 1, 30
haralickFeatures

(haralickMatrix), 20
haralickFeatures,IndexedImage,Image-method

(haralickMatrix), 20
haralickMatrix, 1, 20
haralickMatrix,IndexedImage,Image-method

(haralickMatrix), 20
header (Image), 9
header,Image-method (Image), 9

hist,Image-method
(image,Image-method), 3

hull.features
(EBImage-deprecated), 1

hull.features,IndexedImage-method
(EBImage-deprecated), 1

hullFeatures, 1, 22, 42
hullFeatures,IndexedImage-method

(hullFeatures), 22

Image, 1, 3–8, 9, 9–18, 23, 26–28, 32, 34–36,
38, 41, 44–48

Image and color channel
thresholding, 2

Image color manipulation, 2
Image read/write operations, 2
Image transformation, rotation,

resize etc., 2
image,Image-method, 3
Image-class, 20, 25, 35
Image-class, 6
imageData, 3
imageData (Image-class), 6
imageData<- (Image-class), 6
IndexedImage, 13, 16, 19–22, 24–28, 30,

31, 33, 36–40, 42
IndexedImage-class, 8
integer, 4, 7, 33
Interactive image display, 2
is.Image (Image), 9

list, 7

Marking detected objects in
indexed images, 2

match, 33
Matching objects in two indexed

images, 2
matchObjects, 33
matchObjects,IndexedImage,IndexedImage-method

(matchObjects), 33
median, 4
median.Image

(image,Image-method), 3
mediansmooth (denoise), 11
mediansmooth,Image-method

(denoise), 11
mkball (filter2), 26
mkbox (filter2), 26
modulate (enhance), 17
modulate,Image-method (enhance),

17
moments, 19, 22, 23, 25

52 INDEX

moments,Image,missing-method
(moments), 23

moments,IndexedImage,Image-method
(moments), 23

moments,IndexedImage,missing-method
(moments), 23

morphKern (closing), 34
Morphological trasnsformations

of binary images, 2

negate (normalize), 35
negate,Image-method (normalize),

35
new, 6, 10
noise (denoise), 11
Noise removal, blurring and

smoothing of images, 2
noise,Image-method (denoise), 11
normalize, 35
normalize,Image-method

(normalize), 35
normalize2 (normalize), 35
normalize2,Image-method

(normalize), 35
numeric, 4, 7

Object removal in indexed
images, 2

opening (closing), 34
opening,Image-method (closing), 34

paintObjects, 36, 48
paintObjects,IndexedImage,Image-method

(paintObjects), 36
print.Image (image,Image-method),

3
print.IndexedImage

(image,Image-method), 3
propagate, 3, 8, 30, 37, 42, 45
propagate,Image,IndexedImage-method

(propagate), 37

rbind, 10
read.image (EBImage-deprecated), 1
readImage, 1, 6, 31
reenumerate (rmObjects), 40
reenumerate,IndexedImage-method

(rmObjects), 40
resample (resize), 46
resample,Image-method (resize), 46
resize, 46
resize,Image-method (resize), 46
resolution (Image-class), 6

resolution<- (Image-class), 6
rgbImage (channel), 4
rmObjects, 40
rmObjects,IndexedImage,list-method

(rmObjects), 40
rmObjects,IndexedImage,numeric-method

(rmObjects), 40
rmoments (moments), 23
rmoments,IndexedImage,Image-method

(moments), 23
rmoments,IndexedImage,missing-method

(moments), 23
rotate (resize), 46
rotate,Image-method (resize), 46

segment, 41
segment,Image-method (segment), 41
Segmentation and edge detection,

2
sharpen (denoise), 11
sharpen,Image-method (denoise), 11
show,Image-method

(image,Image-method), 3
smoments (moments), 23
smoments,IndexedImage,Image-method

(moments), 23
smoments,IndexedImage,missing-method

(moments), 23
sqrt, 4
stackObjects, 24, 29, 42, 46
stackObjects,IndexedImage,Image,character-method

(stackObjects), 42
stackObjects,IndexedImage,Image,list-method

(stackObjects), 42
stackObjects,IndexedImage,Image,missing-method

(stackObjects), 42
stackObjects,IndexedImage,Image,numeric-method

(stackObjects), 42
stopIfNotImage (Image), 9

thresh, 44
thresh,Image-method (thresh), 44
tile, 43, 45
tile,Image-method (tile), 45
tile,list-method (tile), 45
TrueColor, 5, 10, 32, 35, 36, 44
TrueColor (Image-class), 6

umask (denoise), 11
umask,Image-method (denoise), 11
untile (tile), 45
untile,Image,numeric-method

(tile), 45

INDEX 53

Voronoi-based segmentation on
image manifolds, 2

watershed, 8, 30, 36, 42, 45, 47
Watershed transformation and

watershed-based object
detection, 2

watershed,Image-method
(watershed), 47

write.image (EBImage-deprecated),
1

write.image,Image-method
(EBImage-deprecated), 1

writeImage, 1
writeImage (readImage), 31
writeImage,Image-method

(readImage), 31

zernike.moments
(EBImage-deprecated), 1

zernike.moments,IndexedImage,Image-method
(EBImage-deprecated), 1

zernikeMoments, 1, 24, 30
zernikeMoments,IndexedImage,Image-method

(zernikeMoments), 24

	EBImage-deprecated
	EBImage-package
	image,Image-method
	channel
	Image-class
	IndexedImage-class
	Image
	denoise
	display
	distmap
	drawtext
	enhance
	edgeFeatures
	haralickMatrix
	hullFeatures
	moments
	zernikeMoments
	filter2
	floodFill
	frameDist
	getFeatures
	readImage
	matchObjects
	closing
	normalize
	paintObjects
	propagate
	rmObjects
	segment
	stackObjects
	thresh
	tile
	resize
	watershed
	Index

