
Package ‘gypsum’
October 17, 2024

Version 1.0.1

Date 2024-05-07

Title Interface to the gypsum REST API

Description Client for the gypsum REST API (https://gypsum.artifactdb.com), a cloud-
based file store in the ArtifactDB ecosystem.
This package provides functions for uploads, downloads, and various adminstrative and manage-
ment tasks.
Check out the documentation at https://github.com/ArtifactDB/gypsum-worker for more details.

License MIT + file LICENSE

Imports utils, tools, httr2, jsonlite, parallel, filelock

Suggests knitr, rmarkdown, testthat, BiocStyle, digest, jsonvalidate,
DBI, RSQLite, S4Vectors, methods

RoxygenNote 7.3.1

VignetteBuilder knitr

URL https://github.com/ArtifactDB/gypsum-R

BugReports https://github.com/ArtifactDB/gypsum-R/issues

biocViews DataImport

git_url https://git.bioconductor.org/packages/gypsum

git_branch RELEASE_3_19

git_last_commit 8e1c076

git_last_commit_date 2024-05-07

Repository Bioconductor 3.19

Date/Publication 2024-10-16

Author Aaron Lun [aut, cre]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/ArtifactDB/gypsum-R
https://github.com/ArtifactDB/gypsum-R/issues

2 Contents

Contents

abortUpload . 3
accessToken . 4
approveProbation . 5
cacheDirectory . 6
cloneVersion . 7
completeUpload . 9
createProject . 10
fetchLatest . 11
fetchManifest . 12
fetchMetadataDatabase . 13
fetchMetadataSchema . 14
fetchPermissions . 15
fetchQuota . 16
fetchSummary . 17
fetchUsage . 18
formatObjectMetadata . 19
listAssets . 20
listFiles . 20
listProjects . 21
listVersions . 22
prepareDirectoryUpload . 23
publicS3Config . 24
refreshLatest . 25
refreshUsage . 26
rejectProbation . 27
removeAsset . 28
removeProject . 29
removeVersion . 30
resolveLinks . 31
restUrl . 32
saveFile . 33
saveVersion . 34
searchMetadataText . 35
setPermissions . 37
setQuota . 38
startUpload . 39
uploadDirectory . 42
uploadFiles . 43
validateMetadata . 44

Index 46

abortUpload 3

abortUpload Abort an upload

Description

Abort an upload session, usually after an irrecoverable error.

Usage

abortUpload(init, url = restUrl())

Arguments

init List containing abort_url and session_token. This is typically the return
value from startUpload.

url String containing the URL of the gypsum REST API.

Value

NULL is invisibly returned on successful abort.

Author(s)

Aaron Lun

See Also

startUpload, to create init.

Examples

tmp <- tempfile()
dir.create(tmp)
write(file=file.path(tmp, "blah.txt"), LETTERS)
dir.create(file.path(tmp, "foo"))
write(file=file.path(tmp, "foo", "bar.txt"), 1:10)

if (interactive()) {
init <- startUpload(

project="test-R",
asset="upload-abort-check",
version="v1",
files=list.files(tmp, recursive=TRUE),
probation=TRUE,
directory=tmp

)

Aborting the upload.
abortUpload(init)

4 accessToken

}

accessToken Get and set GitHub access tokens

Description

Get and set GitHub access tokens for authentication to the gypsum API’s endpoints.

Usage

accessToken(full = FALSE, request = TRUE, cache = cacheDirectory())

setAccessToken(
token,
app.url = restUrl(),
app.key = NULL,
app.secret = NULL,
github.url = "https://api.github.com",
user.agent = NULL,
cache = cacheDirectory()

)

Arguments

full Logical scalar indicating whether to return the full token details.

request Logical scalar indicating whether to request a new token if no cached token is
available or if the current token has expired.

cache String containing a path to the cache directory, to store the token across R ses-
sions. If NULL, the token is not cached to (or read from) disk, which improves
security on shared filesystems.

token String containing a GitHub personal access token. This should have the "read:org"
and "read:user" scopes. If missing, the user will be prompted to use GitHub’s
Oauth web application flow to acquire a token. If NULL, any existing tokens are
cleared from cache.

app.url String containing a URL of the gypsum REST API. This is used to obtain
app.key and app.secret if either are NULL.

app.key String containing the key for a GitHub Oauth app.

app.secret String containing the secret for a GitHub Oauth app.

github.url String containing the URL for the GitHub API. This is used to acquire more
information about the token.

user.agent String specifying the user agent for queries to various endpoints.

approveProbation 5

Value

setAccessToken sets the access token and invisibly returns a list containing:

• token, a string containing the token.
• name, the name of the GitHub user authenticated by the token.
• expires, the Unix time at which the token expires.

If full=TRUE, accessToken returns the same list, typically retrieved from one of the caches. If
no token was cached or the cached token has expired, it will call setAccessToken with default
arguments to obtain one if request=TRUE; otherwise if request=FALSE, NULL is returned.
If full=FALSE, accessToken will return a string containing a token (or NULL, if no token is available
and request=FALSE).

Author(s)

Aaron Lun

Examples

if (interactive()) {
accessToken()

}

approveProbation Approve a probational upload

Description

Pretty much as it says: approve a probational upload of a version of a project’s asset. This removes
the on_probation tag from the uploaded version.

Usage

approveProbation(
project,
asset,
version,
url = restUrl(),
token = accessToken()

)

Arguments

project String containing the project name.
asset String containing the asset name.
version String containing the version name.
url String containing the URL of the gypsum REST API.
token String containing a GitHub access token to authenticate to the gypsum REST

API. The token must refer to an owner of project.

6 cacheDirectory

Value

NULL is invisibly returned upon successful approval.

Author(s)

Aaron Lun

See Also

rejectProbation, to reject the probational upload.

startUpload, to specify probational uploads.

Examples

if (interactive()) {
Mocking up a versioned asset.
init <- startUpload(

project="test-R",
asset="probation-approve",
version="v1",
files=character(0),
probation=TRUE

)
completeUpload(init)

Approving the probation:
approveProbation("test-R", "probation-approve", "v1")

Just cleaning up after we're done.
removeProjectAsset("test-R", "probation-approve")

}

cacheDirectory Cache directory

Description

Specify the cache directory in the local filesystem for gypsum-related data.

Usage

cacheDirectory(dir)

Arguments

dir String containing the path to a cache directory.

cloneVersion 7

Details

If the GYPSUM_CACHE_DIR environment variable is set before the first call to cacheDirectory, it
is used as the initial location of the cache directory. Otherwise, the initial location is based on
R_user_dir.

Value

If dir is missing, the current setting of the cache directory is returned.

If dir is provided, it is used replace the current setting of the cache directory, and the previous
setting is invisibly returned.

Author(s)

Aaron Lun

Examples

cacheDirectory()
old <- cacheDirectory(tempfile())
cacheDirectory()
cacheDirectory(old) # setting it back.

cloneVersion Clone a version’s directory structure

Description

Clone the directory structure for a versioned asset into a separate location. This is typically used to
prepare a new version for a lightweight upload.

Usage

cloneVersion(
project,
asset,
version,
destination,
download = TRUE,
cache = cacheDirectory(),
url = restUrl(),
config = NULL,
...

)

8 cloneVersion

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

destination String containing a path to a destination directory at which to create the clone.

download Logical scalar indicating whether the version’s files should be downloaded first.
This can be set to FALSE to create a clone without actually downloading any of
the version’s files.

cache String containing the path to the cache directory.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

... Further arguments to pass to saveVersion. Only used if download=TRUE.

Details

Cloning of a versioned asset involves creating a directory at destination that has the same con-
tents as the corresponding project-asset-version directory. All files in the specified version are
represented as symlinks from destination to the corresponding file in the cache. The idea is
that, when destination is used in prepareDirectoryUpload, the symlinks are converted into up-
load links, i.e., links= in startUpload. This allows users to create new versions very cheaply as
duplicate files are not uploaded to/stored in the backend.

Users can more-or-less do whatever they want inside the cloned destination, but they should treat
the symlink targets as read-only. That is, they should not modify the contents of the linked-to file, as
these refer to assumed-immutable files in the cache. If a file in destination needs to be modified,
the symlink should be deleted and replaced with an actual file; this avoids mutating the cache and
it ensures that prepareDirectoryUpload recognizes that a new file actually needs to be uploaded.

Advanced users can set download=FALSE, in which case symlinks are created even if their targets
are not present in cache. In such cases, destination should be treated as write-only due to the
potential presence of dangling symlinks. This mode is useful for uploading a new version of an asset
without downloading the files from the existing version, assuming that the modifications associated
with the former can be achieved without reading any of the latter.

On Windows, the user may not have permissions to create symbolic links, so the function will
transparently fall back to creating hard links or copies instead. This precludes any optimization by
prepareDirectoryUpload as the hard links/copies cannot be converted into upload links. It also
assumes that download=TRUE as dangling links/copies cannot be created.

Value

The directory structure of the specified version is cloned to destination, and a NULL is invisibly
returned.

Author(s)

Aaron Lun

completeUpload 9

See Also

prepareDirectoryUpload, to prepare an upload based on the directory contents.

Examples

tmp <- tempfile()
out <- cloneVersion("test-R", "basic", "v1", destination=tmp)
list.files(tmp, recursive=TRUE)
Sys.readlink(file.path(tmp, "foo", "bar.txt"))

Files should be replaced rather than modified via the symlink:
existing <- file.path(tmp, "foo", "bar.txt")
unlink(existing) # Deleting the symlink...
write(file=existing, "YAY") # ... and writing a replacement file.

Symlinks are converted to upload links:
prepareDirectoryUpload(tmp)

completeUpload Complete an upload

Description

Complete an upload session after all files have been uploaded.

Usage

completeUpload(init, url = restUrl())

Arguments

init List containing complete_url and session_token. This is typically the return
value from startUpload.

url String containing the URL of the gypsum REST API.

Value

NULL is invisibly returned on successful completion.

Author(s)

Aaron Lun

See Also

startUpload, to create init.

10 createProject

Examples

tmp <- tempfile()
dir.create(tmp)
write(file=file.path(tmp, "blah.txt"), LETTERS)
dir.create(file.path(tmp, "foo"))
write(file=file.path(tmp, "foo", "bar.txt"), 1:10)

if (interactive()) {
init <- startUpload(

project="test-R",
asset="upload-complete-check",
version="v1",
files=list.files(tmp, recursive=TRUE),
probation=TRUE,
directory=tmp

)
uploadFiles(init, directory=tmp)

Finishing the upload.
completeUpload(init)

}

createProject Create a new project

Description

Create a new project with the associated permissions.

Usage

createProject(
project,
owners,
uploaders = list(),
baseline = NULL,
growth = NULL,
year = NULL,
url = restUrl(),
token = accessToken()

)

Arguments

project String containing the project name.

owners Character vector containing the GitHub users or organizations that are owners
of this project.

fetchLatest 11

uploaders List specifying the authorized uploaders for this project. See the uploaders
field in the fetchPermissions return value for the expected format.

baseline Numeric scalar specifying the baseline quota in bytes. If NULL, the backend’s
default is used.

growth Numeric scalar specifying the quota’s annual growth rate in bytes. If NULL, the
backend’s default is used.

year Integer scalar specifying the year of the project creation. If NULL, the backend’s
default is used - this should be the current year.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

NULL is invisibly returned if the project was successfully created.

Author(s)

Aaron Lun

See Also

removeProject, to remove a project.

Examples

if (interactive()) {
createProject(

"test-R-create",
owners="LTLA",
uploaders=list(list(id="ArtifactDB-bot"))

)
}

fetchLatest Fetch the latest version

Description

Fetch the latest version of a project’s asset.

Usage

fetchLatest(project, asset, url = restUrl(), config = NULL)

12 fetchManifest

Arguments

project String containing the project name.

asset String containing the asset name.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

String containing the latest version of the project.

Author(s)

Aaron Lun

See Also

refreshLatest, to refresh the latest version.

Examples

fetchLatest("test-R", "basic")

fetchManifest Fetch version manifest

Description

Fetch the manifest for a version of an asset of a project.

Usage

fetchManifest(
project,
asset,
version,
cache = cacheDirectory(),
overwrite = FALSE,
url = restUrl(),
config = NULL

)

fetchMetadataDatabase 13

Arguments

project String containing the project name.
asset String containing the asset name.
version String containing the version name.
cache String containing the cache directory. If NULL, no caching is performed.
overwrite Logical scalar indicating whether to overwrite an existing file in cache, if one is

present.
url String containing the URL of the gypsum REST API.
config Deprecated and ignored.

Value

List containing the manifest for this version. Each element is named after the relative path of a file
in this version. The value of each element is another list with the following fields:

• size, an integer specifying the size of the file in bytes.
• md5sum, a string containing the hex-encoded MD5 checksum of the file.
• link (optional): a list specifying the link destination for a file. This contains the strings
project, asset, version and path. If the link destination is itself a link, an ancestor list
will be present that specifies the final location of the file after resolving all intermediate links.

Author(s)

Aaron Lun

Examples

fetchManifest("test-R", "basic", "v1")

fetchMetadataDatabase Fetch a metadata database

Description

Fetch a SQLite database containing metadata from the gypsum backend (see https://github.
com/ArtifactDB/bioconductor-metadata-index). Each database is generated by aggregating
metadata across multiple assets and/or projects, and can be used to perform searches for interesting
objects.

Usage

fetchMetadataDatabase(
name = "bioconductor.sqlite3",
cache = cacheDirectory(),
overwrite = FALSE

)

https://github.com/ArtifactDB/bioconductor-metadata-index
https://github.com/ArtifactDB/bioconductor-metadata-index

14 fetchMetadataSchema

Arguments

name String containing the name of the database. This can be the name of any SQLite
file in https://github.com/ArtifactDB/bioconductor-metadata-index/
releases/tag/latest.

cache String containing the cache directory. If NULL, no caching is performed.

overwrite Logical scalar indicating whether to overwrite an existing file in cache, if one is
present.

Details

This function will automatically check for updates to the SQLite files and will download new ver-
sions accordingly. New checks are performed when one hour or more has elapsed since the last
check. If the check fails, a warning is raised and the function returns the currently cached file.

Value

String containing a path to the downloaded database.

Author(s)

Aaron Lun

See Also

fetchMetadataSchema, to get the JSON schema used to define the database tables.

Examples

fetchMetadataDatabase()

fetchMetadataSchema Fetch a metadata schema

Description

Fetch a JSON schema file for metadata to be inserted into a SQLite database (see https://github.
com/ArtifactDB/bioconductor-metadata-index). Each SQLite database is created from meta-
data files uploaded to the gypsum backend, so clients uploading objects to be incorporated into the
database should validate their metadata against the corresponding JSON schema.

Usage

fetchMetadataSchema(
name = "bioconductor/v1.json",
cache = cacheDirectory(),
overwrite = FALSE

)

https://github.com/ArtifactDB/bioconductor-metadata-index/releases/tag/latest
https://github.com/ArtifactDB/bioconductor-metadata-index/releases/tag/latest
https://github.com/ArtifactDB/bioconductor-metadata-index
https://github.com/ArtifactDB/bioconductor-metadata-index

fetchPermissions 15

Arguments

name String containing the name of the schema. This can be the name of any JSON
schema file published at https://github.com/ArtifactDB/bioconductor-metadata-index.

cache String containing the cache directory. If NULL, no caching is performed.

overwrite Logical scalar indicating whether to overwrite an existing file in cache, if one is
present.

Value

String containing a path to the downloaded schema.

Author(s)

Aaron Lun

See Also

validateMetadata, to validate metadata against a chosen schema.

fetchMetadataDatabase, to obtain the SQLite database of metadata.

Examples

fetchMetadataSchema()

fetchPermissions Fetch project permissions

Description

Fetch the permissions for a project.

Usage

fetchPermissions(project, url = restUrl(), config = NULL)

Arguments

project String containing the project name.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

https://github.com/ArtifactDB/bioconductor-metadata-index

16 fetchQuota

Value

List containing the permissions for this project. This has the following elements:

• owners, a character vector containing the GitHub users or organizations that are owners of
this project.

• uploaders, a list of lists specifying the users or organizations who are authorzied to upload
to this project. Each entry is a list with the following fields:

– id, a string containing the GitHub user or organization that is authorized to upload.
– (optional) asset, a string containing the name of the asset that the uploader is allowed to

upload to. If not provided, there is no restriction on the uploaded asset name.
– (optional) version, a string containing the name of the version that the uploader is al-

lowed to upload to. If not provided, there is no restriction on the uploaded version name.
– (optional) until, a POSIXct object containing the expiry date of this authorization. If

not provided, the authorization does not expire.
– (optional) trusted, whether the uploader is trusted. If not provided, defaults to FALSE.

Author(s)

Aaron Lun

See Also

setPermissions, to set the permissions.

Examples

fetchPermissions("test-R")

fetchQuota Fetch project quota details

Description

Fetch the quota details for a project.

Usage

fetchQuota(project, url = restUrl(), config = NULL)

Arguments

project String containing the project name.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

fetchSummary 17

Value

List containing baseline, the baseline quota at time zero in bytes; growth_rate, the annual growth
rate for the quota in bytes; and year, the creation year (i.e., time zero) for this project.

Author(s)

Aaron Lun

See Also

setQuota, to set the quota details.

Examples

fetchQuota("test-R")

fetchSummary Fetch version summary

Description

Fetch the summary for a version of an asset of a project.

Usage

fetchSummary(
project,
asset,
version,
cache = cacheDirectory(),
overwrite = FALSE,
url = restUrl(),
config = NULL

)

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

cache String containing the cache directory. If NULL, no caching is performed.

overwrite Logical scalar indicating whether to overwrite an existing file in cache, if one is
present.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

18 fetchUsage

Value

List containing the summary for this version, with the following fields:

• upload_user_id, string containing the identity of the uploader.

• upload_start, a POSIXct object containing the upload start time.

• upload_finish, a POSIXct object containing the upload finish time.

• on_probation (optional), a logical scalar indicating whether the upload is probational. If
missing, this can be assumed to be FALSE.

Author(s)

Aaron Lun

Examples

fetchSummary("test-R", "basic", "v1")

fetchUsage Fetch project usage details

Description

Fetch the quota usage for a project.

Usage

fetchUsage(project, url = restUrl(), config = NULL)

Arguments

project String containing the project name.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

Numeric scalar specifying the quota usage for the project, in bytes.

Author(s)

Aaron Lun

See Also

refreshUsage, to recompute the used quota.

formatObjectMetadata 19

Examples

fetchUsage("test-R")

formatObjectMetadata Format object-related metadata

Description

Create object-related metadata to validate against the default schema from fetchMetadataSchema.
This is intended for downstream package developers who are auto-generating metadata documents
to be validated by validateMetadata.

Usage

formatObjectMetadata(x)

Arguments

x An R object, typically an instance of a Bioconductor class.

Value

List containing the object-related metadata, typically stored in the applications.takane field of
the metadata.

Author(s)

Aaron Lun

Examples

df <- S4Vectors::DataFrame(alpha=LETTERS, numeric=runif(26))
formatObjectMetadata(df)

20 listFiles

listAssets List assets

Description

List all assets in a project.

Usage

listAssets(project, url = restUrl(), config = NULL)

Arguments

project String containing the project name.
url String containing the URL of the gypsum REST API.
config Deprecated and ignored.

Value

Character vector of asset names.

Author(s)

Aaron Lun

Examples

listAssets("test-R")

listFiles List files for a version

Description

List files belonging to a version of a project asset.

Usage

listFiles(
project,
asset,
version,
prefix = NULL,
include.. = TRUE,
url = restUrl(),
config = NULL

)

listProjects 21

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

prefix String containing the remaining prefix for the object key. If provided, a file is
only listed if its object key starts with {project}/{asset}/{version}/{prefix}.
If NULL, all files associated with this version of the asset are listed.

include.. Logical scalar indicating whether to list files with /.. in their object keys.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

Character vector of relative paths of files associated with the versioned asset.

Author(s)

Aaron Lun

Examples

listFiles("test-R", "basic", "v1")

listProjects List all projects

Description

List all projects in the gypsum backent.

Usage

listProjects(url = restUrl(), config = NULL)

Arguments

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

Character vector of project names.

22 listVersions

Author(s)

Aaron Lun

Examples

if (interactive()) {
listProjects()

}

listVersions List asset versions

Description

List all versions of a project asset.

Usage

listVersions(project, asset, url = restUrl(), config = NULL)

Arguments

project String containing the project name.

asset String containing the asset name.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

Character vector of versions.

Author(s)

Aaron Lun

Examples

listVersions("test-R", "basic")

prepareDirectoryUpload 23

prepareDirectoryUpload

Prepare to upload a directory

Description

Prepare to upload a directory’s contents via startUpload. This goes through the directory to list
its contents and convert symlinks to upload links.

Usage

prepareDirectoryUpload(
directory,
links = c("auto", "always", "never"),
cache = cacheDirectory()

)

Arguments

directory String containing the path to a directory, the contents of which are to be uploaded
via startUpload.

links String indicating how to handle symlinks in directory.

• "auto" will attempt to convert symlinks into upload links. If the conversion
fails, a regular upload is performed.

• "always" will attempt to convert symlinks into upload links. If the conver-
sion fails, an error is raised.

• "never" will never attempt to convert symlinks into upload links. All sym-
linked files are treated as regular uploads.

cache String containing a path to the cache directory, used to convert symlinks into
upload links.

Details

Files in directory (that are not symlinks) are used as regular uploads, i.e., files= in startUpload.

If directory contains a symlink to a file in cache, we assume that it points to a file that was
previously downloaded by, e.g., saveFile or saveVersion. Thus, instead of performing a regular
upload, we attempt to create an upload link, i.e., links= in startUpload. This is achieved by
examining the destination path of the symlink and inferring the link destination in the backend.
Note that this still works if the symlinks are dangling.

If a symlink cannot be converted into an upload link, it will be used as a regular upload, i.e.,
the contents of the symlink destination will be uploaded by startUpload. In this case, an er-
ror will be raised if the symlink is dangling as there is no file that can actually be uploaded. If
links="always", an error is raised instead upon symlink conversion failure.

This function is intended to be used with cloneVersion, which creates symlinks to files in cache.

24 publicS3Config

Value

List containing files, a character vector to be used as files= in startUpload; and links, a data
frame to be used as links= in startUpload.

See Also

startUpload, to actually start the upload.

cloneVersion, to prepare the symlinks.

Examples

tmp <- tempfile()
out <- cloneVersion("test-R", "basic", "v1", destination=tmp)
write(file=file.path(tmp, "heanna"), "sumire")
prepareDirectoryUpload(tmp)

publicS3Config Public S3 configuration

Description

Fetch S3 credentials and other configuration details for read-only access to the underlying gypsum
bucket.

Usage

publicS3Config(refresh = FALSE, url = restUrl(), cache = cacheDirectory())

Arguments

refresh Logical scalar indicating whether to refresh the credentials in the in-memory
cache.

url String containing a URL to the gypsum REST API.

cache String containing a path to the cache directory, to store the configuration across
R sessions.

Details

The configuration is obtained through a query to url on the first use of this function. The result is
automatically cached in memory and on disk to reduce the number of network requests to the API.
New credentials are automatically fetched if the on-disk cache is older than a week; this refresh can
be performed manually by calling this function with refresh=TRUE.

refreshLatest 25

Value

List containing:

• key, a string containing the read-only S3 access key ID.

• secret, a string containing the associated S3 access secret.

• bucket, a string containing the name of the bucket.

• endpoint, a string containing the URL for the S3 API.

Author(s)

Aaron Lun

Examples

publicS3Config()

refreshLatest Refresh the latest version

Description

Recompute the latest version of a project’s asset. This is useful on rare occasions where multiple
simultaneous uploads cause the latest version to be slightly out of sync.

Usage

refreshLatest(project, asset, url = restUrl(), token = accessToken())

Arguments

project String containing the project name.

asset String containing the asset name.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

String containing the latest version of the project, or NULL if there are no non-probational versions.

Author(s)

Aaron Lun

26 refreshUsage

See Also

fetchLatest, to get the latest version without recomputing it.

Examples

if (interactive()) {
refreshLatest("test-R", "basic")

}

refreshUsage Refresh the quota usage

Description

Recompute the quota usage of a project. This is useful on rare occasions where multiple simultane-
ous uploads cause the usage calculations to be out of sync.

Usage

refreshUsage(project, url = restUrl(), token = accessToken())

Arguments

project String containing the project name.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

Numeric scalar specifying the total quota usage of this project, in bytes.

Author(s)

Aaron Lun

See Also

fetchUsage, to get the usage without recomputing it.

Examples

if (interactive()) {
refreshUsage("test-R")

}

rejectProbation 27

rejectProbation Reject a probational upload

Description

Pretty much as it says: reject a probational upload of a version of a project’s asset. This removes all
files associated with that version.

Usage

rejectProbation(
project,
asset,
version,
url = restUrl(),
token = accessToken()

)

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to an owner of project.

Value

NULL is invisibly returned upon successful rejection.

Author(s)

Aaron Lun

See Also

approveProbation, to approve the probational upload.

startUpload, to specify probational uploads.

28 removeAsset

Examples

if (interactive()) {
Mocking up a versioned asset.
init <- startUpload(

project="test-R",
asset="probation-reject",
version="v1",
files=character(0),
probation=TRUE

)
completeUpload(init)

Rejecting the probation:
rejectProbation("test-R", "probation-reject", "v1")

}

removeAsset Remove an asset

Description

Remove an asset of a project from the gypsum backend.

Usage

removeAsset(project, asset, url = restUrl(), token = accessToken())

Arguments

project String containing the project to remove.

asset String containing the asset to remove.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

NULL is invisibly returned if the asset was successfully removed.

Author(s)

Aaron Lun

See Also

removeProject, to remove a project.

removeVersion, to remove a specific version.

removeProject 29

Examples

if (interactive()) {
Mocking up a versioned asset.
init <- startUpload(

project="test-R",
asset="removal",
version="v1",
files=character(0),
probation=TRUE

)
completeUpload(init)

removeAsset("test-R", asset="removal")
}

removeProject Remove a project

Description

Remove a project from the gypsum backend.

Usage

removeProject(project, url = restUrl(), token = accessToken())

Arguments

project String containing the project to remove.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

NULL is invisibly returned if the project was successfully removed.

Author(s)

Aaron Lun

See Also

createProject, to create a project.

removeAsset and removeVersion, to remove an asset or version.

30 removeVersion

Examples

if (interactive()) {
createProject("test-R-remove", owners="LTLA")
removeProject("test-R-remove")

}

removeVersion Remove a version of an asset

Description

Remove a version of an asset from the gypsum backend.

Usage

removeVersion(project, asset, version, url = restUrl(), token = accessToken())

Arguments

project String containing the project to remove.

asset String containing the asset to remove.

version String containing the version of the asset to remove.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

NULL is invisibly returned if the project or its contents was successfully removed.

Author(s)

Aaron Lun

See Also

removeAsset and removeProject, to remove an asset or project.

Examples

if (interactive()) {
Mocking up a versioned asset.
init <- startUpload(

project="test-R",
asset="removal",
version="v1",
files=character(0),

resolveLinks 31

probation=TRUE
)
completeUpload(init)

removeVersion("test-R", asset="removal", version="v1")
}

resolveLinks Resolve links in the cache directory

Description

Create hard links (or copies, if filesystem links are not supported) for linked-from files to their link
destinations.

Usage

resolveLinks(
project,
asset,
version,
cache = cacheDirectory(),
overwrite = FALSE,
url = restUrl(),
config = NULL

)

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

cache String containing the path to the cache directory.

overwrite Logical scalar indicating whether to replace existing files at the linked-from
paths.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Value

NULL is returned on successful completion.

Author(s)

Aaron Lun

32 restUrl

Examples

cache <- tempfile()
saveVersion("test-R", "basic", "v3", relink=FALSE, cache=cache)
list.files(cache, recursive=TRUE, all.files=TRUE)

resolveLinks("test-R", "basic", "v3", cache=cache)
list.files(cache, recursive=TRUE, all.files=TRUE)

restUrl URL for the REST API

Description

Get or set the URL for the gypsum REST API.

Usage

restUrl(url)

Arguments

url String containing the URL of the REST API.

Value

If url is missing, the current setting of the URL is returned.

If url is provided, it is used replace the current setting of the URL, and the previous setting of the
URL is invisibly returned.

Author(s)

Aaron Lun

Examples

restUrl()
old <- restUrl("https://some-other.rest-api.io") # replace it.
restUrl()
restUrl(old) # setting it back.

saveFile 33

saveFile Save a file from a version of a project asset

Description

Download a file from the gypsum bucket, for a version of an asset of a project.

Usage

saveFile(
project,
asset,
version,
path,
cache = cacheDirectory(),
overwrite = FALSE,
url = restUrl(),
config = NULL

)

Arguments

project String containing the project name.

asset String containing the asset name.

version String containing the version name.

path String containing the suffix of the object key for the file of interest, i.e., the
relative “path” inside the version’s “subdirectory”. The full object key is defined
as {project}/{asset}/{version}/{path}.

cache String containing the path to the cache directory.

overwrite Logical scalar indicating whether to overwrite an existing file in cache. If FALSE
and the file exists in cache, the download is skipped.

url String containing the URL of the gypsum REST API.

config Deprecated and ignored.

Details

The full object key is defined as {project}/{asset}/{version}/{path}. If no file exists in
the project-asset-version combination at path, this function will check the ..links file to check
whether path refers to a linked-from file. If so, the contents of the link destination is downloaded
to the cache and a link/copy is created at the returned file path.

Value

The file is downloaded to the local file system. The destination file path is returned.

34 saveVersion

Author(s)

Aaron Lun

See Also

saveVersion, to save all files with the same prefix.

cacheDirectory, for file caching.

Examples

out <- saveFile("test-R", "basic", "v1", "blah.txt")
readLines(out)

saveVersion Save all files for a version of a project asset

Description

Download all files associated with a version of an asset of a project from the gypsum bucket.

Usage

saveVersion(
project,
asset,
version,
cache = cacheDirectory(),
overwrite = FALSE,
relink = TRUE,
concurrent = 1,
url = restUrl(),
config = NULL

)

Arguments

project String containing the project name.
asset String containing the asset name.
version String containing the version name.
cache String containing the path to the cache directory.
overwrite Logical scalar indicating whether to overwrite existing files in the cache. If

FALSE and the files already exist in cache, the download is skipped.
relink Logical scalar indicating whether links should be resolved, see resolveLinks.
concurrent Integer specifying the number of concurrent downloads.
url String containing the URL of the gypsum REST API.
config Deprecated and ignored.

searchMetadataText 35

Value

The version’s files are downloaded to the local file system, and the path to the local subdirectory is
returned.

Author(s)

Aaron Lun

See Also

saveFile, to save a single file.

cacheDirectory, for file caching.

Examples

out <- saveVersion("test-R", "basic", "v1")
list.files(out, recursive=TRUE, all.files=TRUE)

searchMetadataText Text search on the metadata database

Description

Perform a text search on a SQLite database containing metadata from the gypsum backend. This
is based on a precomputed tokenization of all string properties in each metadata document; see
https://github.com/ArtifactDB/bioconductor-metadata-index for details.

Usage

searchMetadataText(path, query, latest = TRUE, include.metadata = TRUE)

defineTextQuery(text, field = NULL, partial = FALSE)

searchMetadataTextFilter(query, pid.name = "paths.pid")

Arguments

path String containing a path to a SQLite file, usually obtained via fetchMetadataDatabase.

query Character vector specifying the query to execute. Alternatively, a gypsum.search.object
produced by defineTextQuery.

latest Logical scalar indicating whether to only search for matches within the latest
version of each asset.

include.metadata

Logical scalar indicating whether metadata should be returned.

text String containing the text to query on. This will be automatically tokenized, see
Details.

https://github.com/ArtifactDB/bioconductor-metadata-index

36 searchMetadataText

field String specifying the name of the metadata field in which to search for text. If
NULL, the search is performed on all available metadata fields.

partial Logical scalar indicating whether text contains SQLite wildcards (%, _) for a
partial search. If TRUE, the wildcards are preserved during tokenization.

pid.name String containing the name/alias of the column of the paths table that contains
the path ID.

Details

Each string is tokenized by converting it to lower case and splitting it on characters that are not
Unicode letters/numbers or a dash. We currently do not remove diacritics so these will need to be
converted to ASCII by the user. If a text query involves only non-letter/number/dash characters, the
filter will not be well-defined and will be ignored when constructing SQL statements.

For convenience, a non-empty character vector may be used in query. A character vector of length
1 is treated as shorthand for a text query with default arguments in defineTextQuery. A character
vector of length greater than 1 is treated as shorthand for an AND operation on default text queries
for each of the individual strings.

Value

For searchMetadataText, a data frame specifying the contaning the search results.

• The project, asset and version columns contain the identity of the version with matching
metadata.

• The path column contains the suffix of the object key of the metadata document, i.e., the
relative “path” within the version’s “directory” to the metadata document. The full object key
of the document inside the bucket is defined as {project}/{asset}/{version}/{path}.

• If include.metadata=TRUE, a metadata column is present with the nested metadata for each
match.

• If latest=TRUE, a latest column is present indicating whether the matching version is the
latest for its asset. Otherwise, only the latest version is returned.

For searchMetadataTextFilter, a list containing where, a string can be directly used as a WHERE
filter condition in a SQL SELECT statement; and parameters, the parameter bindings to be used
in where. The return value may also be NULL if the query has no well-defined filter.

For defineTextQuery, a gypsum.search.clause object that can be used in |, & and ! to create
more complex queries involving multiple text clauses.

Author(s)

Aaron Lun

See Also

fetchMetadataDatabase, to download and cache the database files.

https://github.com/ArtifactDB/bioconductor-metadata-index, for details on the SQLite
file contents and table structure.

https://github.com/ArtifactDB/bioconductor-metadata-index

setPermissions 37

Examples

path <- fetchMetadataDatabase()
searchMetadataText(path, c("mouse", "brain"), include.metadata=FALSE)

Now for a slightly more complex query:
is.mouse <- defineTextQuery("10090", field="taxonomy_id")
query <- (defineTextQuery("brain") | defineTextQuery("pancreas")) & is.mouse
searchMetadataText(path, query, include.metadata=FALSE)

Throwing in some wildcards.
has.neuro <- defineTextQuery("Neuro%", partial=TRUE)
searchMetadataText(path, has.neuro, include.metadata=FALSE)

setPermissions Set project permissions

Description

Set the owner and uploader permissions for a project.

Usage

setPermissions(
project,
owners = NULL,
uploaders = NULL,
append = TRUE,
url = restUrl(),
token = accessToken()

)

Arguments

project String containing the project name.

owners Character vector containing the GitHub users or organizations that are owners
of this project. If NULL, no change is made to the existing owners of the project.

uploaders List specifying the authorized uploaders for this project. See the uploaders
field in the fetchPermissions return value for the expected format. If NULL,
no change is made to the existing uploaders of the project.

append Logical scalar indicating whether owners and uploaders should be appended
to the existing owners and uploaders, respectively, of the project. If FALSE, the
owners and uploaders are used to replace the existing values.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to an owner of the project.

38 setQuota

Value

NULL is invisibly returned upon successful setting of the permissions.

Author(s)

Aaron Lun

See Also

fetchPermissions, to fetch the permissions.

Examples

if (interactive()) {
Creating a project for demonstration purposes.
createProject("test-R-perms", owners="LTLA")

Setting extra permissions on this project.
setPermissions("test-R-perms",

owners="jkanche",
uploaders=list(list(id="lawremi", until=Sys.time() + 1000))

)
}

setQuota Set project quota

Description

Set the storage quota for a project.

Usage

setQuota(
project,
baseline = NULL,
growth = NULL,
year = NULL,
url = restUrl(),
token = accessToken()

)

startUpload 39

Arguments

project String containing the project name.

baseline Numeric scalar specifying the baseline quota (i.e., at time zero) in bytes. If
NULL, no change is made to the existing baseline of the project.

growth Numeric scalar specifying the annual growth rate of the quota, in bytes. If NULL,
no change is made to the existing growth rate of the project.

year Integer scalar specifying the year of creation (i.e., time zero) for the project. If
NULL, no change is made to the existing creation year of the project.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a gypsum administrator account.

Value

NULL is invisibly returned upon successful setting of the quota.

Author(s)

Aaron Lun

See Also

fetchQuota, to fetch the quota.

Examples

if (interactive()) {
Creating a project for demonstration purposes.
createProject("test-R-quota", owners="LTLA")

Setting a baseline of 10 GB with 5 GB in growth per year.
setQuota("test-R-quota", baseline=10^10, growth=5^9, year=2019)

}

startUpload Start an upload

Description

Start an upload of a new version of an asset, or a new asset of a project.

40 startUpload

Usage

startUpload(
project,
asset,
version,
files,
links = NULL,
deduplicate = TRUE,
probation = FALSE,
url = restUrl(),
token = accessToken(),
directory = NULL

)

Arguments

project String containing the project name.

asset String containing the asset name. This should not contain / or start with ...

version String containing the version name. This should not contain / or start with ...

files Character vector containing the paths of the files to be uploaded. These should
be relative to the version’s directory.
Alternatively, a data frame where each row corresponds to a file and contains
information about those files. This data frame should contain the following
fields:

• path, a string containing the relative path of the file inside the version’s
subdirectory.

• size, a non-negative integer specifying the size of the file in bytes.
• md5sum, a string containing the hex-encoded MD5 checksum of the file.
• (optional) dedup, a logical indicating whether deduplication should be at-

tempted for each file.

links A data frame where each row corresponds to a linked-from file and contains the
link destination for that file. This data frame should contain the following fields:

• from.path, a string containing the relative path of the file inside the ver-
sion’s subdirectory.

• to.project, a string containing the project of the list destination.
• to.asset, a string containing the asset of the list destination.
• to.version, a string containing the version of the list destination.
• to.path, a string containing the path of the list destination.

deduplicate Logical scalar indicating whether the backend should attempt deduplication of
files in the immediately previous version. Only has an effect if files is not a
data frame or if the dedup field is missing.

probation Logical scalar indicating whether to perform a probational upload. Such uploads
must be approved by the project owner before they are considered official.

url String containing the URL of the gypsum REST API.

startUpload 41

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a user that is authorized to upload to the specified
project.

directory String containing the path to a directory containing the files to be uploaded.
This directory is assumed to correspond to a version of an asset. It only has
an effect if files is a character vector, as it is used to determine the MD5
checksums and sizes. If NULL, directory is set to the current working directory.

Value

List containing:

• file_urls, a list of lists containing information about each file to be uploaded. This is used
by uploadFiles.

• complete_url, a string containing the completion URL, to be used by completeUpload.
• abort_url, a string specifying the abort URL, to be used by abortUpload.
• session_token, a string for authenticating to the newly initialized upload session.

Author(s)

Aaron Lun

See Also

uploadFiles, to actually upload the files.

completeUpload, to indicate that the upload is completed.

abortUpload, to abort an upload in progress.

prepareDirectoryUpload, to create files and links from a directory.

Examples

tmp <- tempfile()
dir.create(tmp)
write(file=file.path(tmp, "blah.txt"), LETTERS)
dir.create(file.path(tmp, "foo"))
write(file=file.path(tmp, "foo", "bar.txt"), 1:10)

if (interactive()) {
blob <- startUpload(

project="test-R",
asset="upload-start-check",
version="v1",
files=list.files(tmp, recursive=TRUE),
directory=tmp

)
print(blob)

abortUpload(blob) # just cleaning up after we're done.
}

42 uploadDirectory

uploadDirectory Upload a directory to the gypsum backend

Description

Convenience method to upload a directory to the gypsum backend as a versioned asset of a project.
This requires uploader permissions to the relevant project.

Usage

uploadDirectory(
directory,
project,
asset,
version,
cache = cacheDirectory(),
deduplicate = TRUE,
probation = FALSE,
url = restUrl(),
token = accessToken(),
concurrent = 1,
abort.failed = TRUE

)

Arguments

directory String containing the path to a directory to be uploaded.

project String containing the project name.

asset String containing the asset name. This should not contain / or start with ...

version String containing the version name. This should not contain / or start with ...

cache String containing the path to the cache for saving files, e.g., in saveVersion.
Used to convert symbolic links to upload links, see prepareDirectoryUpload.

deduplicate Logical scalar indicating whether the backend should attempt deduplication of
files in the immediately previous version. Only has an effect if files is not a
data frame or if the dedup field is missing.

probation Logical scalar indicating whether to perform a probational upload. Such uploads
must be approved by the project owner before they are considered official.

url String containing the URL of the gypsum REST API.

token String containing a GitHub access token to authenticate to the gypsum REST
API. The token must refer to a user that is authorized to upload to the specified
project.

concurrent Integer scalar specifying the number of concurrent uploads in uploadFiles.

abort.failed Logical scalar indicating whether to abort the upload on any failure. Setting this
to FALSE can be helpful for diagnosing upload problems.

uploadFiles 43

Details

This function is a wrapper around prepareDirectoryUpload and startUpload and friends. The
aim is to streamline the upload of a directory’s contents when no customization of the file listing is
required.

Value

On successful upload, NULL is invisibly returned.

Author(s)

Aaron Lun

Examples

tmp <- tempfile()
dir.create(tmp)
write(file=file.path(tmp, "blah.txt"), LETTERS)
dir.create(file.path(tmp, "foo"))
write(file=file.path(tmp, "foo", "bar.txt"), 1:10)

if (interactive()) {
Uploading a probational version for test purposes.
uploadDirectory(staging, "test-R", "upload-dir-check", version, probation=TRUE)

Cleaning up after ourselves.
gypsum::rejectProbation("test-R", "upload-dir-check", version)

}

uploadFiles Upload files for a versioned asset

Description

Upload files in an initialized upload session for a version of an asset.

Usage

uploadFiles(init, directory = NULL, url = restUrl(), concurrent = 1)

Arguments

init List containing file_urls and session_token. This is typically the return
value from startUpload.

directory String containing the path to a directory containing the files to be uploaded.
This directory is assumed to correspond to a version of an asset. It only has
an effect if files is a character vector, as it is used to determine the MD5
checksums and sizes. If NULL, directory is set to the current working directory.

44 validateMetadata

url String containing the URL of the gypsum REST API.

concurrent Integer specifying the number of concurrent uploads.

Value

NULL is invisibly returned on successful upload of all files.

Author(s)

Aaron Lun

See Also

startUpload, to create init.

Examples

tmp <- tempfile()
dir.create(tmp)
write(file=file.path(tmp, "blah.txt"), LETTERS)
dir.create(file.path(tmp, "foo"))
write(file=file.path(tmp, "foo", "bar.txt"), 1:10)

if (interactive()) {
init <- startUpload(

project="test-R",
asset="upload-files-check",
version="v1",
files=list.files(tmp, recursive=TRUE),
directory=tmp

)

Executing the upload for all files.
uploadFiles(init, directory=tmp)

Cleaning up after we're done.
abortUpload(init)

}

validateMetadata Validate metadata against a JSON schema

Description

Validate metadata against a JSON schema for a SQLite database. This ensures that it can be suc-
cessfully inserted in the database in downstream indexing steps.

validateMetadata 45

Usage

validateMetadata(metadata, schema = fetchMetadataSchema(), stringify = NULL)

Arguments

metadata Metadata to be checked. This is usually an R object like a named list, but may
also be a JSON-formatted string.

schema String containing a path to a schema.

stringify Logical scalar indicating whether to convert metadata to a JSON-formatted
string. Defaults to TRUE if metadata is not already a string.

Value

NULL is invisibly returned upon successful validation.

Author(s)

Aaron Lun

See Also

fetchMetadataSchema, to get the JSON schemas.

fetchMetadataDatabase, to obtain the SQLite database files.

Examples

metadata <- list(
title="Fatherhood",
description="Luke ich bin dein Vater.",
sources=list(

list(provider="GEO", id="GSE12345")
),
taxonomy_id=list("9606"),
genome=list("GRCm38"),
maintainer_name="Darth Vader",
maintainer_email="vader@empire.gov",
bioconductor_version="3.10"

)

validateMetadata(metadata)

Index

abortUpload, 3, 41
accessToken, 4
approveProbation, 5, 27

cacheDirectory, 6, 7, 34, 35
cloneVersion, 7, 23, 24
completeUpload, 9, 41
createProject, 10, 29

defineTextQuery (searchMetadataText), 35

fetchLatest, 11, 26
fetchManifest, 12
fetchMetadataDatabase, 13, 15, 35, 36, 45
fetchMetadataSchema, 14, 14, 19, 45
fetchPermissions, 11, 15, 37, 38
fetchQuota, 16, 39
fetchSummary, 17
fetchUsage, 18, 26
formatObjectMetadata, 19

gypsum.search.clause
(searchMetadataText), 35

listAssets, 20
listFiles, 20
listProjects, 21
listVersions, 22

Ops.gypsum.search.clause
(searchMetadataText), 35

POSIXct, 16, 18
prepareDirectoryUpload, 8, 9, 23, 41–43
publicS3Config, 24

R_user_dir, 7
refreshLatest, 12, 25
refreshUsage, 18, 26
rejectProbation, 6, 27
removeAsset, 28, 29, 30

removeProject, 11, 28, 29, 30
removeVersion, 28, 29, 30
resolveLinks, 31, 34
restUrl, 32

saveFile, 23, 33, 35
saveVersion, 8, 23, 34, 34, 42
searchMetadataText, 35
searchMetadataTextFilter

(searchMetadataText), 35
setAccessToken (accessToken), 4
setPermissions, 16, 37
setQuota, 17, 38
startUpload, 3, 6, 8, 9, 23, 24, 27, 39, 43, 44

uploadDirectory, 42
uploadFiles, 41, 42, 43

validateMetadata, 15, 19, 44

46

	abortUpload
	accessToken
	approveProbation
	cacheDirectory
	cloneVersion
	completeUpload
	createProject
	fetchLatest
	fetchManifest
	fetchMetadataDatabase
	fetchMetadataSchema
	fetchPermissions
	fetchQuota
	fetchSummary
	fetchUsage
	formatObjectMetadata
	listAssets
	listFiles
	listProjects
	listVersions
	prepareDirectoryUpload
	publicS3Config
	refreshLatest
	refreshUsage
	rejectProbation
	removeAsset
	removeProject
	removeVersion
	resolveLinks
	restUrl
	saveFile
	saveVersion
	searchMetadataText
	setPermissions
	setQuota
	startUpload
	uploadDirectory
	uploadFiles
	validateMetadata
	Index

