
Package ‘eiR’
July 9, 2025

Type Package

Title Accelerated similarity searching of small molecules

Version 1.48.0

Date 2025-02-11

Author Kevin Horan, Yiqun Cao and Tyler Backman

Maintainer Thomas Girke <thomas.girke@ucr.edu>

Suggests BiocStyle, knitcitations, knitr,
knitrBootstrap,rmarkdown,RSQLite,codetools

Description The eiR package provides utilities for accelerated
structure similarity searching of very large small molecule
data sets using an embedding and indexing approach.

License Artistic-2.0

Depends R (>= 2.10.0), ChemmineR (>= 2.15.15), methods, DBI

Imports snow, tools, snowfall, RUnit, methods, ChemmineR, RCurl,
digest, BiocGenerics, RcppAnnoy (>= 0.0.9)

biocViews Cheminformatics, BiomedicalInformatics, Pharmacogenetics,
Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays,
Visualization, Infrastructure, DataImport, Clustering,
Proteomics, Metabolomics

URL https://github.com/girke-lab/eiR

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/eiR

git_branch RELEASE_3_21

git_last_commit 4f09eda

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-07-09

1

https://github.com/girke-lab/eiR

2 addTransform

Contents

addTransform . 2
eiAdd . 4
eiCluster . 6
eiInit . 8
eiMakeDb . 10
eiPerformanceTest . 12
eiQuery . 14
example_compounds . 16
freeLSHData-deprecated . 16
loadLSHData-deprecated . 17
setDefaultDistance . 18

Index 19

addTransform Add Transform

Description

New descriptor types can be added using the addTransform function. These transforms are basi-
cally just ways to read descriptors from compound definitions, and to convert descriptors between
string and object form. This conversion is required because descriptors are stored as strings in the
SQL database, but are used by the rest of the program as objects.

There are two main components that need to be added. The addTransform function takes the
name of the transform and two functions, toString, and toObject. These have slightly different
meanings depending on the component you are adding. The first component to add is a transform
from a chemical compound format, such as SDF, to a descriptor format, such as atom pair (AP),
in either string or object form. The toString function should take any kind of chemical compound
source, such an SDF file, an SDF object or an SDFset, and output a string representation of the
descriptors. Since this function can be written in terms of other functions that will be defined, you
can usually accept the default value of this function. The toObject function should take the same
kind of input, but output the descriptors as an object. The actual return value is a list containing the
names of the compounds (in the names field), and the actual descriptor objects (in the descriptors
field).

The second component to add is a transform that converts between string and object representations
of descriptors. In this case the toString function takes descriptors in object form and returns a string
representation for each. The toObject function performs the inverse operation. It takes descriptors
in string form and returns them as objects. The objects returned by this function will be exactly
what is handed to the distance function, so you need to make sure that the two match each other.

Usage

addTransform(descriptorType, compoundFormat = NULL, toString = NULL, toObject)

addTransform 3

Arguments

descriptorType The name of the type of the descritor being added.

compoundFormat The format of the compound data the descriptor will be extracted from.

toString A function with three arguments, the data, an SQL connection object, and a
directory name. The last two are optional and can be set to a default value of
NULL if not used in the body of the function. If this parameter is NULL and
compoundFormat is not NULL, then a default function will be used for this
value.

toObject A function with three arguments, the data, an SQL connection object, and a
directory name. The last two are optional and can be set to a default value of
NULL if not used in the body of the function. If compoundFormat is not NULL,
then the return value of this function should be a list with the fields "names" and
"descriptors", containing the compound names and descriptor objects, respec-
tivly. If compoundFormat is NULL, then the return value should be a collection
of descriptor objects, in whatever format the distance function for this descrptor
type requires.

Value

No value returned.

Author(s)

Kevin Horan

See Also

setDefaultDistance

Examples

adding support for atompair (ap) descriptors extracted from
sdf formmatted data.

#first component
addTransform("ap-example","sdf-example",

Any sdf source -> APset
toObject = function(input,conn=NULL,dir="."){

sdfset=if(is.character(input) && file.exists(input)){
read.SDFset(input)

}else if(inherits(input,"SDFset")){
input

}else{
stop(paste("unknown type for 'input', or filename does not exist. type found:",class(input)))
}
list(names=sdfid(sdfset),descriptors=sdf2ap(sdfset))

}
)

4 eiAdd

#second component
addTransform("ap-example",

APset -> string,
toString = function(apset,conn=NULL,dir="."){

unlist(lapply(ap(apset), function(x) paste(x,collapse=", ")))
},
string or list -> AP set list
toObject= function(v,conn=NULL,dir="."){

if(inherits(v,"list") || length(v)==0)
return(v)

as(if(!inherits(v,"APset")){
names(v)=as.character(1:length(v));
read.AP(v,type="ap",isFile=FALSE)

} else v,
"list")

}
)

eiAdd Add new compounds

Description

Add additional compounds to and existing database

Usage

eiAdd(runId,additions,dir=".",format="sdf",conn=defaultConn(dir),
distance=getDefaultDist(descriptorType),
updateByName = FALSE,...)

Arguments

runId The id number identifying a particular set of settings for a database. This is
generally the number returned by eiMakeDbIf your coming from an older version
of eiR, you should not use this value instead of specifying r, d, descriptorType
and refIddb,.

additions The compounds to add. This can be either a file in sdf format, or and SDFset
object.

dir The directory where the "data" directory lives. Defaults to the current directory.

format The format of the data given in additions. Currently only "sdf" is supported.

conn Database connection to use.

distance The distance function to be used to compute the distance between two descrip-
tors. A default function is provided for "ap" and "fp" descriptors.

eiAdd 5

updateByName If true we make the assumption that all compounds, both in the existing database
and the given dataset, have unique names. This function will then avoid re-
adding existing, identical compounds, and will update existing compounds with
a new definition if a new compound definition with an existing name is given.

If false, we allow duplicate compound names to exist in the database, though not
duplicate definitions. So identical compounds will not be re-added, but if a new
version of an existing compound is added it will not update the existing one, it
will add the modified one as a completely new compound with a new compound
id.

... Additional options passed to eiInit.

Details

New Compounds can be added to an existing database, however, the reference compounds cannot
be changed. This will also update the matrix file in the run/job directory with the new compounds.

Author(s)

Kevin Horan

See Also

eiMakeDb eiPerformanceTest eiQuery

Examples

library(snow)
r<- 50
d<- 40

#initialize
data(sdfsample)
dir=file.path(tempdir(),"add")
dir.create(dir)
eiInit(sdfsample[1:99],dir=dir,skipPriorities=TRUE)

#create compound db
runId=eiMakeDb(r,d,numSamples=20,dir=dir)

#find compounds similar two each query
eiAdd(runId,sdfsample[100],dir=dir)

6 eiCluster

eiCluster Cluster compounds

Description

Uses Jarvis-Patrick clustering to cluster the compound database using the LSH algorithm to quickly
find nearest neighbors.

Usage

eiCluster(runId,K,minNbrs,compoundIds=c(), dir=".",cutoff=NULL,
distance=getDefaultDist(descriptorType),
conn=defaultConn(dir), searchK=-1,type="cluster",linkage="single")

Arguments

runId The id number identifying a particular set of settings for a database. This is
generally the number returned by eiMakeDb. If your coming from an older
version of eiR, you should not use this value instead of specifying r, d, and
descriptorType.

K The number of neighbors to consider for each compound.

minNbrs The minimum number of neighbors that two comopunds must have in common
in order to be joined.

compoundIds If this variable is set to a vector of compound ids, then clustering will be done
with just those compounds. If left unset or empty, clustering will apply to all
compounds in the given run.

dir The directory where the "data" directory lives. Defaults to the current directory.

distance The distance function to be used to compute the distance between two descrip-
tors. A default function is provided for "ap" and "fp" descriptors.

cutoff Distance cutoff value. Compounds having a distance larger this this value will
not be included in the nearest neighbor table. Note that this is a distance value,
not a similarity value, as is often used in other ChemmineR functions.

conn Database connection to use.

searchK Tunable Annoy LSH parameter. A larger value will give more accurate results,
but will take longer time to return. The default value of -1 will allow the value
to chosen automatically, which will set a value of numTrees * (approximate
number of nearest neighbors). See Annoy page for details. https://github.
com/spotify/annoy

type If "cluster", returns a clustering, else, if "matrix", returns a list in the format
expected by the jarvisPatrick function in ChemmineR. This list contains the
nearest neighbor matrix along with the similarity matrix. This allows one to
quickly try different cutoff values without having to re-compute the whole sim-
ilarity matrix each time. Note that since we are returning similarity values here
instead of distance values, this will only work if the given distance function
returns a value between 0 and 1. This is true of the default funtions.

https://github.com/spotify/annoy
https://github.com/spotify/annoy

eiCluster 7

linkage Can be one of "single", "average", or "complete", for single linkage, average
linkage and complete linkage merge requirements, respectively. In the context
of Jarvis-Patrick, average linkage means that at least half of the pairs between
the clusters under consideration must pass the merge requirement. Similarly, for
complete linkage, all pairs must pass the merge requirement. Single linkage is
the normal case for Jarvis-Patrick and just means that at least one pair must meet
the requirement.

Details

The jarvis patrick clustering algorithm takes a set of items, a distance function, and two parameters,
K, and minNbrs. For each item, it find the K nearest neighbors of that item. Normally this requires
computing the distance between every pair of items. However, using Locality Sensative Hashing
(LSH), the set of nearst neighbors can be found in near constant time. Once the nearest neighbor
matrix is computed, the algorithm makes one pass through the items and merges all pairs that have
at least minNbrs neighbors in common.

Although not required, it is avisable to specify a cutoff value. This is the maximum distance two
items can have from each other and still be considered to be neighbors. It is thus possible for an
item to end up with less than K neighbors if less than K items are close enough to it. If a cutoff is not
specified, it is possible for highly un-related items to be listed as neighbors of another item simply
because nothing else was nearby. This can lead to items being joined into clusters with which they
have no true connection.

The type parameter can be used to return a list which can be used to call the jarvisPatrick
function in ChemmineR directly. The advantage of this is that it will contain the similarity matrix
which can then be used to quickly set different cutoff values (using trimNeighbors) whithout
having to re-compute the similarity matrix. Note that this requires that the given distance function
return a value between 0 and 1 so it can be converted to a similarity function.

Value

If type is "cluster", returns a clustering. This will be a vector in which the names are the compound
names, and the values are the cluster labels. Otherwise, if type is "matrix", returns a list with the
following components:

indexes index values of nearest neighbors, for each item.

names The database compound id of each item in the set.

similarities The similarity values of each neighbor to the item for that row. Each similarity
values corresponds to the id number in the same position in the indexes entry

If there are not K neibhbors for a compound, that row will be padded with NAs.

Author(s)

Kevin Horan

Examples

library(snow)
r<- 50

8 eiInit

d<- 40

#initialize
data(sdfsample)
dir=file.path(tempdir(),"cluster")
dir.create(dir)
eiInit(sdfsample,dir=dir,skipPriorities=TRUE)

#create compound db
runId=eiMakeDb(r,d,numSamples=20,dir=dir, cl=makeCluster(1,type="SOCK",outfile=""))

eiCluster(runId,K=5,minNbrs=2,cutoff=0.5,dir=dir)

eiInit Initialize a compound database

Description

Takes the raw compound database in whatever format the given measure supports and creates a
"data" directory.

Usage

eiInit(inputs,dir=".",format="sdf",descriptorType="ap",append=FALSE,
conn=defaultConn(dir,create=TRUE), updateByName = FALSE, cl = NULL, connSource = NULL,
priorityFn = forestSizePriorities,skipPriorities=FALSE)

Arguments

inputs Either a filename of a file in format format, or an SDFset. This can also be a
vector of filenames and if cl is also specified and if you database supports it
(SQLite does not), it will load these file in parallel on the cluster.

dir The directory where the "data" directory lives. Defaults to the current directory.

format The format of the data in inputs. Currently only "sdf" and "smiles" is sup-
ported.

descriptorType The format of the descriptor. Currently supported values are "ap" for atom pair,
and "fp" for fingerprint.

append If true the given compounds will be added to an existing database and the <data-
dir>/Main.iddb file will be updated with the new compound id numbers. This
should not normally be used directly, use eiAdd instead to add new compounds
to a database.

conn Database connection to use. If a connection is given, you must ensure that it
has been initialized using the initDb function from ChemmineR before calling
eiInit.

eiInit 9

updateByName If true we make the assumption that all compounds, both in the existing database
and the given dataset, have unique names. This function will then avoid re-
adding existing, identical compounds, and will update existing compounds with
a new definition if a new compound definition with an existing name is given.
If false, we allow duplicate compound names to exist in the database, though not
duplicate definitions. So identical compounds will not be re-added, but if a new
version of an existing compound is added it will not update the existing one, it
will add the modified one as a completely new compound with a new compound
id.

cl A SNOW cluster can be given here to run this function in parallel.

connSource A function returning a new database connection. Note that it is not sufficient
to return a reference to an existing connection, it must be a distinct, new con-
nection. This is needed for cluster operations that make use of the database as
they will each need to create a new connection. If not given, certain parts of this
function will not be parallelized.
This function can also be used to setup the environment on the cluster worker
nodes. For example, you might need to re-load libraries like RSQLite and such.

priorityFn This option takes a function that takes a list of compound ids and returns a data
frame with the compound ids as the column ’compound_id’, and their priority
as the column ’priority’. There are two pre-defined functions in ChemmineR:
’randomPriorities’, and ’forestSizePriorities’ (default).
When several compounds map to the same descriptor, then when some functions
need to go from a descriptor to a compound, there is ambiguity about which
compound to select. In that case, it will pick the compound with the highest
priority.

skipPriorities If this is true, then no priority values will be computed. See option priorityFn
for an explanation of priorities.

Details

EiInit can take either an SDFset, or a filename. SDF and SMILES is supported by default. It might
complain if your SDF file does not follow the SDF specification. If this happens, you can create an
SDFset with the read.SDFset command and then use that instead of the filename.

EiInit will create a folder called ’data’. Commands should always be executed in the folder contain-
ing this directory (ie, the parent directory of "data"), or else specify the location of that directory
with the dir option.

Value

A directory called "data" will have been created in the current working directory. The generated
compound ids of the given compounds will be returned. These can be used to reference a compound
or set of compounds in other functions, such as eiQuery.

Author(s)

Kevin Horan

10 eiMakeDb

See Also

eiMakeDb eiPerformanceTest eiQuery

Examples

data(sdfsample)
dir=file.path(tempdir(),"init")
dir.create(dir)
eiInit(sdfsample,dir=dir,priorityFn=randomPriorities)

eiMakeDb Create an embedded database

Description

Uses the initalized compound data to create an embedded compound databbase with r reference
compounds in d dimensions.

Usage

eiMakeDb(refs,d,descriptorType="ap",distance=getDefaultDist(descriptorType),
dir=".",numSamples=getGroupSize(conn,
name = file.path(dir,Main)) * 0.1,conn=defaultConn(dir),
cl=makeCluster(1,type="SOCK",outfile=""),connSource=NULL,numTrees=100)

Arguments

refs The reference compounds to use to build the database you wish to query against.
Refs can be one of three things. It can be a filename of an iddb file giving the
index values of the reference compounds to use, it can be vector of index values,
or it can be a scalar value giving the number of randomly selected references to
use.

d The number of dimensions used to build the database you wish to query against.

descriptorType The format of the descriptor. Currently supported values are "ap" for atom pair,
and "fp" for fingerprint.

distance The distance function to be used to compute the distance between two descrip-
tors. A default function is provided for "ap" and "fp" descriptors.

dir The directory where the "data" directory lives. Defaults to the current directory.

numSamples The number of non-reference samples to be chosen now to be used later by the
eiPerformanceTest function.

conn Database connection to use.

cl A SNOW cluster can be given here to run this function in parrallel.

eiMakeDb 11

connSource A function returning a new database connection. Note that it is not suffient to re-
turn a reference to an existing connection, it must be a distinct, new connection.
This is needed for cluster operations that make use of the database as they will
each need to craete a new connection. If not given, certain parts of this function
will not be parrallelized.
This function can also be used to setup the envrionment on the cluster worker
nodes. For example, you might need to re-load libraries like RSQLite and such.

numTrees Affects the build time and the index size. A larger value will produce more
accurate results, but use more disk space. See https://github.com/spotify/
annoy for more details.

Details

This function will embedd compounds from the data directory in another space which allows for
more efficient searching. The main two parameters are r and d. r is the number of reference
compounds to use and d is the dimension of the embedding space. We have found in practice
that setting d to around 100 works well. r should be large enough to “represent” the full compound
database. Note that an r by r matrix will be constructed during the course of execution, so r should
be less than about 46,000 to avoid overflowing an integer. Since this is the longest running step, a
SNOW cluster can be provided to parallelize the task.

To help tune these values, eiMakeDb will pick numSamples non-reference samples which can later
be used by the eiPerformanceTest function.

eiMakdDb does its job in a job folder, named after the number of reference compounds and the
number of embedding dimensions. For example, using 300 reference compounds to generate a
100-dimensional embedding (r=300, d=100) will result in a job folder called run-300-100. The
embedding result is the file matrix.<r>.<d>. In the above example, the output would be run-300-
100/matrix.300.100.

Value

Creates files in dir ("run-r-d" by default). The return value is an id number called the runId, which
needs to be given to other functions such as eiQuery or eiAdd.

Author(s)

Kevin Horan

See Also

eiInit eiPerformanceTest eiQuery eiCluster

Examples

library(snow)

r<- 50
d<- 40

#initialize

https://github.com/spotify/annoy
https://github.com/spotify/annoy

12 eiPerformanceTest

data(sdfsample)
dir=file.path(tempdir(),"makedb")
dir.create(dir)
eiInit(sdfsample,dir=dir,skipPriorities=TRUE)

#create compound db
runId=eiMakeDb(r,d,numSamples=20,dir=dir,

cl=makeCluster(1,type="SOCK",outfile=""))

eiPerformanceTest Test the performance of LSH search

Description

Tests the performance of embedding and LSH.

Usage

eiPerformanceTest(runId,distance=getDefaultDist(descriptorType),
conn=defaultConn(dir),dir=".",K=200, searchK=-1)

Arguments

runId The id number identifying a particular set of settings for a database. This is
generally the number returned by eiMakeDb. If your coming from an older
version of eiR, you should not use this value instead of specifying r, d, and
descriptorType.

distance The distance function to be used to compute the distance between two descrip-
tors. A default function is provided for "ap" and "fp" descriptors.

conn Database connection to use.

dir The directory where the "data" directory lives. Defaults to the current directory.

K Number of search results to use for LSH performance test.

searchK Tunable Annoy LSH parameter. A larger value will give more accurate results,
but will take longer time to return. See Annoy page for details. https://
github.com/spotify/annoy

Details

This function can be used to tune the two Annoy LSH parameters, numTrees, and searchK.

NumTrees is provided to the eiMakeDb function and affects the build time and the index size. A
larger value will produce more accurate results, but use more disk space.

SearchK is given to the eiQuery function, or to this function. A larger value will give more accurate
results, but will require more time to run.

This function will perform two different tests. The first test is how well the embedding is work-
ing. When the eiMakeDb function is run, you can specify the number of test samples to use for

https://github.com/spotify/annoy
https://github.com/spotify/annoy

eiPerformanceTest 13

this test. If not specified, it will default to 10% of the data set size. During this test, we take each
sample and compute its distance to every other compund in the dataset using both the given de-
scriptor distance function (e.g., "AP" or "fingerprint"), as well as the euclidean distance computed
on the embedded version. We then measure how similar the resulting ranks of these lists are us-
ing Rank Based Overlap (Webber,2010) (http://www.williamwebber.com/research/papers/
wmz10_tois.pdf). The similarity for each sample is output in a file called ’embedding.performance’
in the work directory. Each line corresponds to one sample.

The second test compares the rankings produced using the descriptor distance function, to the rank-
ings produced by the final output of the LSH search, for each sample query. Again, rank based
overlap (RBO) is used to compare the rankings. The results are output in the same format as for the
fist test, in a file called ’indexed.performance’.

RBO is a similarity measure that produces a value in the range of [0,1]. Values closer to 0 are very
dissimilar, while values closer to 1 are more similar.

Value

Returns the results of the indexing test. Each element of the resulting vector is the RBO similarity
for the coresponding query. Creates files in dir/run-r-d.

Author(s)

Kevin Horan

See Also

eiInit eiMakeDb eiQuery

Examples

library(snow)

r<- 50
d<- 40

#initialize
data(sdfsample)
dir=file.path(tempdir(),"perf")
dir.create(dir)
eiInit(sdfsample,dir=dir,skipPriorities=TRUE)

#create compound db
runId = eiMakeDb(r,d,numSamples=20,dir=dir,

cl=makeCluster(1,type="SOCK",outfile=""))

eiPerformanceTest(runId,dir=dir,K=22)

http://www.williamwebber.com/research/papers/wmz10_tois.pdf
http://www.williamwebber.com/research/papers/wmz10_tois.pdf

14 eiQuery

eiQuery Perform a query on an embedded database

Description

Finds similar compounds for each query.

Usage

eiQuery(runId,queries,format="sdf",
dir=".",distance=getDefaultDist(descriptorType),conn=defaultConn(dir),
asSimilarity=FALSE, K=200, searchK=-1,lshData=NULL,
mainIds = readIddb(conn,file.path(dir, Main)))

Arguments

runId The id number identifying a particular set of settings for a database. This is gen-
erally the number returned by eiMakeDb. If your coming from an older version
of eiR, you should not use this value instead of specifying r, d,refIddb, and
descriptorType.

queries This can be either an SDFset, or a file containg 1 or more query compounds.

format The format in which the queries are given. Valid values are: "sdf" when queries
is either a filename of an sdf file, or and SDFset object; "compound_id" when
queries is a list of id numbers; and "name", when queries is a list of compound
names, as returned by cid(apset).

dir The directory where the "data" directory lives. Defaults to the current directory.

distance The distance function to be used to compute the distance between two descrip-
tors. A default function is provided for "ap" and "fp" descriptors. The Tanimoto
function is used by default.

conn Database connection to use.

asSimilarity If true, return similarity values instead of distance values. This only works in
the given distance function returns values between 0 and 1. This is true for the
default atom pair and finger print distance functions.

K The number of results to return.

searchK Tunable Annoy LSH parameter. A larger value will give more accurate results,
but will take longer time to return. The default value of -1 will allow the value
to chosen automatically, which will set a value of numTrees * (approximate
number of nearest neighbors). See Annoy page for details. https://github.
com/spotify/annoy

lshData DEPRECATED. This is no longer used.

mainIds A vector of all id numbers in the current database. This is mainly provided as an
option here to avoid having to re-read the id list multiple times when executing
several queries. If not supplied it will read it in itself.

https://github.com/spotify/annoy
https://github.com/spotify/annoy

eiQuery 15

Details

This function identifies the database by the r, d, and refIddb parameters. The queries can be
given in a few different formats, see the queries parameter for details. The LSH algorithm is used
to quickly identify compounds similar to the queries. This function must use a distance function
rather than a similarity function. However, if the distance function given returns values between 0
and 1, then the asSimilarity parameter may be used to return similarity values rather than distance
values.

Value

Returns a data frame with columns ’query’, ’target’, ’target_ids’, and ’distance’. ’query’ and ’target’
are the compound names and distance is the distance between them, as computed by the given
distance function.’target_ids’ is the compound id of the target. Query namess are repeated for each
matching target found. If asSimilarity is true then instead of a "distance" column there will be a
"similarity" column.

Author(s)

Kevin Horan

See Also

eiInit eiMakeDb eiPerformanceTest

Examples

library(snow)
r<- 50
d<- 40

#initialize
data(sdfsample)
dir=file.path(tempdir(),"query")
dir.create(dir)
eiInit(sdfsample,dir=dir,skipPriorities=TRUE)

#create compound db
runId=eiMakeDb(r,d,numSamples=20,dir=dir,

cl=makeCluster(1,type="SOCK",outfile=""))

#find compounds similar two each query
results = eiQuery(runId,sdfsample[1:2],K=15,dir=dir)

16 freeLSHData-deprecated

example_compounds Example Compounds

Description

122 compounds in SDF format, stored as a list. Each element of the list is one line of text. This is
just used in some unit tests.

Format

The format is: chr [1:12222] "3540" " OpenBabel06051210572D" "" ...

freeLSHData-deprecated

Deprecated Free LSH Data

Description

This function is no longer needed with the new LSH package in use now. It will be defunct in the
next release.

Free the memory allocated by loadLSHData.

Usage

freeLSHData(lshData)

Arguments

lshData A pointer returned by loadLSHData.

Value

No return value.

Author(s)

Kevin Horan

See Also

loadLSHData eiQuery

loadLSHData-deprecated 17

Examples

Not run:
lshData = loadLSHData(r,d)
eiQuery(r,d,refIddb,c("650002","650003"), format="name",K=15,lshData=lshData)
eiQuery(r,d,refIddb,c("650004","650005"), format="name",K=15,lshData=lshData)
freeLSHData(lshData)

End(Not run)

loadLSHData-deprecated

Depreacated Load LSH Data

Description

This function is no longer needed with the new LSH package in use now. It will be defunct in the
next release.

Load the LSH index and data. If many queries are going to be performed it is advantageous to load
this object first and then hand it to eiQuery via the lshData parameter for each query.

If the data needs to be freed you can call the freeLSHData function.

Usage

loadLSHData(r, d, W = NA, M = NA, L = NA, K = NA, T = NA, dir = ".", matrixFile = NULL)

Arguments

r The number of references used to build the database you wish to query against.

d The number of dimensions used to build the database you wish to query against.

W See eiQuery

M See eiQuery

L See eiQuery

K See eiQuery

T See eiQuery

dir The directory where the "data" directory lives. Defaults to the current directory.

matrixFile The path to the matrix file. If not specified it will look for it in the default spot.

Value

Returns a pointer to the allocated data. This should only be passed to other functions with an
lshData parameter, such as eiQuery

Author(s)

Kevin Horan

18 setDefaultDistance

See Also

freeLSHData eiQuery

Examples

Not run:
lshData = loadLSHData(r,d)
eiQuery(r,d,refIddb,c("650002","650003"), format="name",K=15,lshData=lshData)
eiQuery(r,d,refIddb,c("650004","650005"), format="name",K=15,lshData=lshData)
freeLSHData(lshData)

End(Not run)

setDefaultDistance Set the default distance function for a descriptor type

Description

Set the default distance function for a descriptor type. This is the distance function that will be used
if none is given for a particular function call.

Usage

setDefaultDistance(descriptorType, distance)

Arguments

descriptorType The type of the descriptor to set a distance function for. Built-in values are "ap"
and "fp". Additional values can be set as well.

distance A distance function taking two descriptor objects (as returned by toObject in
a descriptor transform, see \ ink{addTransform} for details), and returning a
distance value.

Value

No return value.

Author(s)

Kevin Horan

See Also

addTransform

Examples

setDefaultDistance("ap", function(d1,d2) 1-cmp.similarity(d1,d2))

Index

∗ datasets
example_compounds, 16

addTransform, 2, 18

eiAdd, 4, 8
eiCluster, 6, 11
eiInit, 5, 8, 8, 11, 13, 15
eiMakeDb, 4–6, 10, 10, 12–15
eiPerformanceTest, 5, 10, 11, 12, 15
eiQuery, 5, 9–11, 13, 14, 16–18
example_compounds, 16

freeLSHData, 17, 18
freeLSHData (freeLSHData-deprecated), 16
freeLSHData-deprecated, 16

initDb, 8

loadLSHData, 16
loadLSHData (loadLSHData-deprecated), 17
loadLSHData-deprecated, 17

setDefaultDistance, 3, 18

19

	addTransform
	eiAdd
	eiCluster
	eiInit
	eiMakeDb
	eiPerformanceTest
	eiQuery
	example_compounds
	freeLSHData-deprecated
	loadLSHData-deprecated
	setDefaultDistance
	Index

