\name{ebplots} \alias{ebplots} \alias{checkCCV} \alias{checkModel} \alias{checkVarsQQ} \alias{checkVarsMar} \alias{plotMarginal} \alias{plotCluster} \alias{plot.ebarraysEMfit} \title{Various plotting routines in the EBarrays package} \description{ Various plotting routines, used for diagnostic purposes } \usage{ checkCCV(data, useRank = FALSE, f = 1/2) checkModel(data, fit, model = c("gamma", "lognormal", "lnnmv"), number = 9, nb = 10, cluster = 1, groupid = NULL) checkVarsQQ(data, groupid, \dots) checkVarsMar(data, groupid, xlab, ylab, \dots) plotMarginal(fit, data, kernel = "rect", n = 100, bw = "nrd0", adjust = 1, xlab, ylab,\dots) plotCluster(fit, data, cond = NULL, ncolors = 123, sep=TRUE, transform=NULL) \S3method{plot}{ebarraysEMfit}(x, data, plottype="cluster", \dots) } \arguments{ \item{data}{ data, as a ``matrix'' or ``ExpressionSet''} \item{useRank}{ logical. If \code{TRUE}, ranks of means and c.v.-s are used in the scatterplot } \item{f}{ passed on to \code{\link{lowess}}} \item{fit, x}{ object of class ``ebarraysEMfit'', typically produced by a call to \code{\link{emfit}} } \item{model}{ which theoretical model use for Q-Q plot. Partial string matching is allowed } \item{number}{ number of bins for checking model assumption.} \item{nb}{ number of data rows included in each bin for checking model assumption} \item{cluster}{ check model assumption for data in that cluster } \item{groupid}{ an integer vector indicating which group each sample belongs to. groupid for samples not included in the analysis should be 0. } \item{kernel, n, bw, adjust}{ passed on to \code{\link{density}}} \item{cond}{ a vector specifying the condition for each replicate} \item{ncolors}{ different number of colors in the plot} \item{xlab, ylab}{ labels for x-axis and y-axis} \item{sep}{ whether or not to draw horizontal lines between clusters} \item{transform}{ a function to transform the original data in plotting} \item{plottype}{ a character string specifying the type of the plot. Available options are "cluster" and "marginal". The default plottype "cluster" employs function 'plotCluster' whereas the "marginal" plottype uses function 'plotMarginal'.} \item{\dots}{ extra arguments are passed to the \code{qqmath}, \code{histogram} and \code{xyplot} call used to produce the final result } } \details{ \code{checkCCV} checks the constant coefficient of variation assumption made in the GG and LNN models. \code{checkModel} generates QQ plots for subsets of (log) intensities in a small window. They are used to check the Log-Normal assumption on observation component of the LNN and LNNMV models and the Gamma assumption on observation component of the GG model. \code{checkVarsQQ} generates QQ plot for gene specific sample variances. It is used to check the assumption of a scaled inverse chi-square prior on gene specific variances, made in the LNNMV model. \code{checkVarsMar} is another diagnostic tool to check this assumption. The density histogram of gene specific sample variances and the density of the scaled inverse chi-square distribution with parameters estimated from data will be plotted. \code{checkMarginal} generates predictive marginal distribution from fitted model and compares with estimated marginal (kernel) density of data. Available for the GG and LNN models only. \code{plotCluster} generate heatmap for gene expression data with clusters } \value{ \code{checkModel}, \code{checkVarsQQ} and \code{checkVarsMar} return an object of class ``trellis'', using function in the Lattice package. Note that in certain situations, these may need to be explicitly `print'-ed to have any effect. } \author{Ming Yuan, Ping Wang, Deepayan Sarkar, Michael Newton, and Christina Kendziorski} \references{ Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8:37-52. Kendziorski, C.M., Newton, M.A., Lan, H., Gould, M.N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22:3899-3914. Newton, M.A. and Kendziorski, C.M. Parametric Empirical Bayes Methods for Microarrays in The analysis of gene expression data: methods and software. Eds. G. Parmigiani, E.S. Garrett, R. Irizarry and S.L. Zeger, New York: Springer Verlag, 2003. Newton, M.A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture model. Biostatistics 5: 155-176. Yuan, M. and Kendziorski, C. (2006). A unified approach for simultaneous gene clustering and differential expression identification. Biometrics 62(4): 1089-1098. } \seealso{\code{\link{emfit}}, \code{\link{lowess}}} \examples{ } \keyword{models}