Package ‘GSgalgoR’

October 17, 2024

Type Package

Title An Evolutionary Framework for the Identification and Study of
Prognostic Gene Expression Signatures in Cancer

Version 1.14.0

Description A multi-objective optimization algorithm for disease sub-type discovery based on a non-
dominated sorting genetic algorithm.
The 'Galgo' framework combines the advantages of clustering algorithms for grouping heteroge-
neous 'omics' data and the searching properties of
genetic algorithms for feature selection. The algorithm search for the optimal number of clus-
ters determination considering the features that
maximize the survival difference between sub-types while keeping cluster consistency high.

License MIT + file LICENSE

biocViews GeneExpression, Transcription, Clustering, Classification,
Survival

Encoding UTF-8
LazyData true

Imports cluster, doParallel, foreach, matchingR, nsga2R, survival,
proxy, stats, methods,

Suggests knitr, rmarkdown, ggplot2, BiocStyle, genefu, survcomp,
Biobase, survminer, breastCancerTRANSBIG, breastCancerUPP,
iC10TrainingData, pamr, testthat

URL https://github.com/harpomaxx/GSgalgoR

BugReports https://github.com/harpomaxx/GSgalgoR/issues
RoxygenNote 7.1.0

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/GSgalgoR
git_branch RELEASE_3_19

git_last_commit f8bf2bf

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

https://github.com/harpomaxx/GSgalgoR
https://github.com/harpomaxx/GSgalgoR/issues

2 GSgalgoR-package

Date/Publication 2024-10-16

Author Martin Guerrero [aut],

Carlos Catania [cre]

Maintainer Carlos Catania <harpomaxx@gmail.com>

Contents
GSgalgoR-package 2
calculate_distance e e 3
callback_base_report 4
callback_base_return_pop 5
callback_default e 7
callback_no_report 8
classify_multiple 9
cluster_algorithm 10
cluster_classify L 11
cosine_similarity L. L 12
create_centroids L e e 13
galg0 .. 14
galgo.Obj-class e 16
K centroids e 16
non_dominated_summary L. oL e e e 17
plot_pareto e e e e e e e e e e 18
SUFV_FItNESS o e e e e e 19
to_dataframe L e 20
OISt . . . e e 21

Index 23

GSgalgoR-package GSgalgoR: A bi-objective evolutionary meta-heuristic to identify ro-
bust transcriptomic classifiers associated with patient outcome across
multiple cancer types.
Description

This package was developed to provide a simple to use set of functions to use the galgo algorithm.
A multi-objective optimization algorithm for disease subtype discovery based on a non-dominated
sorting genetic algorithm.

Different statistical and machine learning approaches have long been used to identify gene ex-
pression/molecular signatures with prognostic potential in different cancer types. Nonetheless, the
molecular classification of tumors is a difficult task and the results obtained via the current statisti-
cal methods are highly dependent on the features analyzed, the number of possible tumor subtypes
under consideration, and the underlying assumptions made about the data. In addition, some cancer
types are still lacking prognostic signatures and/or of subtype-specific predictors which are contin-
ually needed to further dissect tumor biology. In order to identify specific molecular phenotypes

calculate_distance 3

to develop precision medicine strategies we present Galgo: A multi-objective optimization process
based on a non-dominated sorting genetic algorithm that combines the advantages of clustering
methods for grouping heterogeneous omics data and the exploratory properties of genetic algo-
rithms (GA) in order to find features that maximize the survival difference between subtypes while
keeping high cluster consistency.

Package: GSgalgoR

Type: Package
Version: 1.0.0
Date: 2020-05-06

License: GPL-3

Copyright: (c) 2020 Martin E. Guerrero-Gimenez.

URL: https://www.github.com/harpomaxx/galgo
LazyLoad: yes

Author(s)

Martin E. Guerrero-Gimenez <mguerrero@mendoza-conicet.gob.ar>

Maintainer: Carlos A. Catania <harpomaxx@gmail.com >

calculate_distance Functions to calculate distance matrices using cpu computing

Description

Functions to calculate distance matrices using cpu computing
Usage

calculate_distance_pearson_cpu(x)

calculate_distance_spearman_cpu(x)

calculate_distance_uncentered_cpu(x)

calculate_distance_euclidean_cpu(x)

select_distance(distancetype = "pearson”)
Arguments
X an expression matrix with features as rows and samples as columns

distancetype a character that can be either 'pearson', 'uncentered', 'spearman' or
'euclidean’

https://www.github.com/harpomaxx/galgo

4 callback_base_report

Value

select_distance(distancetype) assigns global function calculate_distance according to the pa-
rameters specified

calculate_distance_pearson_cpu(x) returns columnwise pearson distance calculated using the
CPU

calculate_distance_uncentered_cpu(x) returns columnwise uncentered pearson distance cal-
culated using the CPU

calculate_distance_spearman_cpu(x) returns columnwise spearman distance calculated using
the CPU

calculate_distance_euclidean_cpu(x) returns columnwise euclidean distance calculated us-
ing the CPU

Author(s)

Martin E Guerrero-Gimenez, <mguerrero@mendoza-conicet.gob.ar>

Examples

load example dataset
require(iC1@TrainingData)
require(pamr)

data(train.Exp)

calculate_distance <- select_distance(distancetype = "pearson”)
Dist <- calculate_distance(train.Exp)

k <- 4

Pam <- cluster_algorithm(Dist, k)

table(Pam$cluster)

callback_base_report Print basic info per generation

Description

Print basic info per generation

Usage

callback_base_report (userdir, generation, pop_pool,
pareto, prob_matrix, current_time)

callback_base_return_pop 5

Arguments

userdir
generation
pop_pool
pareto

prob_matrix

current_time

Value

Nothing.

Examples

the default directory used by ‘galgo()‘ to store files

a number indicating the number of iterations of the galgo algorithm

a data.frame with the solution vectors, number of clusters and their ranking.
the solutions found by Galgo across all generations in the solution space

amatrix or data.frame. Must be an expression matrix with features in rows
and samples in columns

an POSIXct object

load example dataset

library(breastCancerTRANSBIG)

data(transbig)
Train <- transbig

rm(transbig)

expression <- Biobase::exprs(Train)

clinical <- Biobase::pData(Train)

0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
We will use a reduced dataset for the example

expression <- expression[sample(1:nrow(expression), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo with base_report_callback assigned to the report_callback

hook-point

GSgalgoR: :galgo(generations = 5,

population = 15,
expression,

prob_matrix =
0S = 05,

report_callback = callback_base_report

)

callback_base_return_pop

A base callback function that returns a galgo.Obj

Description

A base callback function that returns a galgo.Obj

6 callback_base_return_pop

Usage

nn

callback_base_return_pop (userdir = ,generation, pop_pool,

pareto, prob_matrix, current_time)

Arguments
userdir the default directory used by ‘galgo()‘ to store files
generation a number indicating the number of iterations of the galgo algorithm
pop_pool a data. frame with the solution vectors, number of clusters and their ranking.
pareto the solutions found by Galgo across all generations in the solution space
prob_matrix amatrix or data.frame. Must be an expression matrix with features in rows

and samples in columns

current_time an POSIXct object

Value

an object of class galgo

Examples

load example dataset

library(breastCancerTRANSBIG)

data(transbig)

Train <- transbig

rm(transbig)

expression <- Biobase::exprs(Train)

clinical <- Biobase::pData(Train)

0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
We will use a reduced dataset for the example

expression <- expression[sample(1:nrow(expression), 100), 1]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo with base_return_pop_callback assigned to the end_galgo_callback
hook-point

By using this callback galgo() return a “galgo,0bj" object.

output <- GSgalgoR::galgo(generations = 5,

population = 15,

prob_matrix = expression,

0S = 05,

end_galgo_callback = callback_base_return_pop

)

callback_default

callback_default

A default call_back function that does nothing.

Description

A default call_back function that does nothing.

Usage

nn

callback_default (userdir = ,generation, pop_pool,
pareto, prob_matrix, current_time)

Arguments

userdir
generation
pop_pool
pareto

prob_matrix

current_time

Value

Nothing

Examples

the default directory used by galgo() to store files

a number indicating the number of iterations of the galgo algorithm

a data. frame with the solution vectors, number of clusters and their ranking.
the solutions found by Galgo across all generations in the solution space

amatrix or data.frame. Must be an expression matrix with features in rows
and samples in columns

an POSIXct object

load example dataset

library(breastCancerTRANSBIG)

data(transbig)
Train <- transbig

rm(transbig)

expression <- Biobase::exprs(Train)

clinical <- Biobase::pData(Train)

0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
We will use a reduced dataset for the example

expression <- expression[sample(1:nrow(expression), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo with default_callback assigned to all the hook-points

GSgalgoR::galgo(generations = 5,

population = 15,

8 callback_no_report

prob_matrix = expression,

0S = 05,

start_galgo_callback = callback_default,# When Galgo is about to start.
end_galgo_callback = callback_default, # When Galgo is about to finish.
start_gen_callback = callback_default, # At the beginning of each iteration.

end_gen_callback = callback_default, # At the end of each iteration.
)
callback_no_report Print minimal information to the user about galgo execution.
Description

The main idea behind this callback function is to provide some feedback to the user about galgo
execution. No other relevant information is shown

Usage

nn

callback_no_report (userdir = ,generation, pop_pool,
pareto, prob_matrix, current_time)

Arguments
userdir the default directory used by ‘galgo()‘ to store files
generation a number indicating the number of iterations of the galgo algorithm
pop_pool a data. frame with the solution vectors, number of clusters and their ranking.
pareto the solutions found by Galgo across all generations in the solution space
prob_matrix amatrix or data.frame. Must be an expression matrix with features in rows

and samples in columns

current_time an POSIXct object

Value

Nothing.

Examples

load example dataset

library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig

rm(transbig)

expression <- Biobase: :exprs(Train)
clinical <- Biobase::pData(Train)

classify_multiple 9

0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)
We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo with no_report_callback assigned to the report_callback
hook-point

GSgalgoR: :galgo(generations = 5,

population = 15,

prob_matrix = expression,

0S = 0S,
report_callback = callback_no_report
)
classify_multiple Classify samples from multiple centroids
Description

Classify samples from multiple centroids

Usage

classify_multiple(prob_matrix, centroid_list, distancetype = "pearson”)
Arguments

prob_matrix amatrix or data.frame. Must be an expression matrix with features in rows

and samples in columns

centroid_list alist with the centroid matrix for each of the signatures to evaluate, where each
column represents the prototypic centroid of a subtype and each row the con-
stituents features of the solution signature. The output of create_centroids
can be used.

distancetype a character that can be either 'pearson' (default), 'spearman’' or 'kendall'.

Value

Returns a data. frame with the classes assigned to each sample in each signature, were samples are
a rows and signatures in columns

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

10 cluster_algorithm

expression <- Biobase: :exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

outputDF <- to_dataframe(output)

outputList <- to_list(output)

RESULTS <- non_dominated_summary(

output = output, 0S = 0S,

prob_matrix = expression,

distancetype = "pearson”
)
CentroidsList <- create_centroids(output, RESULTS$solution,
trainset = expression)
classes <- classify_multiple(prob_matrix = expression,
centroid_list = CentroidsList)

cluster_algorithm Wrapper function to perform partition around medioids (PAM) for
GalgoR

Description
In GSgalgoR, the partition around medioids (PAM) algorithm is the default clustering process used
under the evolutionary process.

Usage

cluster_algorithm(c, k)

Arguments
a dissimilarity matrix object of type 'dist’
k positive integer specifying the number of clusters, less than the number of ob-
servations
Details

The function runs the pam function of the 'cluster' package with options cluster.only =TRUE,
diss = TRUE, do. swap=TRUE, keep.diss=FALSE, keep.data = FALSE, pamonce= 2

cluster_classify 11

Value

Returns a 'list' with the value '$cluster' which contains the cluster assignment of each of the
samples evaluated

References

* Reynolds, A., Richards, G., de la Iglesia, B. and Rayward-Smith, V. (1992) Clustering rules:
A comparison of partitioning and hierarchical clustering algorithms; Journal of Mathematical
Modelling and Algorithms 5, 475-504. 10.1007/s10852-005-9022-1.

* Erich Schubert and Peter J. Rousseeuw (2019) Faster k-Medoids Clustering: Improving the
PAM, CLARA, and CLARANS Algorithms; Preprint, (https://arxiv.org/abs/1810.05691).

Examples

load example dataset
require(iC10@TrainingData)
require(pamr)
data(train.Exp)

calculate_distance <- select_distance(distancetype = "pearson”)
Dist <- calculate_distance(train.Exp)
k <- 4
Pam <- cluster_algorithm(Dist, k)
table(Pam$cluster)
cluster_classify Distance to centroid classifier function
Description

Given an nzm matrix of centroids, where m are the prototypic centroids with n features, classify
new samples according to the distance to the centroids.

Usage
cluster_classify(data, centroid, method = "pearson”)
Arguments
data a data.frame of dimensions nzp with the samples to classify, were n are the
same set of features as in the centroids
centroid a data. frame of dimensions nzm, where each column is a prototypic centroid
to classify the samples
method Character string indicating which method to use to calculate distance to centroid.

Options are "pearson” (default), "kendall”, or "spearman”

https://arxiv.org/abs/1810.05691

12 cosine_similarity

Value

Returns a numeric vector of length p with the class assigned to each sample according to the shortest
distance to centroid

Examples

load example dataset
require(iC1@TrainingData)
require(pamr)

data(train.Exp)
data(IntClustMemb)
TrainData <- list(x = train.Exp, y = IntClustMemb)

Create prototypic centroids
pam <- pamr.train(TrainData)
centroids <- pam$centroids

Class <- cluster_classify(train.Exp, centroids)
table(Class, IntClustMemb)

cosine_similarity Function for calculating the cosine similarity

Description

Cosine similarity is a metric of similarity between two non-zero vectors of an inner product space
that measures the cosine of the angle between them. Two vectors with the same orientation have a
cosine similarity of 1, if they are perpendicular they have a similarity of 0, and if they have opposing
directions the cosine similarity is -1, independent of their magnitude. One advantage of cosine
similarity is its low-complexity, especially for sparse vectors where only the non-zero dimensions
need to be considered, which is a common case in GSgalgoR. Other names of cosine similarity are
Otuska-Orchini similarity when it is applied to binary data, which is the case for GSgalgoR, where
individual solutions represented as strings of 0 and 1 are compared with t his metric.

Usage

cosine_similarity(a, b)

Arguments
a,b A string of numbers with equal length. It can also be two binary strings of 0’s
and 1’s
Value

In practice, the function can return numeric values from -1 to 1 according the vector orientations,
where a cosine similarity of 1 implies same orientation of the vectors while -1 imply vector of op-
posing directions. In the binary application, values range from 0 to 1, where O are totally discordant
vectors while 1 are identical binary vectors.

create_centroids 13

Examples

solutionl <- c(1, 0, @, 1, 0, 0, 1)

solution2 <- solutioni

r <- cosine_similarity(solutionl, solution2)
the cosine similarity (r) equals 1
solution2 <- abs(solutionl - 1)

r2 <- cosine_similarity(solutionl, solution2)
the cosine similarity (r2) equals @

create_centroids Create Centroids

Description

This functions create the signature centroids estimated from the GalgoR output and the expression
matrix of the training sets.

Usage
create_centroids (output, solution_names, trainset,
distancetype = "pearson"”)

Arguments
output @param output An object of class galgo.0bj

solution_names A character vector with the names of the solutions for which the centroids are
to be calculated

trainset amatrix or data.frame. Must be an expression matrix with features in rows
and samples in columns

distancetype a character that can be either 'pearson', 'uncentered', 'spearman' or
'euclidean’

Value

Returns a list with the centroid matrix for each of the solutions in solution_names, where each
column represents the prototypic centroid of a subtype and each row the constituents features of the
solution signature

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)

14 galgo

clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100), 1]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

outputDF <- to_dataframe(output)

outputList <- to_list(output)

RESULTS <- non_dominated_summary(
output = output, 0S = 0S,
prob_matrix = expression,
distancetype = "pearson”
)
CentroidsList <- create_centroids(output, RESULTS$solution,
trainset = expression)

galgo GSgalgoR main function

Description

galgo accepts an expression matrix and a survival object to find robust gene expression signatures
related to a given outcome

Usage
galgo (population = 30, generations = 2, nCV = 5,
distancetype = "pearson”, TournamentSize = 2, period = 1825,
0S, prob_matrix, res_dir = "", start_galgo_callback = callback_default,

end_galgo_callback = callback_base_return_pop,
report_callback = callback_base_report,
start_gen_callback = callback_default,
end_gen_callback = callback_default,

verbose = 2)

Arguments
population a number indicating the number of solutions in the population of solutions that
will be evolved
generations a number indicating the number of iterations of the galgo algorithm

nCv number of cross-validation sets

galgo 15

distancetype character, it can be 'pearson' (centered pearson), 'uncentered’ (uncentered
pearson), 'spearman' or 'euclidean’

TournamentSize a number indicating the size of the tournaments for the selection procedure

period a number indicating the outcome period to evaluate the RMST
0S a survival object (see Surv function from the survival package)
prob_matrix amatrix or data.frame. Must be an expression matrix with features in rows

and samples in columns

res_dir a character string indicating where to save the intermediate and final output of

the algorithm
start_galgo_callback

optional callback function for the start of the galgo execution
end_galgo_callback

optional callback function for the end of the galgo execution
report_callback

optional callback function
start_gen_callback

optional callback function for the beginning of the run
end_gen_callback

optional callback function for the end of the run

verbose select the level of information printed during galgo execution

Value

an object of type 'galgo.0bj"' that corresponds to a list with the elements $Solutions and $ParetoFront.
$Solutions is a lz(n + 5) matrix where n is the number of features evaluated and [is the number

of solutions obtained. The submatrix [xn is a binary matrix where each row represents the chro-
mosome of an evolved solution from the solution population, where each feature can be present (1)

or absent (0) in the solution. Column n + 1 represent the £ number of clusters for each solutions.
Column n + 2 to n + 5 shows the SC Fitness and Survival Fitness values, the solution rank, and the
crowding distance of the solution in the final pareto front respectively. For easier interpretation of

the 'galgo.0Obj', the output can be reshaped using the to_list and to_dataframe functions

Author(s)

Martin E Guerrero-Gimenez, <mguerrero@mendoza-conicet.gob.ar>

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

16 k_centroids

We will use a reduced dataset for the example
expression <- expression[sample(seq_len(nrow(expression)), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

outputDF <- to_dataframe(output)

outputList <- to_list(output)

galgo.0Obj-class Galgo Object class

Description

Galgo Object class

Slots

Solutions matrix.

ParetoFront list.

k_centroids Function to calculate the centroids of different groups (classes)

Description
This function calculates the mean value for each feature of each class to calculate the prototypic
centroids of the different groups

Usage

k_centroids(data, class)

Arguments
data a scaled gene expression matrix or data.frame with samples as columns and
features as rows
class a vector with the samples classes
Value

returns a data. frame with the estimated prototypic centroids for each class with the features names
as rownames

non_dominated_summary 17

Examples

load example dataset
require(iC1@TrainingData)
require(pamr)

data(train.Exp)

calculate_distance <- select_distance(distancetype = "pearson”)
Dist <- calculate_distance(train.Exp)

k <- 4

Pam <- cluster_algorithm(Dist, k)

table(Pam$cluster)

centroids <- k_centroids(train.Exp, Pam)

non_dominated_summary Summary of the non dominated solutions

Description

The function uses a 'galgo.0Obj' as input an the training dataset to evaluate the non-dominated
solutions found by GalgoR

Usage
non_dominated_summary (output, prob_matrix, O0S,
distancetype = "pearson")
Arguments
output An object of class galgo.Obj
prob_matrix amatrix or data.frame. Must be an expression matrix with features in rows

and samples in columns
0s a survival object (see Surv function from the survival package)

distancetype a character that can be either 'pearson', 'uncentered', 'spearman' or
'euclidean’

Value

Returns a data. frame with 5 columns and a number of rows equals to the non-dominated solutions
found by GalgoR. The first column has the name of the non-dominated solutions, the second the
number of partitions found for each solution (k), the third, the number of genes, the fourth the
mean silhouette coefficient of the solution and the last columns has the estimated C.Index for each
one.

18 plot_pareto

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100), 1]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo
output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)
non_dominated_summary (
output = output,

0S = 0S,
prob_matrix = expression,
distancetype = "pearson”
)
plot_pareto Plot pareto front from an galgo.Obj
Description

Plot pareto front from an galgo.Obj

Usage

plot_pareto(output)

Arguments

output An object of class galgo.Obj

Value

This function returns a scatterplot showing the solutions found by Galgo accross all generations in
the solution space, where the Silhouette Fitness is in the x-axis and the survival fitness in the y-axis.
A line is drawn over all non-dominated solutions showing the estimated Pareto front

surv_fitness 19

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100),]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

plot_pareto(output)

surv_fitness Survival fitness function using the Restricted Mean Survival Time
(RMST) of each group

Description
Survival fitness function using the Restricted Mean Survival Time (RMST) of each group as pro-
posed by Dehbi & Royston et al. (2017).

Usage

surv_fitness(0S, clustclass, period)

Arguments

0s a survival object with survival data of the patients evaluated

clustclass a numeric vector with the group label for each patient

period a number representing the period of time to evaluate in the RMST calculation
Value

The function computes the Harmonic mean of the differences between Restricted Mean Survival
Time (RMST) of consecutive survival curves multiplied by the number of comparisons.

Author(s)

Martin E Guerrero-Gimenez, <mguerrero@mendoza-conicet.gob.ar>

20 to_datatrame

References

Dehbi Hakim-Moulay, Royston Patrick, Hackshaw Allan. Life expectancy difference and life ex-
pectancy ratio: two measures of treatment effects in randomized trials with non-proportional haz-
ards BMJ 2017; 357 :j2250 https: //www.bmj.com/content/357/bmj. j2250

Examples

load example dataset
library(breastCancerTRANSBIG)
library(Biobase)
data(transbig)

Train <- transbig
rm(transbig)

clinical <- pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

surv_fitness(0S, clustclass = clinical$grade, period = 3650)

to_dataframe Convert galgo.Obj to data.frame

Description

The current function transforms a galgo.0bj to a data. frame

Usage

to_dataframe(output)

Arguments

output An object of class galgo.0Obj

Value

The current function restructurates a galgo.Obj to a more easy to understand an use data. frame.
The output data. frame has man dimensions, were the rownames (m) are the solutions obtained
by the galgo algorithm. The columns has the following structure:

Genes: The features included in each solution in form of a 1list

k: The number of partitions found in that solution

SC.Fit: The average silhouette coefficient of the partitions found

Surv.Fit: The survival fitness value

Rank: The solution rank

AN

CrowD: The solution crowding distance related to the rest of the solutions

https://www.bmj.com/content/357/bmj.j2250

to_list 21

Author(s)

Martin E Guerrero-Gimenez, <mguerrero@mendoza-conicet.gob.ar>

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100), 1]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

outputDF <- to_dataframe(output)

outputList <- to_list(output)

to_list Convert galgo.Obj to list

Description

The current function transforms a galgo.Obj toa list

Usage

to_list(output)

Arguments

output An object of class galgo.Obj

Value

The current function restructurates a galgo.0Obj to a more easy to understand an use list. This
output is particularly useful if one wants to select a given solution and use its outputs in a new
classifier. The output of type 1list has a length equals to the number of solutions obtained by the
galgo algorithm.

22 to_list

Basically this output is a list of lists, where each element of the output is named after the solution’s
name (solution.n, where n is the number assigned to that solution), and inside of it, it has all the
constituents for that given solution with the following structure:

output$solution.n$Genes: A vector of the features included in the solution
output$solution.n$k: The number of partitions found in that solution
output$solution.n$SC.Fit: The average silhouette coefficient of the partitions found
output$solution.n$Surv.Fit: The survival fitness value

output$solution.n$Rank: The solution rank

AN U

CrowD: The solution crowding distance related to the rest of the solutions

Author(s)

Martin E Guerrero-Gimenez, <mguerrero@mendoza-conicet.gob.ar>

Examples

load example dataset
library(breastCancerTRANSBIG)
data(transbig)

Train <- transbig
rm(transbig)

expression <- Biobase::exprs(Train)
clinical <- Biobase::pData(Train)
0S <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs)

We will use a reduced dataset for the example
expression <- expression[sample(1:nrow(expression), 100), 1]

Now we scale the expression matrix
expression <- t(scale(t(expression)))

Run galgo

output <- GSgalgoR::galgo(generations = 5, population = 15,
prob_matrix = expression, 0S = 0S)

outputDF <- to_dataframe(output)

outputList <- to_list(output)

Index

calculate_distance, 3
calculate_distance_euclidean_cpu
(calculate_distance), 3
calculate_distance_pearson_cpu
(calculate_distance), 3
calculate_distance_spearman_cpu
(calculate_distance), 3
calculate_distance_uncentered_cpu
(calculate_distance), 3
callback_base_report, 4
callback_base_return_pop, 5
callback_default, 7
callback_no_report, 8
classify_multiple, 9
cluster_algorithm, 10
cluster_classify, 11
cosine_similarity, 12
create_centroids, 9, 13

galgo, 14, 14, 20, 21

galgo.0bj (galgo.Obj-class), 16
galgo.Obj-class, 16

GSgalgoR (GSgalgoR-package), 2
GSgalgoR-package, 2

k_centroids, 16
non_dominated_summary, 17

pam, 10
plot_pareto, 18

select_distance (calculate_distance), 3
Surv, 15,17

surv_fitness, 19

survival, 15,17

to_dataframe, 15, 20
to_list, 75, 21

	GSgalgoR-package
	calculate_distance
	callback_base_report
	callback_base_return_pop
	callback_default
	callback_no_report
	classify_multiple
	cluster_algorithm
	cluster_classify
	cosine_similarity
	create_centroids
	galgo
	galgo.Obj-class
	k_centroids
	non_dominated_summary
	plot_pareto
	surv_fitness
	to_dataframe
	to_list
	Index

