Package ‘DelayedTensor’

July 9, 2025
Type Package

Title R package for sparse and out-of-core arithmetic and
decomposition of Tensor

Version 1.14.0
Depends R (>=4.1.0)

Imports methods, utils, S4Arrays, SparseArray, DelayedArray (>=
0.31.8), HDF5Array, BiocSingular, rTensor, DelayedRandomArray
(>=1.13.1), irlba, Matrix, einsum,

Suggests markdown, rmarkdown, BiocStyle, knitr, testthat, magrittr,
dplyr, reticulate

Description DelayedTensor operates Tensor arithmetic directly on

DelayedArray object. DelayedTensor provides some generic function related to
Tensor arithmetic/decompotision and dispatches it on the DelayedArray class.

DelayedTensor also suppors Tensor contraction by einsum function,
which is inspired by numpy einsum.

License Artistic-2.0

biocViews Software, Infrastructure, DataRepresentation,
DimensionReduction

LazyData true
LazyDataCompression xz
VignetteBuilder knitr

BugReports https://github.com/rikenbit/DelayedTensor/issues
git_url https://git.bioconductor.org/packages/DelayedTensor
git_branch RELEASE_3_21

git_last_commit 85b592f

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Author Koki Tsuyuzaki [aut, cre]

Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

1

https://github.com/rikenbit/DelayedTensor/issues

2

Contents

Index

Contents

DelayedTensor-package 3
chind_list L e 3
cp-methods e 4
cs_fold-methods e 6
cs_unfold-methods 7
DelayedDiagonalArray e 8
diag-methods L 9
13 0] 1 0 10
fnorm-methods 11
fold-methods e 12
GEtSPArSe e e 13
getVerbose 13
hadamard-methods 14
hadamard_list 15
hosvd-methods e e 16
human_mid_brain 17
innerProd-methods e 18
khatri_rao-methods e 18
khatri_rao_list e e 19
kronecker-methods 20
kronecker List L e e 21
k_fold-methods e 22
k_unfold-methods 23
] A =) o 24
matvec-methods L 24
modebind_list e e e e 25
modeMean-methods 26
modeSum-methods e e e e 27
mouse_mid_brain e e 28
mpca-methodso 29
outerProd-methods 30
pvd-methods 31
rbind_list e 32
rs_fold-methods 33
rs_unfold-methods 34
SEESPAISE e e 35
SetVerbose e e e e e e 35
. e e 36
ttm-methods e e 37
tucker-methods L e e 38
unfold-methods e 39
unmatvec-methods e 40
vec-methods e 41
43

DelayedTensor-package 3

DelayedTensor-package R package for sparse and out-of-core arithmetic and decomposition of
Tensor

Description

DelayedTensor operates Tensor arithmetic directly on DelayedArray object. DelayedTensor pro-
vides some generic function related to Tensor arithmetic/decompotision and dispatches it on the
DelayedArray class. DelayedTensor also suppors Tensor contraction by einsum function, which is
inspired by numpy einsum.

Details
The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Koki Tsuyuzaki [aut, cre]

Maintainer: Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp>

See Also

Unfold operations unfold, k_unfold, matvec, rs_unfold, cs_unfold, ttl # Fold operations
fold, k_fold, unmatvec, rs_fold, cs_fold, ttm # Vectorization vec # Norm operations fnorm,
innerProd # Diagonal operations / Diagonal Tensor diag, DelayedDiagonalArray # Mode-wise
operations modeSum, modeMean # Tensor product operations hadamard, hadamard_list, kronecker,
kronecker_list, khatri_rao, khatri_rao_list # Utilities list_rep, modebind_list, rbind_list,
cbind_list # Decomposition operations hosvd, cp, tucker, mpca, pvd # Einsum operation einsum

Examples

1s("package:DelayedTensor")

cbind_list Mode-binding against list

Description

Returns the binded DelayedArray in column space.

Usage
cbind_list(L)

4 cp-methods

Arguments

L list of 2D DelayedArray

Details

This is a wrapper function to modebind_list, when the DelayedArrays are 2D.

Value

2D DelayedArray object

Note

The dimensions of column in each DelayedArray must match.

See Also

modebind_list

Examples

library("DelayedRandomArray”)
dlizt <- list(
'darr1' = RandomUnifArray(c(2,3)),
'darr2' = RandomUnifArray(c(2,3)))
cbind_list(dlizt)

cp-methods Canonical Polyadic Decomposition

Description

Canonical Polyadic (CP) decomposition of a tensor, aka CANDECOMP/PARAFRAC. Approxi-
mate a K-Tensor using a sum of num_components rank-1 K-Tensors. A rank-1 K-Tensor can be
written as an outer product of K vectors. There are a total of num_compoents *darr@num_modes
vectors in the output, stored in darr@num_modes matrices, each with num_components columns.
This is an iterative algorithm, with two possible stopping conditions: either relative error in Frobe-
nius norm has gotten below tol, or the max_iter number of iterations has been reached. For more
details on CP decomposition, consult Kolda and Bader (2009).

Usage
cp(darr, num_components=NULL, max_iter=25, tol=1e-05)

S4 method for signature 'DelayedArray’
cp(darr, num_components, max_iter, tol)

cp-methods 5

Arguments

darr Tensor with K modes

num_components the number of rank-1 K-Tensors to use in approximation

max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance
Details

This function is an extension of the cp by DelayedArray.

Uses the Alternating Least Squares (ALS) estimation procedure. A progress bar is included to help
monitor operations on large tensors.

Value

a list containing the following

lambdas a vector of normalizing constants, one for each component

U a list of matrices - one for each mode - each matrix with num_components columns
conv whether or not resid < tol by the last iteration

norm_percent the percent of Frobenius norm explained by the approximation

est estimate of darr after compression

fnorm_resid the Frobenius norm of the error fnorm(est-darr)

all_resids vector containing the Frobenius norm of error for all the iterations

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

tucker

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(3,4,5))
cp(darr, num_components=2)

6 cs_fold-methods

cs_fold-methods Column Space Folding of 2D DelayedArray

Description

The inverse operation to cs_unfold.

Usage
cs_fold(mat, m = NULL, modes = NULL)

S4 method for signature 'DelayedArray’
cs_fold(mat, m, modes)

Arguments
mat DelayedArray object (only 2D)
m the mode corresponding to c¢s_unfold
modes the original modes of the DelayedArray
Details

This function is an extension of the cs_fold by DelayedArray.

This is a wrapper function to fold.

Value

DelayedArray (higher than 2D)

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also
fold, cs_unfold

Examples

library("DelayedRandomArray”)

darr <- RandomUnifArray(c(2,3,4))

matT3 <- DelayedTensor::cs_unfold(darr, m=3)

identical(
as.array(DelayedTensor::cs_fold(matT3, m=3, modes=c(2,3,4))),
as.array(darr))

cs_unfold-methods

cs_unfold-methods Tensor Column Space Unfolding of DelayedArray

Description

Please see matvec and unfold.

Usage

cs_unfold(darr, m)

S4 method for signature 'DelayedArray'
cs_unfold(darr, m)

Arguments

darr DelayedArray object

m mode to be unfolded on
Details

This function is an extension of the cs_unfold by DelayedArray.

This is a wrapper function to unfold.

Value

DelayedArray (2D)

See Also

unfold, cs_fold

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
DelayedTensor: :cs_unfold(darr, m=3)

8 DelayedDiagonal Array

DelayedDiagonalArray Diagonal DelayedArray

Description

Constructor of the diagonal of a DelayedArray.

Usage

DelayedDiagonalArray(shape, value)

Arguments
shape Shape of DelayedArray (mode of Tensor)
value either a single value or a vector. This argument is optional. If nothing is speci-
fied, 1s are filled with each diagonal element.
Details

See also diag or diag.

Value

DelayedArray object

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

diag, diag

Examples

darr <- DelayedDiagonalArray(2:4, 5)
DelayedTensor: :diag(darr)

diag-methods 9

diag-methods DelayedArray Diagonals

Description

Extract or replace the diagonal of a DelayedArray, or substitute the elements to the diagonal De-
layedArray.

Usage

diag(darr)
diag(darr) <- value

S4 method for signature 'DelayedArray’

diag(darr)

S4 replacement method for signature 'DelayedArray'’
diag(darr) <- value

Arguments
darr DelayedArray object
value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of darr.
Details

See also DelayedDiagonalArray or diag.

Value

1D DelayedArray (vector) with length min(dim(darr))

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

DelayedDiagonalArray

Examples

library("DelayedRandomArray")

darr <- RandomUnifArray(c(2,3,4))
DelayedTensor: :diag(darr)
DelayedTensor: :diag(darr)[1] <- 11111
DelayedTensor: :diag(darr)[2] <- 22222
DelayedTensor: :diag(darr)

10 einsum

einsum Einstein Summation of DelayedArray

Description

Einstein summation is a convenient and concise notation for operations on n-dimensional arrays.

NOTE: Sparse mode of einsum is not available for now.

Usage
einsum(subscripts, ...)
Arguments
subscripts a string in Einstein notation where arrays are separated by °, and the result is
separated by ’->’. For example "ij, jk->ik" corresponds to a standard matrix
multiplication. Whitespace inside the subscripts is ignored. Unlike the equiv-
alent functions in Python, einsum only supports the explicit mode. This means
that the subscripts must contain *->’.
the DelayedArrays that are combined.
Details

This function is an extension of the einsum by DelayedArray.

Value

The einsum function returns an array with one dimension for each index in the result of the
subscripts. For example "ij, jk->ik" produces a 2-dimensional array, "abc, cd,de->abe" pro-
duces a 3-dimensional array.

Examples

library("DelayedArray")
library("DelayedRandomArray")
darr1 <- RandomUnifArray(c(4,8))
darr2 <- RandomUnifArray(c(8,3))

Matrix Multiply
darrl %*% darr2
DelayedTensor::einsum("ij, jk -> ik"”, darr1, darr2)

Diag

mat_sq <- RandomUnifArray(c(4,4))
DelayedTensor: :diag(mat_sq)
einsum("ii->i", mat_sq)

Trace

fnorm-methods

sum(DelayedTensor: :diag(mat_sq))
einsum("ii->", mat_sq)

Scalar product

darr3 <- RandomUnifArray(c(4,8))
darr3 * darri

einsum("ij,ij->ij", darr3, darr1)

Transpose
t(darri)
einsum("ij->ji", darrl)

Batched L2 norm

arrl <- as.array(darr1)

arr3 <- as.array(darr3)

darr4 <- DelayedArray(array(c(arril, arr3), dim = c(dim(arri1), 2)))

c(sum(darr1+2), sum(darr3*2))
einsum("ijb,ijb->b", darr4, darr4)

11

fnorm-methods Tensor Frobenius Norm of DelayedArray

Description

Returns the Frobenius norm of the Tensor instance.

Usage

fnorm(darr)

S4 method for signature 'DelayedArray'
fnorm(darr)
Arguments

darr DelayedArray object

Details

This function is an extension of the fnorm by DelayedArray.

Value

numeric Frobenius norm of darr

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
fnorm(darr)

12 fold-methods

fold-methods Tensor folding of 2D DelayedArray

Description

General folding of a 2D DelayedArray into a higher-order DelayedArray(Tensor). This is designed
to be the inverse function to unfold, with the same ordering of the indices. This amounts to fol-
lowing: if we were to unfold a Tensor using a set of row_idx and col_idx, then we can fold the
resulting matrix back into the original Tensor using the same row_idx and col_idx.

Usage

fold(mat, row_idx = NULL, col_idx = NULL, modes = NULL)

S4 method for signature 'DelayedArray'
fold(mat, row_idx, col_idx, modes)

Arguments
mat DelayedArray object (only 2D)
row_idx the indices of the modes that are mapped onto the row space
col_idx the indices of the modes that are mapped onto the column space
modes the modes of the output DelayedArray

Details

This function is an extension of the fold by DelayedArray.

Value

DelayedArray object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

unfold, k_fold, unmatvec, rs_fold, cs_fold

getSparse 13

Examples

library("”DelayedRandomArray")
darr <- RandomUnifArray(c(2,3,4))
matT3 <- DelayedTensor::unfold(darr, row_idx=2, col_idx=c(3,1))
identical(
as.array(DelayedTensor::fold(matT3, row_idx=2,col_idx=c(3,1),
modes=c(2,3,4))),
as.array(darr))

getSparse Getter of the intermediate/output DelayedArray object in DelayedTen-
sor

Description

Whether the intermediate and output DelayedArray used in DelayedTensor is used as sparse tensor
or not.

NOTE: Sparse mode is experimental! Whether it contributes to higher speed and lower memory
is quite dependent on the sparsity of the DelayedArray, and the current implementation does not
recognize the block size, which may cause Out-of-Memory errors.

Usage

getSparse()

Value

TRUE or FALSE (Default: FALSE)

Examples

getSparse()

getVerbose Getter function to control the verbose messages from DelayedTensor

Description

Returns the verbose setting of DelayedTensor functions.

Usage

getVerbose()

Value

TRUE or FALSE (Default: FALSE)

14 hadamard-methods

Examples

getVerbose()

hadamard-methods Hadamard Product of DelayedArray

Description
Returns the Hadamard product of two Tensors. Commonly used for n-mode products and various
Tensor decompositions.

Usage

hadamard(darr1, darr2)

S4 method for signature 'DelayedArray,DelayedArray'’
hadamard(darri1, darr2)

Arguments
darri first DelayedArray object
darr2 second DelayedArray object
Value

matrix that is the Hadamard product

Note

The modes/dimensions of each element of two Tensors must match.

See Also

khatri_rao, khatri_rao_list, kronecker, kronecker_list, hadamard_list

Examples

library("DelayedRandomArray”)
darr1 <- RandomUnifArray(c(2,4))
darr2 <- RandomUnifArray(c(2,4))
hadamard(darr1, darr1)

hadamard list 15

hadamard_list Hadamard Product against list

Description

Returns the hadamard (element-wise) product from a list of matrices or vectors. Commonly used
for n-mode products and various Tensor decompositions.

Usage

hadamard_list(L)

Arguments

L list of DelayedArray

Details

This function is an extension of the hadamard_list by DelayedArray.

Value

matrix that is the Hadamard product

Note

The modes/dimensions of each element in the list must match.

See Also

khatri_rao, khatri_rao_list, kronecker, kronecker_list, hadamard

Examples

library("DelayedRandomArray”)
dlizt <- list(
'darr1' = RandomUnifArray(c(2,3,4)),
'darr2' = RandomUnifArray(c(2,3,4)))
hadamard_list(dlizt)

16 hosvd-methods

hosvd-methods (Truncated-)Higher-order SVD

Description

Higher-order SVD of a K-Tensor. Write the K-Tensor as a (m-mode) product of a core Tensor
(possibly smaller modes) and K orthogonal factor matrices. Truncations can be specified via ranks
(making them smaller than the original modes of the K-Tensor will result in a truncation). For the
mathematical details on HOSVD, consult Lathauwer et. al. (2000).

Usage
hosvd(darr, ranks=NULL)

S4 method for signature 'DelayedArray’
hosvd(darr, ranks)

Arguments

darr Tensor with K modes

ranks a vector of desired modes in the output core tensor, default is darr@modes
Details

This function is an extension of the hosvd by DelayedArray.

A progress bar is included to help monitor operations on large tensors.

Value
a list containing the following:
Z core tensor with modes speficied by ranks
U a list of orthogonal matrices, one for each mode

est estimate of darr after compression

fnorm_resid the Frobenius norm of the error fnorm(est-darr) - if there was no truncation, then
this is on the order of mach_eps * fnorm.

Note

The length of ranks must match darr@num_modes.

References

L. Lathauwer, B.Moor, J. Vanderwalle "A multilinear singular value decomposition”. Journal of
Matrix Analysis and Applications 2000.

human_mid_brain 17

See Also

tucker

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(3,4,5))
hosvd(darr, ranks=c(2,1,3))

human_mid_brain Matrix object of human mid brain data

Description

A matrix with 500 rows (genes) * 1977 columns (cells).

Usage

data(human_mid_brain)

Details
The data matrix is downloaded from GEO Series GSE76381 (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE763818
For the details, see inst/script/make-data.R.
References
Y-h. Taguchi and T. Turki (2019) Tensor Decomposition-Based Unsupervised Feature Extraction
Applied to Single-Cell Gene Expression Analysis. Frontiers in Genetics, 10(864): 10:3389/fgene.2019.00864
See Also

mouse_mid_brain

Examples

data(human_mid_brain)

18 khatri_rao-methods
innerProd-methods Tensors Inner Product of DelayedArray
Description
Returns the inner product between two Tensors
Usage
innerProd(darr1, darr2)
S4 method for signature 'DelayedArray,DelayedArray'’
innerProd(darr1, darr2)
Arguments
darri first Delayed Array object
darr2 second DelayedArray object
Details
This function is an extension of the innerProd by DelayedArray.
Value
inner product between darr1 and darr2
Examples

library("DelayedRandomArray")
darr1l <- RandomUnifArray(c(2,3,4))
darr2 <- RandomUnifArray(c(2,3,4))
innerProd(darri, darr2)

khatri_rao-methods Khatri-Rao Product of DelayedArray

Description

Returns the Khatri-Rao (column-wise Kronecker) product of two matrices. If the inputs are vectors

then this is the same as the Kronecker product.

Usage

khatri_rao(darr1, darr2)

S4 method for signature 'DelayedArray,DelayedArray'’
khatri_rao(darr1, darr2)

khatri_rao_list 19

Arguments
darri first DelayedArray object
darr2 second DelayedArray object
Details

This function is an extension of the khatri_rao by DelayedArray.

Value

matrix that is the Khatri-Rao product

Note

The number of columns must match in the two inputs.

See Also

hadamard, hadamard_list, kronecker, kronecker_list, khatri_rao_list

Examples

library("DelayedRandomArray”)
darr1l <- RandomUnifArray(c(2,4))
darr2 <- RandomUnifArray(c(3,4))
khatri_rao(darri, darr2)

khatri_rao_list Khatri-Rao Product against list

Description
Returns the Khatri-Rao product from a list of matrices or vectors. Commonly used for n-mode
products and various Tensor decompositions.

Usage

khatri_rao_list(L, reverse = FALSE)

Arguments

L list of DelayedArray

reverse whether or not to reverse the order
Details

This function is an extension of the khatri_rao_list by DelayedArray.

20 kronecker-methods

Value

matrix that is the Khatri-Rao product

Note

The number of columns must match in every element of the input list.

See Also

hadamard, hadamard_list, kronecker, kronecker_list, khatri_rao

Examples

library("DelayedRandomArray")
darr1l <- RandomUnifArray(c(2,3))
dlizt <- list(
'darr1' = RandomUnifArray(c(2,4)),
'darr2' = RandomUnifArray(c(3,4)))
khatri_rao_list(dlizt)

kronecker-methods Kronecker Product of DelayedArray

Description
Returns the Kronecker product of two Tensors. Commonly used for n-mode products and various
Tensor decompositions.

Usage

kronecker(darr1, darr2)

S4 method for signature 'DelayedArray,DelayedArray'’
kronecker(darr1, darr2)

Arguments
darri first DelayedArray object
darr2 second DelayedArray object
Value

matrix that is the Kronecker product

See Also

khatri_rao, khatri_rao_list, hadamard, hadamard_list, kronecker_list

kronecker_list 21

Examples

library("DelayedRandomArray”)
darr1l <- RandomUnifArray(c(2,3))
darr2 <- RandomUnifArray(c(4,5))
kronecker(darri1, darr2)

kronecker_list Kronecker Product against list

Description

Returns the Kronecker product from a list of matrices or vectors. Commonly used for n-mode
products and various Tensor decompositions.

Usage

kronecker_list(L)

Arguments

L list of DelayedArray

Details

This function is an extension of the kronecker_list by DelayedArray.

Value

matrix that is the Kronecker product

See Also

khatri_rao, khatri_rao_list, hadamard, hadamard_list, kronecker

Examples

library("DelayedRandomArray")
dlizt <- list(
'darr1' = RandomUnifArray(c(2,3,4)),
'darr2' = RandomUnifArray(c(2,3,4)))
kronecker_list(dlizt)

22 k_fold-methods

k_fold-methods k-mode Folding of 2D DelayedArray

Description
k-mode folding of a matrix into a Tensor. This is the inverse funtion to k_unfold in the m mode.
In particular, k_fold(k_unfold(darr, m), m, dim(darr)) will result in the original Tensor.
Usage
k_fold(mat, m = NULL, modes = NULL)

S4 method for signature 'DelayedArray'
k_fold(mat, m, modes)

Arguments
mat DelayedArray object (only 2D)
m the index of the mode that is mapped onto the row indices
modes the modes of the output DelayedArray

Details

This function is an extension of the k_fold by DelayedArray.

This is a wrapper function to fold.

Value

DelayedArray object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also
fold, k_unfold

Examples

library("DelayedRandomArray”)

darr <- RandomUnifArray(c(2,3,4))

matT2 <- k_unfold(darr, m=2)

identical(
as.array(k_fold(matT2, m=2, modes=c(2,3,4))),
as.array(darr))

k_unfold-methods 23

k_unfold-methods Tensor k-mode Unfolding of DelayedArray

Description

Unfolding of a tensor by mapping the kth mode (specified through parameter m), and all other
modes onto the column space. This the most common type of unfolding operation for Tucker
decompositions and its variants. Also known as k-mode matricization.

Usage
k_unfold(darr, m)

S4 method for signature 'DelayedArray’
k_unfold(darr, m)

Arguments

darr DelayedArray object

m the index of the mode to unfold on
Details

This function is an extension of the k_unfold by DelayedArray.
This is a wrapper function to unfold.
See also k_unfold(darr, m=NULL)

Value

matrix with dim(darr)[m] rows and prod(dim(darr)[-m]) columns

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also
unfold, k_fold

Examples

library("”DelayedRandomArray")
darr <- RandomUnifArray(c(2,3,4))
rs_unfold(darr, m=2)

24 matvec-methods

list_rep Replicate of arbitrary object

Description

Returns the replicates of base obejct x.

Usage

list_rep(x, n=NULL)

Arguments

X Any object

n Number of replicate

Value

List

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
list_rep(darr, 3)

matvec-methods Tensor Matvec Unfolding of DelayedArray

Description

For 3-tensors only. Stacks the slices along the third mode.
Usage
matvec(darr)

S4 method for signature 'DelayedArray'
matvec(darr)

Arguments

darr DelayedArray object

modebind_list 25

Details

This function is an extension of the matvec by DelayedArray.

This is a wrapper function to unfold.

Value

matrix with prod(dim(darr)[-m]) rows and dim(darr)[m] columns

References

M. Kilmer, K. Braman, N. Hao, and R. Hoover, "Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging". SIAM Journal on Matrix
Analysis and Applications 2013.

See Also

unfold, unmatvec

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
matvec(darr)

modebind_list Mode-binding against list

Description

Returns the binded DelayedArray in mode-m.

Usage
modebind_list(L, m=NULL)

Arguments
L list of DelayedArray
m list of DelayedArray
Value
DelayedArray object
Note

The dimensions of mode m must match.

26 modeMean-methods

See Also

rbind_list, cbind_list

Examples

library("DelayedRandomArray")
dlizt <- list(
'darr1' = RandomUnifArray(c(2,3,4)),
'darr2' = RandomUnifArray(c(2,3,4)))
modebind_list(dlizt, m=1)
modebind_list(dlizt, m=2)
modebind_list(dlizt, m=3)

modeMean-methods Tensor Mean Across Single Mode of DelayedArray

Description
Given a mode for a K-tensor, this returns the K-1 tensor resulting from taking the mean across that
particular mode.

Usage

modeMean(darr, m = NULL, drop = FALSE)

S4 method for signature 'DelayedArray'
modeMean(darr, m, drop)

Arguments
darr DelayedArray object
m the index of the mode to average across
drop whether or not mode m should be dropped
Details

This function is an extension of the modeMean by DelayedArray.
NOTE: Sparse mode of modeMean is not available for now.
modeMean(darr, m=NULL, drop=FALSE)

Value

K-1 or K Tensor, where K = length(dim(darr))

See Also

modeSum

modeSum-methods 27

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(1,2,3))
modeMean(darr, 1, drop=FALSE)
modeMean(darr, 1, drop=TRUE)
modeMean(darr, 2)

modeMean(darr, 3)

modeSum-methods Tensor Sum Across Single Mode of DelayedArray

Description

Given a mode for a K-tensor, this returns the K-1 tensor resulting from summing across that partic-
ular mode.

Usage
modeSum(darr, m = NULL, drop = FALSE)

S4 method for signature 'DelayedArray’
modeSum(darr, m, drop)

Arguments

darr DelayedArray object

m the index of the mode to sum across

drop whether or not mode m should be dropped
Details

This function is an extension of the modeSum by DelayedArray.
NOTE: Sparse mode of modeSum is not available for now.

modeSum(darr, m=NULL, drop=FALSE)

Value

K-1 or K tensor, where K = length(dim(darr))

See Also

modeMean

28 mouse_mid_brain

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(1,2,3))
modeSum(darr, 1, drop=FALSE)
modeSum(darr, 1, drop=TRUE)
modeSum(darr, 2)

modeSum(darr, 3)

mouse_mid_brain Matrix object of mouse mid brain data

Description

A matrix with 500 rows (genes) * 1907 columns (cells).

Usage

data(mouse_mid_brain)

Details

The data matrix is downloaded from GEO Series GSE76381 (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE76381&
For the details, see inst/script/make-data.R.

References

Y-h. Taguchi and T. Turki (2019) Tensor Decomposition-Based Unsupervised Feature Extraction
Applied to Single-Cell Gene Expression Analysis. Frontiers in Genetics, 10(864): 10:3389/fgene.2019.00864

See Also

mouse_mid_brain

Examples

data(mouse_mid_brain)

mpca-methods 29

mpca-methods Multilinear Principal Components Analysis

Description

This is basically the Tucker decomposition of a K-Tensor, tucker, with one of the modes uncom-
pressed. If K = 3, then this is also known as the Generalized Low Rank Approximation of Matrices
(GLRAM). This implementation assumes that the last mode is the measurement mode and hence
uncompressed. This is an iterative algorithm, with two possible stopping conditions: either rela-
tive error in Frobenius norm has gotten below tol, or the max_iter number of iterations has been
reached. For more details on the MPCA of tensors, consult Lu et al. (2008).

Usage

mpca(darr, ranks=NULL, max_iter=25, tol=1e-05)

S4 method for signature 'DelayedArray'’
mpca(darr, ranks, max_iter, tol)

Arguments
darr Tensor with K modes
ranks a vector of the compressed modes of the output core Tensor, this has length K-1
max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance
Details

This function is an extension of the mpca by DelayedArray.

Uses the Alternating Least Squares (ALS) estimation procedure. A progress bar is included to help
monitor operations on large tensors.

Value

a list containing the following:

Z_ext the extended core tensor, with the first K-1 modes given by ranks

U a list of K-1 orthgonal factor matrices - one for each compressed mode, with the number of
columns of the matrices given by ranks

conv whether or not resid < tol by the last iteration

est estimate of darr after compression

norm_percent the percent of Frobenius norm explained by the approximation
fnorm_resid the Frobenius norm of the error fnorm(est-darr)

all_resids vector containing the Frobenius norm of error for all the iterations

30 outerProd-methods

Note

The length of ranks must match darr@num_modes-1.

References

H. Lu, K. Plataniotis, A. Venetsanopoulos, "Mpca: Multilinear principal component analysis of
tensor objects". IEEE Trans. Neural networks, 2008.

See Also

tucker, hosvd

Examples

library("DelayedRandomArray™)
darr <- RandomUnifArray(c(3,4,5))
mpca(darr, ranks=c(1,2))

outerProd-methods Tensors Outer Product of DelayedArray

Description

Returns the outer product between two Tensors

Usage
outerProd(darri1, darr2)

S4 method for signature 'DelayedArray,DelayedArray
outerProd(darri, darr2)

Arguments
darri first DelayedArray object
darr2 second DelayedArray object
Details

NOTE: Sparse mode of outerProd is not available for now.

Value

outer product between darr1 and darr2

pvd-methods 31

Examples

library("”DelayedRandomArray")
darr1 <- RandomUnifArray(c(2,3))
darr2 <- RandomUnifArray(c(4,5))
outerProd(darr1, darr2)

pvd-methods Population Value Decomposition

Description

The default Population Value Decomposition (PVD) of a series of 2D images. Constructs population-
level matrices P, V, and D to account for variances within as well as across the images. Structurally
similar to Tucker (tucker) and GLRAM (mpca), but retains crucial differences. Requires 2*n3 + 2
parameters to specified the final ranks of P, V, and D, where n3 is the third mode (how many images
are in the set). Consult Crainiceanu et al. (2013) for the construction and rationale behind the PVD
model.

Usage
pvd(darr, uranks=NULL, wranks=NULL, a=NULL, b=NULL)

S4 method for signature 'DelayedArray’
pvd(darr, uranks, wranks, a, b)

Arguments
darr 3D DelayedArray (Tensor) with the third mode being the measurement mode
uranks ranks of the U matrices
wranks ranks of the W matrices
rank of P = U%x%t (U)
b rank of D = W%*%t (W)
Details

This function is an extension of the pvd by DelayedArray.

The PVD is not an iterative method, but instead relies on n3 + 2 separate PCA decompositions. The
third mode is for how many images are in the set.

Value
a list containing the following:

P population-level matrix P = U%*%t(U), where U is constructed by stacking the truncated left
eigenvectors of slicewise PCA along the third mode

V a list of image-level core matrices

32 rbind_list

D population-leve matrix D = W%*%t (W), where W is constructed by stacking the truncated right
eigenvectors of slicewise PCA along the third mode

est estimate of darr after compression
norm_percent the percent of Frobenius norm explained by the approximation

fnorm_resid the Frobenius norm of the error fnorm(est-darr)

References

C. Crainiceanu, B. Caffo, S. Luo, V. Zipunnikov, N. Punjabi, "Population value decomposition: a
framework for the analysis of image populations". Journal of the American Statistical Association,
2013.

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(3,4,5))
pvd(darr, uranks=rep(2,5), wranks=rep(3,5), a=2, b=3)

rbind_list Mode-binding against list

Description

Returns the binded DelayedArray in row space.

Usage
rbind_list(L)

Arguments

L list of 2D DelayedArray

Details

This is a wrapper function to modebind_list, when the DelayedArrays are 2D.

Value

2D DelayedArray object

Note

The dimensions of row in each DelayedArray must match.

See Also

modebind_list

rs_fold-methods

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
dlizt <- list(
'darr1' = RandomUnifArray(c(2,3)),
'darr2' = RandomUnifArray(c(2,3)))
rbind_list(dlizt)

33

rs_fold-methods Row Space Folding of 2D DelayedArray

Description

The inverse operation to rs_unfold.
Usage
rs_fold(mat, m = NULL, modes = NULL)

S4 method for signature 'DelayedArray’
rs_fold(mat, m, modes)

Arguments
mat DelayedArray object (only 2D)
m the mode corresponding to rs_unfold
modes the original modes of the DelayedArray
Details

This function is an extension of the rs_fold by DelayedArray.

This is a wrapper function to fold.

Value

DelayedArray (higher than 2D)

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and

Applications 2009.

See Also
fold, rs_unfold

34

Examples

library("DelayedRandomArray")

darr <- RandomUnifArray(c(2,3,4))

matT2 <- rs_unfold(darr, m=2)

identical(
as.array(rs_fold(matT2, m=2, modes=c(2,3,4))),
as.array(darr))

rs_unfold-methods

rs_unfold-methods Tensor Row Space Unfolding of DelayedArray

Description

Please see k_unfold and unfold.

Usage

rs_unfold(darr, m)

S4 method for signature 'DelayedArray’
rs_unfold(darr, m)

Arguments

darr DelayedArray object

m mode to be unfolded on
Details

This function is an extension of the rs_unfold by DelayedArray.
This is a wrapper function to unfold.
See also rs_unfold(darr, m=NULL)

Value

DelayedArray (2D)

See Also
unfold, rs_fold

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
matT2 <- rs_unfold(darr, m=2)

setSparse 35

setSparse Setter to set the intermediate DelayedArray object in Delayedlensor

Description

Set whether the intermediate and output DelayedArray used in DelayedTensor is used as sparse
tensor or not.

NOTE: Sparse mode is experimental! Whether it contributes to higher speed and lower memory
is quite dependent on the sparsity of the DelayedArray, and the current implementation does not
recognize the block size, which may cause Out-of-Memory errors.

Usage
setSparse(as.sparse=FALSE)

Arguments

as.sparse TRUE or FALSE (Default: FALSE)

Value

Nothing

Examples

setSparse(TRUE)
setSparse(FALSE)

setVerbose Setter to set the verbose mode of DelayedTensor

Description

Set the verbose message to monitor the block-processing procedure.

Usage

setVerbose(as.verbose=FALSE)

Arguments

as.verbose TRUE or FALSE (Default: FALSE)

Value

Nothing

36 ttl

Examples

setVerbose (TRUE)
setVerbose (FALSE)

ttl DelayedArray Times List

Description
Contracted (m-Mode) product between a Tensor of arbitrary number of modes and a list of matrices.
The result is folded back into Tensor.

Usage

ttl(darr, list_mat, ms=NULL)

Arguments

darr DelayedArray object with K modes

list_mat a list of 2D DelayedArray objects

ms a vector of modes to contract on (order should match the order of 1ist_mat)
Details

This function is an extension of the ttl by DelayedArray.
This is a wrapper function to unfold.

Performs ttm repeated for a single Tensor and a list of matrices on multiple modes. For instance,
suppose we want to do multiply a Tensor object darr with three matrices mat1, mat2, mat3 on
modes 1, 2, and 3. We could do ttm(ttm(ttm(darr,matl1,1),mat2,2),3), or we could do
ttl(darr,list(mat1,mat2,mat3),c(1,2,3)). The order of the matrices in the list should obvi-
ously match the order of the modes. This is a common operation for various Tensor decompositions
such as CP and Tucker. For the math on the m-Mode Product, see Kolda and Bader (2009).

Value

DelayedArray object with K modes (Tensor)

Note

The returned Tensor does not drop any modes equal to 1.

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

ttm-methods 37

See Also

ttm

Examples

library("DelayedRandomArray")
darr <- RandomUnifArray(c(3,4,5))
dlizt <- list(
'darr1' = RandomUnifArray(c(190,3)),
'darr2' = RandomUnifArray(c(10,4)))
ttl(darr, dlizt, ms=c(1,2))

ttm-methods Tensor Times Matrix (m-Mode Product)

Description
Contracted (m-Mode) product between a DelayedArray (Tensor) of arbitrary number of modes and
a matrix. The result is folded back into Tensor.

Usage
ttm(darr, mat, m = NULL)

S4 method for signature 'DelayedArray,DelayedArray'’
ttm(darr, mat, m)

Arguments
darr DelayedArray object
mat input 2D DelayedArray with same number columns as the mth mode of darr
m the mode to contract on

Details

This function is an extension of the ttm by DelayedArray.

By definition, rs_unfold(ttm(darr, mat), m) = mat%x%rs_unfold(darr, m), so the number of
columns in mat must match the mth mode of darr. For the math on the m-Mode Product, see Kolda
and Bader (2009).

Value

a DelayedArray object with K modes

Note

The mth mode of darr must match the number of columns in mat. By default, the returned Tensor
does not drop any modes equal to 1.

38 tucker-methods

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

rs_unfold, ttl

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
mat <- RandomUnifArray(c(10,4))
ttm(darr, mat, m=3)

tucker-methods Tucker Decomposition

Description

The Tucker decomposition of a tensor. Approximates a K-Tensor using a n-mode product of a core
tensor (with modes specified by ranks) with orthogonal factor matrices. If there is no truncation
in one of the modes, then this is the same as the MPCA, mpca. If there is no truncation in all the
modes (i.e. ranks = darr@modes), then this is the same as the HOSVD, hosvd. This is an iterative
algorithm, with two possible stopping conditions: either relative error in Frobenius norm has gotten
below tol, or the max_iter number of iterations has been reached. For more details on the Tucker
decomposition, consult Kolda and Bader (2009).

Usage

tucker(darr, ranks=NULL, max_iter=25, tol=1e-05)

S4 method for signature 'DelayedArray’
tucker(darr, ranks, max_iter, tol)

Arguments
darr Tensor with K modes
ranks a vector of the modes of the output core Tensor
max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance

Details

This function is an extension of the tucker by DelayedArray.

Uses the Alternating Least Squares (ALS) estimation procedure also known as Higher-Order Or-
thogonal Iteration (HOOI). Intialized using a (Truncated-)HOSVD. A progress bar is included to
help monitor operations on large tensors.

unfold-methods 39

Value
a list containing the following:

Z the core tensor, with modes specified by ranks

U alist of orthgonal factor matrices - one for each mode, with the number of columns of the matrices
given by ranks

conv whether or not resid < tol by the last iteration

est estimate of darr after compression

norm_percent the percent of Frobenius norm explained by the approximation
fnorm_resid the Frobenius norm of the error fnorm(est-darr)

all_resids vector containing the Frobenius norm of error for all the iterations

Note

The length of ranks must match darr@num_modes.

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

hosvd, mpca

Examples

library("”DelayedRandomArray")
darr <- RandomUnifArray(c(2,3,4))
tucker(darr, ranks=c(1,2,3))

unfold-methods Tensor Unfolding of 2D DelayedArray

Description

Unfolds the tensor into a matrix, with the modes in rs onto the rows and modes in cs onto the
columns. Note that c(rs,cs) must have the same elements (order doesn’t matter) as dim(darr).
Within the rows and columns, the order of the unfolding is determined by the order of the modes.
This convention is consistent with Kolda and Bader (2009).

Usage

unfold(darr, row_idx, col_idx)

S4 method for signature 'DelayedArray’
unfold(darr, row_idx, col_idx)

40 unmatvec-methods

Arguments
darr DelayedArray object
row_idx the indices of the modes to map onto the row space
col_idx the indices of the modes to map onto the column space
Details

This function is an extension of the unfold by DelayedArray.

For Row Space Unfolding or m-mode Unfolding, see rs_unfold. For Column Space Unfolding or
matvec, see cs_unfold.

vec returns the vectorization of the tensor.

Value

2D DelayedArray with prod(row_idx) rows and prod(col_idx) columns

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

k_unfold, matvec, rs_unfold, cs_unfold

Examples

library("DelayedRandomArray”)
darr <- RandomUnifArray(c(2,3,4))
unfold(darr, row_idx=2, col_idx=c(3,1))

unmatvec-methods Unmatvec Folding of 2D DelayedArray

Description
The inverse operation to matvec-methods, turning a matrix into a Tensor. For a full account of
matrix folding/unfolding operations, consult Kolda and Bader (2009).

Usage

unmatvec(mat, modes = NULL)

S4 method for signature 'DelayedArray'
unmatvec(mat, modes)

vec-methods 41

Arguments

mat DelayedArray object (only 2D)

modes the modes of the output DelayedArray
Details

This function is an extension of the unmatvec by DelayedArray.

This is a wrapper function to fold.

Value

DelayedArray object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

fold, matvec

Examples

library("DelayedRandomArray”)

darr <- RandomUnifArray(c(2,3,4))

matT1 <- matvec(darr)

identical(
as.array(unmatvec(matT1, modes=c(2,3,4))),
as.array(darr))

vec-methods Tensor Vectorization of DelayedArray

Description

Change the dimension of DelayedArray from multi-dimension (e.g. array) to single-dimension (e.g.
vector).
Usage

vec(darr)

S4 method for signature 'DelayedArray’
vec(darr)

42 vec-methods

Arguments

darr DelayedArray object

Details

This function is an extension of the vec by DelayedArray.

Value

1D DelayedArray (vector) with length prod(dim(darr))

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

Examples

library("DelayedRandomArray")
darr <- RandomUnifArray(c(2,3,4))
vec(darr)

Index

+ datasets
human_mid_brain, 17
mouse_mid_brain, 28

+ package
DelayedTensor-package, 3

cbind_list, 3, 3, 26

cp, 3,5

cp (cp-methods), 4

cp,DelayedArray-method (cp-methods), 4

cp-methods, 4

cs_fold, 3,6, 7,12

cs_fold (cs_fold-methods), 6

cs_fold,DelayedArray-method
(cs_fold-methods), 6

cs_fold-methods, 6

cs_unfold, 3, 6, 7, 40

cs_unfold (cs_unfold-methods), 7

cs_unfold,DelayedArray-method
(cs_unfold-methods), 7

cs_unfold-methods, 7

DelayedDiagonalArray, 3, 8, 9

DelayedTensor (DelayedTensor-package), 3

DelayedTensor-package, 3

diag, 3,8, 9

diag (diag-methods), 9

diag,DelayedArray-method
(diag-methods), 9

diag-methods, 9

diag<- (diag-methods), 9

diag<-,DelayedArray-method
(diag-methods), 9

einsum, 3, 10, 10

fnorm, 3, 11

fnorm (fnorm-methods), 11

fnorm,DelayedArray-method
(fnorm-methods), 11

43

fnorm-methods, 11

fold, 3,6, 12, 22, 33,41

fold (fold-methods), 12

fold,DelayedArray-method
(fold-methods), 12

fold-methods, 12

getSparse, 13
getVerbose, 13

hadamard, 3, 15, 19-21
hadamard (hadamard-methods), 14
hadamard,DelayedArray,DelayedArray-method
(hadamard-methods), 14
hadamard-methods, 14
hadamard_list, 3, /4, 15, 15, 19-21
hosvd, 3, 16, 30, 38, 39
hosvd (hosvd-methods), 16
hosvd,DelayedArray-method
(hosvd-methods), 16
hosvd-methods, 16
human_mid_brain, 17

innerProd, 3, I8

innerProd (innerProd-methods), 18

innerProd,DelayedArray,DelayedArray-method
(innerProd-methods), 18

innerProd-methods, 18

k_fold, 3, 12, 22, 23
k_fold (k_fold-methods), 22
k_fold,DelayedArray-method
(k_fold-methods), 22
k_fold-methods, 22
k_unfold, 3, 22, 23, 34, 40
k_unfold (k_unfold-methods), 23
k_unfold,DelayedArray-method
(k_unfold-methods), 23
k_unfold-methods, 23
khatri_rao, 3, 14, 15, 19-21

44 INDEX

khatri_rao (khatri_rao-methods), 18 rs_fold, 3, 12, 33, 34
khatri_rao,DelayedArray,DelayedArray-method rs_fold (rs_fold-methods), 33
(khatri_rao-methods), 18 rs_fold,DelayedArray-method
khatri_rao-methods, 18 (rs_fold-methods), 33
khatri_rao_list, 3, 14, 15,19, 19, 20, 21 rs_fold-methods, 33
kronecker, 3, 14, 15, 19-21 rs_unfold, 3, 33, 34, 38, 40
kronecker (kronecker-methods), 20 rs_unfold (rs_unfold-methods), 34
kronecker,DelayedArray,DelayedArray-method rs_unfold,DelayedArray-method
(kronecker-methods), 20 (rs_unfold-methods), 34
kronecker-methods, 20 rs_unfold-methods, 34

kronecker_list, 3, 14, 15, 19-21, 21
setSparse, 35

list_rep, 3,24 setVerbose, 35
matvec, 3, 7, 25, 40, 41 ttl, 3, 36, 36, 38
ttm, 3, 37

matvec (matvec-methods), 24

matvec,DelayedArray-method ttm (ttm-methods), 37

(matvec-methods), 24 ttm,DelayedArray,DelayedArray-method
matvec-methods, 24 (ttm-methods), 37
modebind_list, 3, 4, 25, 32 ttm-methods, 37
modeMean, 3, 26, 27 tucker, 3, 5, 17,29-31, 38

modeMean (modeMean-methods), 26 tucker (tucker-methods), 38
modeMean, DelayedArray-method tucker,DelayedArray-method
(modeMean-methods), 26 (tucker-methods), 38
modeMean-methods, 26 tucker-methods, 38
modeSum, 3, 26, 27
modeSum (modeSum-methods), 27
modeSum,DelayedArray-method
(modeSum-methods), 27
modeSum-methods, 27
mouse_mid_brain, 17, 28, 28
mpca, 3, 29, 31, 38, 39
mpca (mpca-methods), 29
mpca,DelayedArray-method
(mpca-methods), 29
mpca-methods, 29

unfold, 3,7, 12, 23, 25, 34, 36, 40
unfold (unfold-methods), 39
unfold,DelayedArray-method
(unfold-methods), 39
unfold-methods, 39
unmatvec, 3, 12, 25,41
unmatvec (unmatvec-methods), 40
unmatvec,DelayedArray-method
(unmatvec-methods), 40
unmatvec-methods, 40

vec, 3, 40, 42
outerProd (outerProd-methods), 30 vec (vec-methods), 41

outerProd,DelayedArray,DelayedArray-method vec,DelayedArray-method (vec-methods),
(outerProd-methods), 30 41

outerProd-methods, 30 vec-methods, 41

pvd, 3, 31

pvd (pvd-methods), 31

pvd,DelayedArray-method (pvd-methods),
31

pvd-methods, 31

rbind_list, 3, 26, 32

	DelayedTensor-package
	cbind_list
	cp-methods
	cs_fold-methods
	cs_unfold-methods
	DelayedDiagonalArray
	diag-methods
	einsum
	fnorm-methods
	fold-methods
	getSparse
	getVerbose
	hadamard-methods
	hadamard_list
	hosvd-methods
	human_mid_brain
	innerProd-methods
	khatri_rao-methods
	khatri_rao_list
	kronecker-methods
	kronecker_list
	k_fold-methods
	k_unfold-methods
	list_rep
	matvec-methods
	modebind_list
	modeMean-methods
	modeSum-methods
	mouse_mid_brain
	mpca-methods
	outerProd-methods
	pvd-methods
	rbind_list
	rs_fold-methods
	rs_unfold-methods
	setSparse
	setVerbose
	ttl
	ttm-methods
	tucker-methods
	unfold-methods
	unmatvec-methods
	vec-methods
	Index

