\name{rfCMA} \alias{rfCMA} \title{Classification based on Random Forests} \description{Random Forests were proposed by Breiman (2001) and are implemented in the package \code{randomForest}. In this package, they can as well be used to rank variables according to their importance, s. \code{GeneSelection}. For \code{S4} method information, see \link{rfCMA-methods}} \usage{ rfCMA(X, y, f, learnind, varimp = TRUE, seed = 111, models=FALSE, ...)} \arguments{ \item{X}{Gene expression data. Can be one of the following: \itemize{ \item A \code{matrix}. Rows correspond to observations, columns to variables. \item A \code{data.frame}, when \code{f} is \emph{not} missing (s. below). \item An object of class \code{ExpressionSet}. } } \item{y}{Class labels. Can be one of the following: \itemize{ \item A \code{numeric} vector. \item A \code{factor}. \item A \code{character} if \code{X} is an \code{ExpressionSet} that specifies the phenotype variable. \item \code{missing}, if \code{X} is a \code{data.frame} and a proper formula \code{f} is provided. } \bold{WARNING}: The class labels will be re-coded to range from \code{0} to \code{K-1}, where \code{K} is the total number of different classes in the learning set. } \item{f}{A two-sided formula, if \code{X} is a \code{data.frame}. The left part correspond to class labels, the right to variables.} \item{learnind}{An index vector specifying the observations that belong to the learning set. May be \code{missing}; in that case, the learning set consists of all observations and predictions are made on the learning set.} \item{varimp}{Should variable importance measures be computed ? Defauls to \code{TRUE}.} \item{seed}{Fix Random number generator seed to \code{seed}. This is useful to guarantee reproducibility of the results.} \item{models}{a logical value indicating whether the model object shall be returned } \item{\dots}{Further arguments to be passed to \code{randomForest} from the package of the same name.} } \value{If \code{varimp}, then an object of class \code{\link{clvarseloutput}} is returned, otherwise an object of class \code{\link{cloutput}}} \references{Breiman, L. (2001) Random Forest. \emph{Machine Learning, 45:5-32.}} \author{Martin Slawski \email{ms@cs.uni-sb.de} Anne-Laure Boulesteix \email{boulesteix@ibe.med.uni-muenchen.de}} \seealso{\code{\link{compBoostCMA}}, \code{\link{dldaCMA}}, \code{\link{ElasticNetCMA}}, \code{\link{fdaCMA}}, \code{\link{flexdaCMA}}, \code{\link{gbmCMA}}, \code{\link{knnCMA}}, \code{\link{ldaCMA}}, \code{\link{LassoCMA}}, \code{\link{nnetCMA}}, \code{\link{pknnCMA}}, \code{\link{plrCMA}}, \code{\link{pls_ldaCMA}}, \code{\link{pls_lrCMA}}, \code{\link{pls_rfCMA}}, \code{\link{pnnCMA}}, \code{\link{qdaCMA}}, \code{\link{scdaCMA}}, \code{\link{shrinkldaCMA}}, \code{\link{svmCMA}}} \examples{ ### load Khan data data(khan) ### extract class labels khanY <- khan[,1] ### extract gene expression khanX <- as.matrix(khan[,-1]) ### select learningset set.seed(111) learnind <- sample(length(khanY), size=floor(2/3*length(khanY))) ### run random Forest #rfresult <- rfCMA(X=khanX, y=khanY, learnind=learnind, varimp = FALSE) ### show results #show(rfresult) #ftable(rfresult) #plot(rfresult) } \keyword{multivariate}