Package ‘hiAnnotator’
July 9, 2025

Title Functions for annotating GRanges objects
Version 1.42.0

Date 2021-07-27

Author Nirav V Malani <malnirav@gmail.com>
Maintainer Nirav V Malani <malnirav@gmail.com>

Description hiAnnotator contains set of functions which allow users to
annotate a GRanges object with custom set of annotations. The
basic philosophy of this package is to take two GRanges
objects (query & subject) with common set of seqnames (i.e.
chromosomes) and return associated annotation per seqnames and rows
from the query matching seqnames and rows from the subject (i.e.
genes or cpg islands). The package comes with three types of annotation
functions which calculates if a position from query is: within a feature,
near a feature, or count features in defined window sizes. Moreover, each
function is equipped with parallel backend to utilize the foreach package.
In addition, the package is equipped with wrapper functions, which finds
appropriate columns needed to make a GRanges object from a
common data frame.

Depends GenomicRanges, R (>=2.10)

Imports foreach, iterators, rtracklayer, dplyr, BSgenome, ggplot2,
scales, methods

License GPL (>=2)

VignetteBuilder knitr

Suggests knitr, doParallel, testthat, BiocGenerics, markdown
biocViews Software, Annotation

LazyLoad yes

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/hiAnnotator
git_branch RELEASE_3_21

git_last_commit cbclelQ

git_last_commit_date 2025-04-15

2 .checkArgsSetDefaults

Repository Bioconductor 3.21

Date/Publication 2025-07-09

Contents
.checkArgsSetDefaults 2
amergeAndReturn Lo oL oL 3
cleanColname 3
doAnnotation e 4
GEMES . v ot i e e e e e e e e e e e e e e e e e e 5
get2NearestFeature L 5
getFeatureCounts 7
getFeatureCountsBig L o 9
getLowestDists L 10
getNearestFeature L 11
getRelevantCol L. L 13
getSitesInFeature L 14
getUCSCtable o e e 16
getWindowLabel 17
hiAnnotator e 17
makeChunks L 18
makeGRanges 19
makeUCSCsessiono vttt e e 20
plotdisFeature 21
SIES . o o i e 22
sites.ctrl L 23

Index 24

.checkArgsSetDefaults Check args and set defaults.

Description

This function checks all the arguments passed to an annotation function and set default values for
later use. Evaluation of this function happens in the parent function.

Usage

.checkArgsSetDefaults()

.mergeAndReturn 3

.mergeAndReturn Merge results back to the query object and perform additional post
processing steps.

Description

This function merges all the calculation results back to the query object. Additionally, if any flags
were set, the function does the necessary checks and processing to format the return object as
required. Evaluation of this function happens in the parent function.

Usage

.mergeAndReturn()

cleanColname Clean the supplied string from punctuations and spaces.

Description
Function to clean the supplied string from punctuations and spaces so it can be used as column
headings.

Usage

cleanColname(x, description = NULL)

Arguments

X string or a vector to be cleaned.

description OPTIONAL string identifying the purpose of the supplied string in x to be dis-
played in the cleaning message. This triggers a message.
Value

cleaned string or a vector.

See Also

getFeatureCounts, makeGRanges, getNearestFeature, getSitesInFeature.

Examples

cleanColname ("HIV-test"”)
cleanColname("HIVxtest")
cleanColname("HIV-test”, "myAlias")

4 doAnnotation

doAnnotation Annotate a GRanges object using one of annotation functions.

Description

This is a wrapper function which calls one of following functions depending on annotType param-
eter: getFeatureCounts, getFeatureCountsBig, getNearestFeature, get2NearestFeature,
getSitesInFeature

Usage

doAnnotation(
annotType = NULL,

postProcessFun = NULL,
postProcessFunArgs = list()

)

Arguments

annotType one of following: within, nearest, twoNearest, counts, countsBig.
Additional parameters to be passed to the respective annotation function.

postProcessFun function to call on the resulting object for any post processing steps.
postProcessFunArgs
additional arguments for postProcessFun as a list.

Value

a GRanges object with new annotation columns appended at the end of sites.rd.

See Also

makeGRanges, getFeatureCounts, getFeatureCountsBig, getNearestFeature, get2NearestFeature,
getSitesInFeature.

Examples

Convert a dataframe to GRanges object
data(sites)
alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)
genes.rd <- makeGRanges(genes)

doAnnotation(annotType = "within”, alldata.rd, genes.rd, "InGene"”, asBool = TRUE)
Not run:

doAnnotation(annotType = "counts"”, alldata.rd, genes.rd, "NumOfGene")
doAnnotation(annotType = "nearest”, alldata.rd, genes.rd, "NearestGene")

genes 5

doAnnotation(annotType = "countsBig"”, alldata.rd, genes.rd, "ChipSeqCounts")
geneCheck <- function(x,wanted) { x$isWantedGene <- x$InGene %in% wanted;
return(x) 3}

doAnnotation(annotType = "within"”, alldata.rd, genes.rd, "InGene”,
postProcessFun = geneCheck,

postProcessFunArgs = list("wanted” = c("FOXJ3", "SEPT9", "RPTOR")))

End(Not run)

genes Sample RefSeq genes annotation

Description

A sample annotation containing collection of genes from RefSeq database in the human genome
mapped to UCSC freeze hgl8. See UCSC table description page for the details regarding the
column headings.

Format

A data frame with 33965 rows and 9 variables

Source

http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_table=refGene&hgta_doSchema=
describe+table+schema

get2NearestFeature Get two nearest upstream and downstream annotation boundary for a
position range.

Description

Given a query object, the function retrieves the two nearest feature upstream and downstream along
with their properties from a subject and then appends them as new columns within the query object.
When used in genomic context, the function can be used to retrieve two nearest gene upstream and
downstream of the genomic position of interest.

Usage

get2NearestFeature(
sites.rd,
features.rd,
colnam = NULL,

side = "either”,
feature.colnam = NULL,
relativeTo = "subject”

http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_table=refGene&hgta_doSchema=describe+table+schema
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg18&hgta_table=refGene&hgta_doSchema=describe+table+schema

Arguments

sites.rd
features.rd

colnam

side

feature.colnam

relativeTo

Value

get2NearestFeature

GRanges object to be used as the query.
GRanges object to be used as the subject or the annotation table.

column name to be added to sites.rd for the newly calculated annotation...serves
a core!

boundary of annotation to use to calculate the nearest distance. Options are
’5p’,3p’, “either’(default), or "'midpoint’.

column name from features.rd to be used for retrieving the nearest feature name.
By default this is NULL assuming that features.rd has a column that includes the
word 'name’ somewhere in it.

calculate distance relative to query or subject. Default is ’subject’. See docu-
mentation of getNearestFeature for more information.

a GRanges object with new annotation columns appended at the end of sites.rd.

Note

* When side="midpoint’, the distance to nearest feature is calculated by (start+stop)/2.

* For cases where a position is at the edge and there are no feature up/down stream since it
would fall off the chromosome, the function simply returns *"NA’.

* If there are multiple locations where a query falls into, the function arbitrarily chooses one
to serve as the nearest feature, then reports 2 upstream & downstream feature. That may
occasionally yield features which are the same upstream and downstream, which is commonly
encountered when studying spliced genes or phenomena related to it.

* If strand information doesn’t exist, then everything is defaults to *+’ orientation (5° -> 3’)

o If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following libraries compatible with foreach: doMC, doSMP,
doSNOW, doMPI, doParallel. For example: library(doMC); registerDoMC(2)

See Also

getNearestFeature, makeGRanges, getFeatureCounts, getSitesInFeature.

Examples

Convert a dataframe to GRanges object

data(sites)

alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)

genes.rd <- makeGRanges(genes)

nearestGenes <- get2NearestFeature(alldata.rd, genes.rd, "NearestGene")

nearestGenes
Not run:

getFeatureCounts

nearestGenes <- get2NearestFeature(alldata.rd, genes.rd, "NearestGene",

side = "5p")
nearestGenes

nearestGenes <- get2NearestFeature(alldata.rd, genes.rd, "NearestGene",

side = "3p")
nearestGenes

End(Not run)

getFeatureCounts

Get counts of annotation within a defined window around each query
range or positions.

Description

Given a query object and window size(s), the function finds all the rows in subject which are <=
window size/2 distance away. If weights are assigned to each positions in the subject, then tallied
counts are multiplied accordingly. For large annotations, use getFeatureCountsBig.

Usage

getFeatureCounts(

sites.rd,

features.rd,

NULL,

NULL,

c(1000, 10000, 1e+06),

colnam =

chromSizes

widths =

weightsColname = NULL,
doInChunks = FALSE,

chunkSize

10000,

parallel = FALSE

Arguments

sites.rd
features.rd

colnam

chromSizes

widths

GRanges object to be used as the query.
GRanges object to be used as the subject or the annotation table.

column name to be added to sites.rd for the newly calculated annotation...serves
as a prefix to windows sizes!

named vector of chromosome/seqnames sizes to be used for testing if a posi-
tion is off the mappable region. DEPRECATED and will be removed in future
release.

a named/numeric vector of window sizes to be used for casting a net around
each position. Default: c(1000, 10000, 1000000).

weightsColname if defined, weigh each row from features.rd when tallying up the counts.

8 getFeatureCounts

doInChunks break up sites.rd into small pieces of chunkSize to perform the calculations. De-
fault is FALSE. Useful if you are expecting to find great deal of overlap between
sites.rd and features.rd.

chunkSize number of rows to use per chunk of sites.rd. Default to 10000. Only used if
doInChunks=TRUE.

parallel use parallel backend to perform calculation with foreach. Defaults to FALSE.
If no parallel backend is registered, then a serial version of foreach is ran using
registerDoSEQ.
Value

a GRanges object with new annotation columns appended at the end of sites.rd. There will be a col-

umn for each width defined in widths parameter. If widths was a named vector i.e. c("100bp"=100,"1K"=1000),
then the colname parameter will be pasted together with width name else default name will be gen-

erated by the function.

Note
* If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following libraries compatible with foreach: doMC, doSMP,
doSNOW, doMPI. For example: library(doMC); registerDoMC(2)
See Also

makeGRanges, getNearestFeature, getSitesInFeature, getFeatureCountsBig.

Examples

Convert a dataframe to GRanges object
data(sites)
alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)
genes.rd <- makeGRanges(genes)

geneCounts <- getFeatureCounts(alldata.rd, genes.rd, "NumOfGene")
Not run:

geneCounts <- getFeatureCounts(alldata.rd, genes.rd, "NumOfGene",
doInChunks = TRUE, chunkSize = 200)

geneCounts

Parallel version of getFeatureCounts

geneCounts <- getFeatureCounts(alldata.rd, genes.rd, "NumOfGene",
parallel = TRUE)

geneCounts

End(Not run)

getFeatureCountsBig 9

getFeatureCountsBig Get counts of annotation within a defined window around each query
range/position for large annotation objects spanning greater than 1
billion rows.

Description

Given a query object and window size(s), the function finds all the rows in subject which are <= win-
dow size/2 distance away. Note that here counting is done using midpoint of the ranges in query in-
stead of start-stop boundaries. The counts will differ slightly when compared to getFeatureCounts.

Usage

getFeatureCountsBig(
sites.rd,
features.rd,
colnam = NULL,
widths = c(1000, 10000, 1e+06)

)
Arguments
sites.rd GRanges object to be used as the query.
features.rd GRanges object to be used as the subject or the annotation table.
colnam column name to be added to sites.rd for the newly calculated annotation...serves
as a prefix to windows sizes!
widths a named/numeric vector of window sizes to be used for casting a net around
each position. Default: c (1000, 10000, 1000000)
Value

a GRanges object with new annotation columns appended at the end of sites.rd. There will be a col-

umn for each width defined in widths parameter. If widths was a named vectori.e. c("100bp"=100,"1K"=1000),
then the colname parameter will be pasted together with width name else default name will be gen-

erated by the function.

See Also

makeGRanges, getNearestFeature, getSitesInFeature, getFeatureCounts.

Examples

Convert a dataframe to GRanges object
data(sites)
alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)

10 getLowestDists

genes.rd <- makeGRanges(genes)

geneCounts1 <- getFeatureCounts(alldata.rd, genes.rd, "NumOfGene")
Not run:

geneCounts2 <- getFeatureCountsBig(alldata.rd, genes.rd, "NumOfGene")
identical (geneCounts1, geneCounts2)

End(Not run)

getLowestDists Get the lowest biological distance from the 5’ or 3’ boundaries of
query and subject.

Description

Given a query and subject with indicies from nearest, calculate the shortest biological distance to
either boundaries of the query and subject. This is a helper function utilized in getNearestFeature,
get2NearestFeature

Usage

getlLowestDists(
query = NULL,
subject = NULL,
res.nrst = NULL,

side = "either”,
relativeTo = "subject”
)
Arguments
query GRanges object to be used as the query which holds data for 'queryHits’ at-
tribute of res.nrst.
subject GRanges object to be used as the subject which holds data for ’subjectHits’
attribute of res.nrst.
res.nrst a dataframe of nearest indices as returned by nearest.
side boundary of subject/annotation to use to calculate the nearest distance. Options
are *5p’,’3p’, or the default "either’.
relativeTo calculate distance relative to query or subject. Default is ’subject’. See docu-
mentation of getNearestFeature for more information.
Value

res.nrst with lowest distances appended at the end.

getNearestFeature 11

Note

for cases where a query has multiple nearest neighbors or overlaps with >1 subjects, the function
will choose the subject with the lowest absolute distance.

See Also

getNearestFeature, get2NearestFeature.

Examples

query <- GRanges("A", IRanges(c(1, 5, 12, 20), width = 1),

strand = c("-", "+", "=" "4mY)
subject <- GRanges("A", IRanges(c(1, 5, 10, 15, 21), width = 8:4),
strand = c("+", "4", en mow o womyy
res <- as.data.frame(nearest(query, subject, select = "all",
ignore.strand = TRUE))
res <- getlLowestDists(query, subject, res, "either”, "query")
getNearestFeature Get nearest annotation boundary for a position range.
Description

Given a query object, the function retrieves the nearest feature and its properties from a subject and
then appends them as new columns within the query object. When used in genomic context, the
function can be used to retrieve the nearest gene 5° or 3’ end relative to genomic position of interest.

Usage

getNearestFeature(
sites.rd,
features.rd,
colnam = NULL,
side = "either”,
feature.colnam = NULL,
dists.only = FALSE,
parallel = FALSE,

relativeTo = "subject”
)
Arguments
sites.rd GRanges object to be used as the query.
features.rd GRanges object to be used as the subject or the annotation table.
colnam column name to be added to sites.rd for the newly calculated annotation...serves

a core!

12

side

feature.colnam

dists.only

parallel

relativeTo

Value

getNearestFeature

boundary of annotation to use to calculate the nearest distance. Options are
’5p’,’3p’, “either’(default), or *'midpoint’.

column name from features.rd to be used for retrieving the nearest feature name.
By default this is NULL assuming that features.rd has a column that includes the
word 'name’ somewhere in it.

flag to return distances only. If this is TRUE, then ’feature.colnam’ is not re-
quired and only distance to the nearest feature will be returned. By default this
is FALSE.

use parallel backend to perform calculation with foreach. Defaults to FALSE.
If no parallel backend is registered, then a serial version of foreach is ran using
registerDoSEQ.

calculate distance relative to query or subject. Default is "subject’. This essen-
tially means whether to use query or subject as the anchor point to get distance
from!

a GRanges object with new annotation columns appended at the end of sites.rd.

Note

* When side="midpoint’, the distance to nearest feature is calculated by (start+stop)/2.

* If strand information doesn’t exist, then everything is defaulted to ’+’ orientation (5’ -> 3”)

* If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following libraries compatible with foreach: doMC, doSMP,
doSNOW, doMPI, doParallel. For example: library(doMC); registerDoMC(2)

* When relativeTo="subject", the biological distance is relative to subject, meaning, the function
reports the distance to query from subject (i.e. an integration site is upstream or downstream
from a gene). When relativeTo="query", the distance is from the point of view of query or an
integration site (i.e. gene is upstream or downstream from an integration site).

See Also

makeGRanges, getFeatureCounts, getSitesInFeature, get2NearestFeature.

Examples

Convert a dataframe to GRanges object

data(sites)

alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)

genes.rd <- makeGRanges(genes)

nearestGenes <- getNearestFeature(alldata.rd, genes.rd, "NearestGene")

nearestGenes

nearestGenes <- getNearestFeature(alldata.rd, genes.rd, "NearestGene",

side = "5p")

getRelevantCol 13

nearestGenes

Not run:

nearestGenes <- getNearestFeature(alldata.rd, genes.rd, "NearestGene",
side = "3p")

nearestGenes

nearestGenes <- getNearestFeature(alldata.rd, genes.rd, "NearestGene",
side = "midpoint")

Parallel version of getNearestFeature

nearestGenes <- getNearestFeature(alldata.rd, genes.rd, "NearestGene",
parallel = TRUE)

nearestGenes

End(Not run)

getRelevantCol Find the column index of interest given the potential choices.

Description

The function finds relevant column(s) of interest from a vector of column names derived from a
dataframe. If no usable column is found, the function spits out a relevant error or returns the index
of the usable column(s). This is an assistant function called by functions listed in the see also
section.

Usage

getRelevantCol(col.names, col.options, col.type = NULL, multiple.ok = FALSE)

Arguments
col.names column names from a dataframe
col.options potential column names or partial names that may exist in col.names
col.type type of column information the function is searching for, used in construction of
error messages. Default is NULL.
multiple.ok if multiple matches are found then return indices, else spit an error out. Default
is TRUE.
Value

the index of usable column(s) or an error if no applicable column is found.

See Also

makeGRanges, getNearestFeature, getSitesInFeature.

14 getSitesInFeature

Examples
data(sites)
names(sites)
getRelevantCol(names(sites), c("chr”, "chromosome”, "tname”, "segnames”,
"chrom”,"contig"), "seqnames")
getRelevantCol(names(sites), c("ort”, "orientation”, "strand"), "strand")
getSitesInFeature Find overlapping positions/ranges that match between the query and
subject.
Description

When used in genomic context, the function annotates genomic positions of interest with infor-
mation like if they were in a gene or cpg island or whatever annotation that was supplied in the

subject.

Usage

getSitesInFeature(
sites.rd,
features.rd,
colnam = NULL,
asBool = FALSE,
feature.colnam = NULL,
parallel = FALSE,
allSubjectCols = FALSE,

n n

overlapType = "any

)
Arguments

sites.rd GRanges object to be used as the query.

features.rd GRanges object to be used as the subject or the annotation table.

colnam column name to be added to sites.rd for the newly calculated annotation...serves
a core! If allSubjectCols=TRUE, then this is used as a prefix to all metadata
column.

asBool Flag indicating whether to return results as TRUE/FALSE or the property of an

overlapping feature..namely feature name and orientation if available. Defaults

to FALSE.

feature.colnam column name from features.rd to be used for retrieving the feature name. By

default this is NULL assuming that features.rd has a column that includes the
word "name’ somewhere in it. Not required if asBool=TRUE or allSubject-
Cols=TRUE

getSitesInFeature

15

parallel use parallel backend to perform calculation with foreach. Defaults to FALSE.
Not applicable when asBool=T. If no parallel backend is registered, then a serial
version of foreach is ran using registerDoSEQ.

allSubjectCols Flag indicating whether to return all annotations or metadata columns from fea-

tures.rd. Defaults to FALSE.

overlapType see findOverlaps. Defaults to any’

Value

a GRanges object with new annotation columns appended at the end of sites.rd.

Note
* If parallel=TRUE, then be sure to have a parallel backend registered before running the func-
tion. One can use any of the following libraries compatible with foreach: doMC, doSMP,
doSNOW, doMPI. For example: library(doMC); registerDoMC(2)
See Also

makeGRanges, getFeatureCounts, getNearestFeature.

Examples

Convert a dataframe to GRanges object
data(sites)

alldata.rd <- makeGRanges(sites, soloStart = TRUE)

data(genes)
genes.rd <- makeGRanges(genes)

InGenes <- getSitesInFeature(alldata.rd, genes.

InGenes
Not run:

InGenes <- getSitesInFeature(alldata.rd, genes.

InGenes
Parallel version of getSitesInFeature

InGenes <- getSitesInFeature(alldata.rd, genes.

parallel = TRUE)
InGenes

InGenes <- getSitesInFeature(alldata.rd, genes.

allSubjectCols = TRUE, parallel = TRUE)
InGenes

End(Not run)

rd,

rd,

rd,

rd,

"InGene™)

"InGene", asBool

"InGene", asBool

"InGene",

TRUE)

TRUE,

16 getUCSCtable

getUCSCtable Obtain a UCSC annotation table given the table & track name.

Description

Obtain a UCSC annotation table given the table & track name.

Usage
getUCSCtable(tableName, trackName, bsession = NULL, freeze = "hgl9", ...)
Arguments
tableName Name of the annotation table as it appears on UCSC browser.
trackName Name of the track annotation table as it appears in on UCSC browser.
bsession UCSC session object returned by makeUCSCsession or browserSession. If
left NULL the function will call makeUCSCsession with the provided freeze to
initiate a session.
freeze one of following: hg19, mm§, rheM, etc. Default is hg19.
Arguments to be passed to ucscTableQuery.
Value

a dataframe containing the annotation data.

See Also

makeUCSCsession, getNearestFeature, getSitesInFeature.

Examples

Not run:

refflat <- getUCSCtable("refFlat"”, "RefSeq Genes")
same as above

refflat <- getUCSCtable("refFlat”, "RefSeq Genes",
bsession=session, freeze="hg19")

End(Not run)

getWindowLabel 17

getWindowLabel Generate a window size label.

Description

Function to generate aesthetically pleasing window size label given an integer. This is one of the
helper function used in getFeatureCounts & getFeatureCountsBig.

Usage

getWindowLabel (x)
Arguments

X vector of integers to generate the labels for.
Value

a character vector of length(x) which has x normalized and suffixed by bp, Kb, Mb, or Gb depending
on respective interval sizes.

See Also

getFeatureCounts, makeGRanges, getNearestFeature, getSitesInFeature.

Examples

getWindowLabel(c(@, 1e7, 1e3, 1e6, 2e9))

hiAnnotator Annotating GRanges objects with hiAnnotator.

Description

hiAnnotator contains set of functions which allow users to annotate a GRanges object with custom
set of annotations. The basic philosophy of this package is to take two GRanges objects (query &
subject) with common set of seqnames (i.e. chromosomes) and return associated annotation per
seqnames and rows from the query matching seqnames and rows from the subject (i.e. genes or cpg
islands). The package comes with three types of annotation functions which calculates if a position
from query is: within a feature, near a feature, or count features in defined window sizes. Moreover,
one can utilize parallel backend for each annotation function to utilize the foreach package. In
addition, the package is equipped with wrapper functions, which finds appropriate columns needed
to make a GRanges object from a common dataframe.

Author(s)
Nirav V Malani

18 makeChunks

makeChunks Breaks two GRanges objects into chunks of N size.

Description

Given a query and subject GRanges objects, the function breaks query into chunks of N size where
each chunk has a respective subject object filtered by seqnames present in the query chunk. This is
a helper function used by one of the annotation function in ’See Also’ section where each chunk is
sent to a parallel node for processing.

Usage

makeChunks(sites.rd, features.rd, chunkSize = NULL)

Arguments
sites.rd a GRanges object.
features.rd a GRanges object.
chunkSize number of rows to use per chunk of query. Default to length(sites.rd)/detectCores()
or length(query)/getDoParWorkers() depending on parallel backend registered.
Value

a list of GRanges objects where each element is of length 2 representing query & subject chunks.

See Also

makeGRanges, doAnnotation, getNearestFeature, getSitesInFeature, getFeatureCounts.

Examples

data(sites)

data(genes)

sites <- makeGRanges(sites, soloStart = TRUE)
genes <- makeGRanges(genes)

makeChunks(sites, genes)

makeGRanges 19

makeGRanges Make a sorted GRanges object from a dataframe.

Description

The function converts a dataframe into a GRanges object without too much hassle of renaming
column names. The function finds column names that sound like seqname, chromosome, start,
stop, position, etc and puts them in respective slots to facilitate the conversion of a dataframe to a
GRanges object. If more than one column that sounds like start, stop, or position is present, the
function will use the first match as the representative. It is recommended to run this function before
utilizing any other annotation functions since it will sort the object by chromosome and position for
copying annotations back to their respective rows confidently.

Usage

makeGRanges (
X,
freeze = NULL,
positionsOnly = FALSE,
soloStart = FALSE,
chromCol = NULL,
strandCol = NULL,
startCol = NULL,
stopCol = NULL,
keepFactors = FALSE

)
Arguments
X dataframe to be converted into a GRanges object
freeze UCSC genome version of the data in x. Default is NULL. This parameter is

generally used to populate seqinfo slot of GRanges objects.

positionsOnly boolean flag indicating to return only position based data or everything from the
dataframe. Defaults to FALSE.

soloStart flag denoting whether only one position based column is available. In other
words, only starts are present and no stops. Default=FALSE.

chromCol use the defined column name for seqname/chromosome based data from the
dataframe. Defaults to NULL.

strandCol use the defined column name for strand or orientation from the dataframe. De-
faults to NULL.

startCol use the defined column name for start coordinate from the dataframe. Defaults
to NULL.

stopCol use the defined column name for stop coordinate from the dataframe. Defaults

to NULL and not required if soloStart=TRUE.

keepFactors keep vectors/columns stored as factors? Defaults to FALSE

20 makeUCSCsession

Value

a GRanges object converted from x.

See Also

getNearestFeature, getFeatureCounts, getSitesInFeature.

Examples

Convert a dataframe to GRanges object
data(genes)

makeGRanges(genes, soloStart = TRUE)
makeGRanges(genes)

#makeGRanges(genes, freeze = "hgl19"”, soloStart = TRUE)
#makeGRanges(genes, freeze = "hgl19")

makeUCSCsession Initiate UCSC genome browser session given the freeze argument.

Description

Initiate UCSC genome browser session given the freeze argument.

Usage

makeUCSCsession(freeze = "hg19")

Arguments

freeze one of following: hg19, mmS§, rheM, etc. Default is hg19.

Value

browser session object compatible with rtracklayer functions.

See Also

getUCSCtable, makeGRanges, getNearestFeature, getSitesInFeature

Examples

Not run:

session <- makeUCSCsession()
genome (session)

session <- makeUCSCsession("mm8")
genome (session)

End(Not run)

plotdisFeature

21

plotdisFeature

Plot distance distribution to a feature boundary.

Description

Given a dataframe of samples and distance based annotation, the function calculates the distribution
of data in or around the given annotation. From genomic point of view, the function can be used to
identify distribution of data around genomic features like gene TSS, CpG island, etc.

Usage
plotdisFeature(
dat = NULL,
grouping = NULL,
annotCol = NULL,
breaks = NULL,
discreteBins = TRUE,
geom = "bar”,
stacked = FALSE,
typeRatio = FALSE,
printPlotData = FALSE
)
Arguments
dat a dataframe/GRanges with required columns to make the plot.
grouping name of the column grouping the data or denoting the samples
annotCol name of the column holding the distance to feature data. This can also be
boolean data in which case plot will be in/out of feature.
breaks intervals by which to break up the distance data. Default is seq(-1e5,1e5,5¢3).
Not required if ‘annotCol‘ is of type boolean.
discreteBins whether to plot continuous variable supplied in annotCol as a discrete axis. This
conserves plotting area, thus default is TRUE.
geom plot distribution using bars or lines? Default is "bar’. One can use ’line’ as well
when there are many groups.
stacked make a stacked plot? Only applies when geom is *bar’. Default is FALSE.
typeRatio whether to plot data as ratio of experimental to controls. Default is FALSE.
Enabling this requires a column in ’dat’ called "type" with two values "expr" for
experimental and "ctr]l" for control. This column subdivides data within each
group. Enabling this transforms the data into plotting distribution of ratios of
experimental/controls around feature of interest.
printPlotData return summarized plot data? Default is FALSE.
Value

ggplot2 plot and/or table of summarized plot data.

22 sites

See Also

makeGRanges, getNearestFeature, getSitesInFeature, getFeatureCounts

Examples

Convert a dataframe to GRanges object
data(sites)

data(sites.ctrl)

sites$type <- "expr”

sites <- rbind(sites,sites.ctrl)

alldata.rd <- makeGRanges(sites,soloStart=TRUE)

data(genes)
genes.rd <- makeGRanges(genes)

res <- doAnnotation(annotType="within", alldata.rd, genes.rd, "InGene",
asBool=TRUE)

plotdisFeature(res, "virus”, "InGene")

plotdisFeature(res, "virus”, "InGene", typeRatio=TRUE)

Not run:

res <- doAnnotation(annotType="nearest", res, genes.rd, "NearestGene",
side="'5p")

plotdisFeature(res, "virus”, "X5pNearestGeneDist")

plotdisFeature(res, "virus”, "X5pNearestGeneDist"”, typeRatio=TRUE)

End(Not run)

sites Sample Retrovirus Integration Sites data

Description

A sample dataset containing collection of unique HIV & MLV integration sites in the human
genome mapped to UCSC freeze hg18 from PMID: 12805549.

Format

A data frame with 1303 rows and 5 variables

Details

* Sequence. Name of the DNA sequence which was aligned to the host genome. This is also a
unique ID.

* Position. The genomic coordinate of the integration site.
 Chr. The chromosome of the integration site.
* Ort. The orientation or strand of the integration site.

* virus. Name of the virus used for the experiment and a given sequencing clone.

sites.ctrl 23

Source

http://www.ncbi.nlm.nih.gov/pubmed/?term=12805549

sites.ctrl Controls for Sample Retrovirus Integration Sites data

Description

Controls for a sample dataset containing collection of unique HIV & MLV integration sites in the
human genome mapped to UCSC freeze hg18 from PMID: 12805549. Each row represents three
controls per integration site in sites object.

Format

A data frame with 3909 rows and 6 variables

Details

* Sequence. Name of the DNA sequence which was aligned to the host genome. There should
be three control sites per experimental site from the "sites" dataset.

* Position. The genomic coordinate of the integration site.

* Chr. The chromosome of the integration site.

* Ort. The orientation or strand of the integration site.

* virus. Name of the virus used for the experiment and a given sequencing clone.

* type. Column denoting whether the data is control

http://www.ncbi.nlm.nih.gov/pubmed/?term=12805549

Index

x datasets sites, 22
genes, 5 sites.ctrl, 23
sites, 22
sites.ctrl, 23 ucscTableQuery, 16

.checkArgsSetDefaults, 2
.mergeAndReturn, 3

browserSession, 16
cleanColname, 3
doAnnotation, 4, I8

findOverlaps, 15
foreach, 6,8, 12, 15

genes, 5
get2NearestFeature, 4, 5, 10-12
getFeatureCounts, 3,4,6,7,9, 12,15, 17,

18, 20, 22
getFeatureCountsBig, 4,7, 8,9, 17
getlLowestDists, 10
getNearestFeature, 3,4, 6,8-11, 11, 13,

15-18, 20, 22
getRelevantCol, 13
getSitesInFeature, 3,4,6,8, 9, 12, 13, 14,

16-18, 20, 22
getUCSCtable, 16, 20
getWindowLabel, 17

hiAnnotator, 17

makeChunks, 18

makeGRanges, 3,4,6,8, 9, 12, 13, 15,17, 18
19, 20, 22

makeUCSCsession, 16, 20

nearest, 10
plotdisFeature, 21

registerDoSEQ, 8, 12, 15

24

	.checkArgsSetDefaults
	.mergeAndReturn
	cleanColname
	doAnnotation
	genes
	get2NearestFeature
	getFeatureCounts
	getFeatureCountsBig
	getLowestDists
	getNearestFeature
	getRelevantCol
	getSitesInFeature
	getUCSCtable
	getWindowLabel
	hiAnnotator
	makeChunks
	makeGRanges
	makeUCSCsession
	plotdisFeature
	sites
	sites.ctrl
	Index

