1 Installation

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("SingleCellMultiModal")

2 Load libraries

library(MultiAssayExperiment)
library(SingleCellMultiModal)

3 CITE-seq dataset

CITE-seq data are a combination of two data types extracted at the same time from the same cell. First data type is scRNA-seq data, while the second one consists of about a hundread of antibody-derived tags (ADT). In particular this dataset is provided by Stoeckius et al. (2017).

3.1 Downloading datasets

The user can see the available dataset by using the default options

CITEseq(DataType="cord_blood", modes="*", dry.run=TRUE, version="1.0.0")
## Dataset: cord_blood
## snapshotDate(): 2021-05-18
##    ah_id            mode file_size rdataclass rdatadateadded rdatadateremoved
## 1 EH3795    scADT_Counts    0.2 Mb     matrix     2020-09-23             <NA>
## 2 EH3796 scRNAseq_Counts   22.2 Mb     matrix     2020-09-23             <NA>

Or simply by setting dry.run = FALSE it downloads the data and creates the MultiAssayExperiment object.

In this example, we will use one of the two available datasets scADT_Counts:

mse <- CITEseq(
    DataType="cord_blood", modes="*", dry.run=FALSE, version="1.0.0"
)

mse
## A MultiAssayExperiment object of 2 listed
##  experiments with user-defined names and respective classes.
##  Containing an ExperimentList class object of length 2:
##  [1] scADT: matrix with 13 rows and 8617 columns
##  [2] scRNAseq: matrix with 36280 rows and 8617 columns
## Functionality:
##  experiments() - obtain the ExperimentList instance
##  colData() - the primary/phenotype DataFrame
##  sampleMap() - the sample coordination DataFrame
##  `$`, `[`, `[[` - extract colData columns, subset, or experiment
##  *Format() - convert into a long or wide DataFrame
##  assays() - convert ExperimentList to a SimpleList of matrices
##  exportClass() - save all data to files

Example with actual data:

experiments(mse)
## ExperimentList class object of length 2:
##  [1] scADT: matrix with 13 rows and 8617 columns
##  [2] scRNAseq: matrix with 36280 rows and 8617 columns

3.2 Exploring the data structure

Check row annotations:

rownames(mse)
## CharacterList of length 2
## [["scADT"]] CD3 CD4 CD8 CD45RA CD56 CD16 CD10 CD11c CD14 CD19 CD34 CCR5 CCR7
## [["scRNAseq"]] ERCC_ERCC-00104 HUMAN_A1BG ... MOUSE_n-R5s25 MOUSE_n-R5s31

Take a peek at the sampleMap:

sampleMap(mse)
## DataFrame with 17234 rows and 3 columns
##          assay          primary          colname
##       <factor>      <character>      <character>
## 1        scADT CTGTTTACACCGCTAG CTGTTTACACCGCTAG
## 2        scADT CTCTACGGTGTGGCTC CTCTACGGTGTGGCTC
## 3        scADT AGCAGCCAGGCTCATT AGCAGCCAGGCTCATT
## 4        scADT GAATAAGAGATCCCAT GAATAAGAGATCCCAT
## 5        scADT GTGCATAGTCATGCAT GTGCATAGTCATGCAT
## ...        ...              ...              ...
## 17230 scRNAseq TTGCCGTGTAGATTAG TTGCCGTGTAGATTAG
## 17231 scRNAseq GGCGTGTAGTGTACTC GGCGTGTAGTGTACTC
## 17232 scRNAseq CGTATGCCGTCTTCTG CGTATGCCGTCTTCTG
## 17233 scRNAseq TACACGACGCTCTTCC TACACGACGCTCTTCC
## 17234 scRNAseq ACACGACGCTCTTCCG ACACGACGCTCTTCCG

3.3 scRNA-seq data

The scRNA-seq data are accessible with the name scRNAseq, which returns a matrix object.

head(experiments(mse)$scRNAseq)[, 1:4]
##                 CTGTTTACACCGCTAG CTCTACGGTGTGGCTC AGCAGCCAGGCTCATT
## ERCC_ERCC-00104                0                0                0
## HUMAN_A1BG                     0                0                0
## HUMAN_A1BG-AS1                 0                0                0
## HUMAN_A1CF                     0                0                0
## HUMAN_A2M                      0                0                0
## HUMAN_A2M-AS1                  0                0                0
##                 GAATAAGAGATCCCAT
## ERCC_ERCC-00104                0
## HUMAN_A1BG                     0
## HUMAN_A1BG-AS1                 0
## HUMAN_A1CF                     0
## HUMAN_A2M                      0
## HUMAN_A2M-AS1                  0

3.4 scADT data

The scADT data are accessible with the name scADT, which returns a matrix object.

head(experiments(mse)$scADT)[, 1:4]
##        CTGTTTACACCGCTAG CTCTACGGTGTGGCTC AGCAGCCAGGCTCATT GAATAAGAGATCCCAT
## CD3                  60               52               89               55
## CD4                  72               49              112               66
## CD8                  76               59               61               56
## CD45RA              575             3943              682              378
## CD56                 64               68               87               58
## CD16                161              107              117               82

4 SingleCellExperiment object conversion

Because of already large use of some methodologies (such as in the SingleCellExperiment vignette or CiteFuse Vignette where the SingleCellExperiment object is used for CITE-seq data, we provide a function for the conversion of our CITE-seq MultiAssayExperiment object into a SingleCellExperiment object with scRNA-seq data as counts and scADT data as altExps.

sce <- CITEseq(DataType="cord_blood", modes="*", dry.run=FALSE, version="1.0.0",
              DataClass="SingleCellExperiment")
sce
## class: SingleCellExperiment 
## dim: 36280 8617 
## metadata(0):
## assays(1): counts
## rownames(36280): ERCC_ERCC-00104 HUMAN_A1BG ... MOUSE_n-R5s25
##   MOUSE_n-R5s31
## rowData names(0):
## colnames(8617): CTGTTTACACCGCTAG CTCTACGGTGTGGCTC ... TACACGACGCTCTTCC
##   ACACGACGCTCTTCCG
## colData names(0):
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(1): scADT

5 Session Info

sessionInfo()
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] SingleCellMultiModal_1.4.1  MultiAssayExperiment_1.18.0
##  [3] SummarizedExperiment_1.22.0 Biobase_2.52.0             
##  [5] GenomicRanges_1.44.0        GenomeInfoDb_1.28.0        
##  [7] IRanges_2.26.0              S4Vectors_0.30.0           
##  [9] BiocGenerics_0.38.0         MatrixGenerics_1.4.0       
## [11] matrixStats_0.59.0          BiocStyle_2.20.0           
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-7                  bit64_4.0.5                  
##  [3] filelock_1.0.2                httr_1.4.2                   
##  [5] tools_4.1.0                   bslib_0.2.5.1                
##  [7] utf8_1.2.1                    R6_2.5.0                     
##  [9] HDF5Array_1.20.0              DBI_1.1.1                    
## [11] rhdf5filters_1.4.0            withr_2.4.2                  
## [13] tidyselect_1.1.1              bit_4.0.4                    
## [15] curl_4.3.1                    compiler_4.1.0               
## [17] formatR_1.11                  DelayedArray_0.18.0          
## [19] bookdown_0.22                 sass_0.4.0                   
## [21] rappdirs_0.3.3                stringr_1.4.0                
## [23] digest_0.6.27                 SpatialExperiment_1.2.0      
## [25] rmarkdown_2.8                 R.utils_2.10.1               
## [27] XVector_0.32.0                pkgconfig_2.0.3              
## [29] htmltools_0.5.1.1             sparseMatrixStats_1.4.0      
## [31] limma_3.48.0                  dbplyr_2.1.1                 
## [33] fastmap_1.1.0                 rlang_0.4.11                 
## [35] RSQLite_2.2.7                 shiny_1.6.0                  
## [37] DelayedMatrixStats_1.14.0     jquerylib_0.1.4              
## [39] generics_0.1.0                jsonlite_1.7.2               
## [41] BiocParallel_1.26.0           R.oo_1.24.0                  
## [43] dplyr_1.0.6                   RCurl_1.98-1.3               
## [45] magrittr_2.0.1                scuttle_1.2.0                
## [47] GenomeInfoDbData_1.2.6        Matrix_1.3-4                 
## [49] Rcpp_1.0.6                    Rhdf5lib_1.14.0              
## [51] fansi_0.5.0                   R.methodsS3_1.8.1            
## [53] lifecycle_1.0.0               edgeR_3.34.0                 
## [55] stringi_1.6.2                 yaml_2.2.1                   
## [57] zlibbioc_1.38.0               rhdf5_2.36.0                 
## [59] BiocFileCache_2.0.0           AnnotationHub_3.0.0          
## [61] grid_4.1.0                    blob_1.2.1                   
## [63] dqrng_0.3.0                   promises_1.2.0.1             
## [65] ExperimentHub_2.0.0           crayon_1.4.1                 
## [67] lattice_0.20-44               beachmat_2.8.0               
## [69] Biostrings_2.60.1             KEGGREST_1.32.0              
## [71] magick_2.7.2                  locfit_1.5-9.4               
## [73] knitr_1.33                    pillar_1.6.1                 
## [75] rjson_0.2.20                  glue_1.4.2                   
## [77] BiocVersion_3.13.1            evaluate_0.14                
## [79] BiocManager_1.30.15           vctrs_0.3.8                  
## [81] png_0.1-7                     httpuv_1.6.1                 
## [83] purrr_0.3.4                   assertthat_0.2.1             
## [85] cachem_1.0.5                  xfun_0.23                    
## [87] DropletUtils_1.12.1           mime_0.10                    
## [89] xtable_1.8-4                  later_1.2.0                  
## [91] SingleCellExperiment_1.14.1   tibble_3.1.2                 
## [93] AnnotationDbi_1.54.0          memoise_2.0.0                
## [95] ellipsis_0.3.2                interactiveDisplayBase_1.30.0

References

Stoeckius, Marlon, Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija, and Peter Smibert. 2017. “Simultaneous Epitope and Transcriptome Measurement in Single Cells.” Nature Methods 14 (9): 865.