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1 Introduction

Two important issues in computational biology are the extent to which it is
possible to model transcriptional interactions by large networks of interacting
elements and how these interactions can be effectively learned from measured
expression data [14]. It should be noted that by focusing only on transcript
data, the inferred network should not be considered as a proper biochemical
regulatory network, but rather as a gene-to-gene network where many physical
connections between macromolecules might be hidden by short-cuts. In spite
of some evident limitations the bioinformatics community made important ad-
vances in this domain over the last few years [7, 12]. In particular, mutual
information networks have been succesfully applied to transcriptional network
inference [1, 6]. Such methods, which typically rely on the estimation of mutual
information between variables, have recently held the attention of the bioinfor-
matics community for the inference of very large networks [2, 1, 6, 9].

The minet package provides a set of functions to infer mutual information
networks from a dataset. If fed with microarray data, the package returns a
network where nodes denote genes and edges model statistical dependencies
between genes. The weight of an edge provides evidence about the existence of
a specific (e.g transcriptional) gene to gene interaction.

The inference proceeds in two steps. First, the Mutual Information Matrix
(MIM) is computed, a square matrix whose MIMij term is the mutual infor-
mation between gene Xi and Xj . Secondly, an inference algorithm takes the
MIM matrix as input and attributes a score to each edge connecting a pair of
nodes. Different entropy estimators are implemented in this package as well as
different inference methods, namely aracne, clr and mrnet [1, 6, 9]. Also, the
package integrates accuracy assessment tools, like PR-curves and ROC-curves,
to compare the inferred network with a reference one.

This vignette guides the package user in :

1. Estimating the mutual information matrix and discretizing data if needed.

2. Inferring a network modeling the interactions between the dataset’s vari-
ables.
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3. Comparing the infered network to a network of known interactions in order
to compute Fβ − scores.

4. Plotting precision-recall and receiver operating characteristic curves.

5. Plotting the infered network using the Rgraphviz package.

The data used in the following examples was generated using the SynTReN
simulator [4]. This data generator uses a known network of interacting genes in
order to generate gene expression levels for all the genes included in the network.
Once the network is infered from the generated data, it can be compared to the
true underlying network in order to validate the inference algorithm.

2 Mutual Information Estimation

Mutual information networks are a subcategory of network inference methods.
These methods set a link between two nodes if it exhibits a high score based on
the mutual information between the nodes.

Mutual informaton networks rely on the computation of the mutual infor-
mation matrix (MIM), a square matrix whose element

MIMij = I(Xi;Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj) log p(xi)p(xj)

is the mutual information between Xi and Xj , where Xi ∈ X , i = 1, ..., n, is a
discrete random variable denoting the expression level of the ith gene.

2.1 Obtaining The Mutual Information Matrix

> library(minet)

> data(syn.data)

> estimator = "mi.empirical"

> mim <- build.mim(syn.data, estimator)

> mim[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.00000 4.60517 4.60517 4.60517 4.60517
SWI4 4.60517 0.00000 4.60517 4.60517 4.60517
CDC10 4.60517 4.60517 0.00000 4.60517 4.60517
SPT16 4.60517 4.60517 4.60517 0.00000 4.60517
SWI4_SWI6 4.60517 4.60517 4.60517 4.60517 0.00000

In the above code, the mutual information matrix is built using the function
build.mim. This function takes the dataset and one of the mutual information
estimator explained in this section as input. All the estimators require discrete
data values. The discretize function allows the user to choose between two
binning algorithms.
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2.2 Supervized Discretization

All the mutual information estimators described in this section require discrete
data values. If the random variable X is continuous and can take values com-
prised between a and b, it is always possible to divide the interval [a, b] into |X |
subintervals in view of using the discrete estimators. The package provides a
function that discretizes data using the equal frequency or equal width binning
algorithm [5].

2.2.1 Equal Width Binning

The principle of the equal width discretization is to divide [a, b] into |X | subin-
tervals all having the same size:

[a, a+
b− a
X

[, [a+
b− a
X

, a+ 2
b− a
X

[, ..., [a+ (|X | − 1)
b− a
X

, b+ ε[

Note that an ε is added in the last interval in order to include the maximal value
in one of the |X | bins. This discretization scheme can be done in O(m).

> library(minet)

> data(syn.data)

> disc <- "equalwidth"

> nbins <- sqrt(nrow(syn.data))

> ew.data <- discretize(syn.data, disc, nbins)

> syn.data[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
1 0.4916395 0.2687357 0.5736381 0.2119972 0.2599864
2 0.8342323 0.6566324 0.8750186 0.2810182 0.6977198
3 0.8208405 0.6351676 0.8643861 0.4749119 0.6726126
4 0.9841594 0.9593638 0.9885627 0.9474643 0.9674964
5 0.9879920 0.9690066 0.9913392 0.9999866 0.9764548

> ew.data[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
1 2 1 2 2 0
2 7 6 7 2 6
3 7 5 7 4 6
4 9 9 9 9 9
5 9 9 9 9 9

2.2.2 Equal Frequencies Binning

The equal frequency discretization scheme consist in dividing the interval [a, b]
into |X | intervals, each having the same number of data points (i.e., m

|X | points).
As a result, the size of each interval can be different. Note that if the |X |
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intervals have equal frequencies, the computation of entropy is straightforward
since it is log 1

|X | . However, there can be more than m
|X | identical values in a

vector of measurements. In the latter case, one of the bins will have more points
than the others and the entropy will be different from 1

|X | .

> disc <- "equalfreq"

> ef.data <- discretize(syn.data, disc, nbins)

> ef.data[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
1 0 0 0 1 0
2 4 4 4 1 4
3 3 3 3 4 3
4 9 9 9 9 9
5 9 9 9 9 9

2.3 Mutual Information Estimators

The package implements four estimators, called "mi.empirical","mi.mm", "mi.sg"
and "mi.shrink".

2.3.1 Empirical Estimation

The estimation of mutual information relies on the estimation of entropy as
suggested by the following formula:

I(X;Y ) = H(X) +H(Y )−H(X,Y )

where
H(X) = −

∑
x∈X

p(x) log(p(x))

is the entropy of the discrete variable X. The empirical estimator (also called
”plug-in”, ”maximum likelihood” or ”naive”, see [29]) is simply the entropy of
the empirical distribution:

Ĥemp(p(X)) = −
∑
i∈X

nb(xi)
m

log
nb(xi)
m

where nb(xi) is the counting of data points in bin xi.

2.3.2 Miller-Madow Estimation

The Miller-Madow estimation is given by the following formula which is the
empirical entropy corrected by the asymptotic bias:

Ĥmm(p(X)) = Ĥemp(p(X)) +
|X | − 1

2m
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where |X | is the number of bins with non-zero probability. This correction
adds no additional computational cost to the empirical estimator. However, it
reduces the bias without decreasing variance. As a result, it is often preferred
to use the Miller-Madow estimator instead of the empirical entropy estimator.

2.3.3 Schurmann-Grassberger Estimation

The Dirichlet distribution is the multivariate generalization of the beta distri-
bution. It is also the conjugate prior of the multinomial distribution in Bayesian
statistics. More precisely, the density of a Dirichlet distribution takes the fol-
lowing form

f(X;β) =
∏
i∈X Γ(βi)

Γ(
∑
i∈X βi)

∏
i∈X

xβi−1
i

where βi is the prior probability of an event xi and Γ(·) is the gamma function,
(see [8, 10] for more details).

In front of no apriori knowledge, the βi are all set to equality (βi = N, i ∈ X )
so as no event becomes more probable than another. Note that using a Dirichlet
prior with parameters N is equivalent to adding N ≥ 0 “pseudo-counts” to each
bin i ∈ X . The prior actually provides the estimator the information that |X |N
counts have been observed in previous experiments. From that viewpoint, |X |N
becomes the a priori sample size.

The entropy of a Dirichlet distribution can be computed directly with the
following equation:

Ĥdir(X) =
1

m+ |X |N
∑
i∈X

(nb(xi) +N)(ψ(m+ |X |N + 1)− ψ(nb(xi) +N + 1))

where ψ(z) = d ln Γ(z)
dz is the digamma function.

Various choice of prior parameters has been proposed in the literature. The
Schurmann-Grassberger sets N = 1

|X | .

2.3.4 Shrinkage Estimation

Another interesting approach was proposed in [8]. The latter is a shrinkage
estimation of the entropy. It proposes to assign to an event xi a mixture of two
probability estimators:

p̂(xi) = λ
1
|X |

+ (1− λ)
nb(xi)
m

The first one, 1
|X | , that has a zero variance but a large bias and the second

one, the empirical one nb(xi)
m , that has a larger variance but is unbiased. The

advantage of shrinking the second one towards the first one is that, the resulting
estimator outperform both individual estimates [12]. As the value of λ tends
to one, the estimated entropy is moved toward the maximal entropy (uniform
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probability) whereas when λ is zero the estimated entropy tends to the value of
the empirical one.

The parameter λ has to be chosen in order to minimize a risk function R(λ).

R(λ) = E[
∑
i∈X

(p̂(xi)− p(xi))2]

In [12] the analytical value of λ that minimize the risk is expressed in generic
terms. Applied to the problem of estimating bin probabilities [8], it gives

λ∗ =
|X |(m2 −

∑
i∈X nb(xi)

2)
(m− 1)(|X |

∑
i∈X nb(xi)2 −m2)

The entropy can then be computed using

Ĥshrink = H(p̂(X)) = −
∑
i∈X

p̂(xi) log p̂(xi)

3 Network Inference

Three network inference methods are available in the package : aracne, clr and
mrnet. These receive as input the mutual information matrix and return the
weighted adjacency matrix of the network. The network can be directly infered
from the dataset by using the minet function. This function takes as input the
dataset, the name of the estimator and the name of the discretization method
to be used as well as the number of bins to be used.

3.1 Obtaining The Network

In the following code, the mrnet algorithm is applied to the mutual information
matrix estimated in the previous section:

> net <- mrnet(mim)

> net[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.00000 4.60517 0 0 0
SWI4 4.60517 0.00000 0 0 0
CDC10 0.00000 0.00000 0 0 0
SPT16 0.00000 0.00000 0 0 0
SWI4_SWI6 0.00000 0.00000 0 0 0

The returned value is the weighted adjacency matrix of the network.
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3.2 MRNET

Consider a supervised learning task, where the output is denoted by Y and V
is the set of input variables. The method ranks the set V of inputs according to
a score that is the difference between the mutual information with the output
variable Y (maximum relevance) and the average mutual information with the
previously ranked variables (minimum redundancy). The greedy search starts
by selecting the variable Xi having the highest mutual information with the
target Y . The second selected variable Xj will be the one that maximizes
I(Xj ;Y )− I(Xj ;Xi). In the following steps, given a set S of selected variables,
the criterion updates S by choosing the variable Xk that maximizes

I(Xk;Y )− 1
|S|

∑
Xi∈S

I(Xk;Xi)

The MRNET approach consists in repeating this selection procedure for each
target variable by putting Y = Xi and V = X\{Xi}, i = 1, ..., n where X is the
set of outcomes of all variables. The weight of each pair (Xi, Xj) will be the
maximum score between the one computed when Xi is the output and the one
computed when Xj is the output.

3.3 CLR

The CLR algorithm considers the MIM as the weighted adjacency matrix of the
network but instead of using the information I(Xi;Xj) as the weight of the link

between features Xi and Xj , it takes into account the score
√
z2
i + z2

j , where

zi = max
{

0,
I(Xi;Xj)− µi

σi

}
and µi and σi are, respectively, the mean and the standard deviation of the
empirical distribution of the mutual information values I(Xi;Xk), k = 1, ..., n.

3.4 ARACNE

The ARACNE algorithm is based on the Data Processing Inequality . This
inequality states that, if gene X1 interacts with gene X3 through gene X2, then

I(X1;X3) ≤ min (I(X1;X2), I(X2;X3))

The ARACNE procedure starts by assigning to each pair of nodes a weight equal
to the mutual information. Then the weakest edge of each triplet is interpreted
as an indirect interaction and is removed if the difference between the two lowest
weights is above a threshold W0. The function aracne has an extra argument
eps which is the numerical value of W0.
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3.5 The minet function

The minet function infers directly the mutual information network from the
input dataset. Besides the dataset, this function’s arguments are the mutual
information estimator, the inference method, the binning algorithm and the
number of bins to be used. All the instructions used until now can then be
summarized with the following call to minet:

> library(minet)

> data(syn.data)

> net <- minet(syn.data, method = "mrnet", estimator = "mi.empirical",

+ disc = "equalwidth", nbins = sqrt(nrow(syn.data)))

> net[1:5, 1:5]

CDC11 SWI4 CDC10 SPT16 SWI4_SWI6
CDC11 0.00000000 0.07783305 0.12427277 0.00000000 0.03847938
SWI4 0.07783305 0.00000000 0.68443641 0.03522452 0.73285129
CDC10 0.12427277 0.68443641 0.00000000 0.01238448 0.19752001
SPT16 0.00000000 0.03522452 0.01238448 0.00000000 0.01008181
SWI4_SWI6 0.03847938 0.73285129 0.19752001 0.01008181 0.00000000

Note that in this case the returned object is the normalized weighted adjacency
matrix of the network (i.e. the values range from 0 to 1).

4 Validation

4.1 Obtaining Confusion Matrices

The networks infered using this package are weighted but many low weighted
edges can be removed by using a threshold value. By setting to 0 all edges whose
weight are lower than the threshold and to 1 the other edges weight, the network
inference problem can be seen as a binary decision problem, where the inference
algorithm plays the role of a classifier: for each pair of nodes, the algorithm
either adds an edge or does not. Each pair of nodes is thus assigned a positive
label (an edge) or a negative one (no edge). A positive label (an edge) predicted
by the algorithm is considered as a true positive (TP) or as a false positive
(FP) depending on the presence or not of the corresponding edge in the true
underlying network, respectively. Analogously, a negative label is considered
as a true negative (TN) or a false negative (FN) depending on whether the
corresponding edge is present or not in the underlying true network, respectively.
The decision made by the algorithm can be summarized by a confusion matrix
(see table 4.1).

In our case, the threshold value can be seen as the minimal edge weight
required for the edge to be infered : edges whose weight are strictly below the
threshold are removed from the network. Then, a different confusion matrix
is obtained for each different threshold. The table returned by the validate
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EDGE Infered Not Infered
Exists TP FN

Doesn’t Exist FP TN

Table 1: Confusion matrix

function contains all the confusion matrices obtained with steps thresholds
ranging from the lowest to the highest value of the edges weight.

> library(minet)

> data(syn.data)

> data(syn.net)

> net <- minet(syn.data)

> table <- validate(net, syn.net, steps = 20)

> table[1:10, ]

thrsh tp fp tn fn
1 0.00 130 2370 0 0
2 0.05 74 202 2168 56
3 0.10 60 142 2228 70
4 0.15 60 110 2260 70
5 0.20 56 84 2286 74
6 0.25 56 62 2308 74
7 0.30 52 60 2310 78
8 0.35 48 40 2330 82
9 0.40 42 24 2346 88
10 0.45 42 22 2348 88

In the above code, the validate function compares the infered network net
to syn.net, the network underlying syn.data. Note that the true underlying
network has to be a matrix containing values 1 (presence of the edge) or 0
(absence of the edge).

Each line of the returned table contains the threshold used and the confusion
matrix obtained by comparing syn.net to the infered network.

Note that the validate function distinguishes the following cases:

� Both networks are oriented

� Both networks are unoriented

� One of the network is oriented and the other unoriented

In the third case, the oriented network will be considered unoriented.

4.2 Using the Confusion Matrices

The confusion matrix summarizes the decisions made by the algorithm. Thus
in order to compare inference algorithms, we compare their confusion matrix,
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more precisely, we compare several criteras that are derived from that matrix
[3]:

� Precision: p = TP
TP+FP

� Recall: r = TP
TP+FN

� True Positive Rate: tpr = TP
TP+TN

� False Positive Rate: fpr = FP
FP+FN

� Fβ-score: Fβ = (1 + β) pr
βp+r

These scores are returned by the functions rates, pr and fscores. The
functions show.pr and show.roc can be used to visualize precision-recall curves
and receiver operating characteristic curves respectively. The show.pr function
uses the precisions and recalls computed by the function pr and the show.roc
relies on the rates returned by the rates function in order to plot receiver
operating characteristic curves. All these functions take as input the data.frame
returned by the validate function:

> library(minet)

> data(syn.data)

> data(syn.net)

> net1 <- minet(syn.data, method = "mrnet")

> net2 <- minet(syn.data, method = "clr")

> table1 <- validate(net1, syn.net, steps = 50)

> table2 <- validate(net2, syn.net, steps = 50)

Once the data.frames table1 and table2 are computed, we can use the
function

� pr(table) to obtain precisions and recalls.

� rates(table) to obtain true positive rates and false positive rates.

� fscores(table,beta) to obtain Fβ − scores.
Both functions show.pr and show.roc return the device associated to the plot-
ting window used. This allows the user to plot several curves on the same figure.
The following code generates the curves in figure 1.

> dev <- show.pr(table1, pch = 2, type = "b", col = "green")

> show.pr(table2, device = dev, pch = 1, type = "b", col = "blue")

pdf
2

> dev <- show.roc(table1, type = "b", col = "green")

> show.roc(table2, device = dev, type = "b", col = "blue")

pdf
3

10



Figure 1: Precision-Recall curve (left) and Receiver Operating Characteristic
curve (right), for both inference algorithms mrnet (green) and clr (blue).
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4.3 Plotting the infered network with Rgraphviz

In order to plot the infered netwok, we suggest using the Rgraphviz package
with the following code:

> library(minet)

> data(syn.data)

> net <- minet(dataset = syn.data, method = "aracne", estimator = "mi.mm")

> n <- list(fillcolor = "lightgreen", fontsize = 20, fontcolor = "red",

+ height = 0.4, width = 0.4, fixedsize = F)

The above code generates the graph in figure 2.
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Figure 2: Infered network plotted using Rgraphviz
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