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1 Introduction

This vignette contains the computations that underlie the numerical code of vsn. If you are
a new user and looking for an introduction on how to use vsn, please refer to the vignette
Robust calibration and variance stabilization with vsn, which is provided separately.

2 Setup and Notation

Consider the model
arsinh (f(b;) - yri + ai) = pi + €ki

where uy, for k = 1,...,n, and a;, b;, for i = 1,...,d are real-valued parameters, f is a
function R — R (see below), and &i; are i.i.d. Normal with mean 0 and variance 02. yp;
are the data. In applications to parray data, k indexes the features and i the arrays and/or
colour channels.

Examples for f are f(b) = b and f(b) = e’. The former is the most obvious choice; in that
case we will usually need to require b; > 0. The choice f(b) = e’ assures that the factor in
front of yy; is positive for all b € R, and as it turns out, simplifies some of the computations.

In the following calculations, | will also use the notation

YEY(y7a7b):f(b)'y+a H
h = h(y,a,b) = arsinh (f(b) -y + a) . 3]
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The probability of the data (yYxi)r=1...n, i=1...a lying in a certain volume element of y-space
(hyperrectangle with sides [ygz,yfl]) is

- dh
F= H H dyri PNormat (h(Yki), 11k 0%) @(yki), 4]

where 11, is the expectation value for feature k and o2 the variance.

With ( 2
1 T — U
2y —_
pNormal(mvﬂla o ) - 902 €xp < 20_2 > E
the likelihood is
nd n d
1 (h(yki) — Mk)2> dh
L= exp| ————5—"— | 5 W) - 6]
(=) [[1]ew (- )
For the following, | will need the derivatives
oY
— =1 7
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o~ itz [0
Note that for f(b) = b, we have f’(b) = 1, and for f(b) = e®, f'(b) = f(b) = €.
3 Likelihood for Incremental Normalization
Here, incremental normalization means that the model parameters fiq,..., 1, and o2 are
already known from a fit to a previous set of parrays, i.e. a set of reference arrays. See Sec-
tion 4 for the profile likelihood approach that is used if y1,. .., i, and o2 are not known and

need to be estimated from the same data. Versions > 2.0 of the vsn package implement both
of these approaches; in versions 1.X only the profile likelihood approach was implemented,
and it was described in the initial publication [1].

First, let us note that the likelihood [ is simply a product of independent terms for different i.
We can optimize the parameters (a;, b;) separately for each i = 1,...,d. From the likelihood
[ we get the i-th negative log-likelihood

d
—log(L) = > —LL; 12|
i=1
- h(yri) — 2 1+Y2i
—LL; = glog (2m0?) + ’; (W + log W) 13|
" ((h(yri) — pk)? 1
= glog (271’(72) —nlogf(bi)—f—z (W—'—ng (1+Yk2i)> 14]
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This is what we want to optimize as a function of a; and b;. The optimizer benefits from
the derivatives. The derivative with respect to a; is

3 Yki) Yii 1
+ .
aaz ,;( o? \/1+Yk2i> V1+Y2

n r i
= Z ( Moy Aszm) Api 15
k=1
and with respect to b;
0 i) ym Y Yri y
(~LL;) = —n + L : - f'(b:)
a0, 60 2 Vievz) VievE
'(bs Thi
ff((b>) + fl( z) Z ( b +Ak1Ykz) Akzykz @
Here, | have introduced the following shorthand notation for the “intermediate results” terms
ki = h(Yri) — bk
1
Api = . 18

V1I+YS

Variables for these intermediate values are also used in the C code to organise the computa-
tions of the gradient.

4 Profile Likelihood

If u1,..., s and o2 are not already known, we can plug in their maximum likelihood esti-
mates, obtained from optimizing LL for 1, ..., i, and o2:
1
=3 S o 19
j=1

n d
: :%ZZ (115) 20

into the negative log-likelihood. The result is called the negative profile log-likelihood

d n d
nd . nd 1
—PLL:710g(27r02)+7—n210gf(bj)+§zzlog 1+Yk2j.
j=1 k=1j=1
Note that this no longer decomposes into a sum of terms for each j that are independent of
each other — the terms for different j are coupled through Equations EE] and Efil. We need
the following derivatives.

85’2 2 " ykz
Bai - % z::
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T n7d - f' (i) ZrkiAkiyki 23
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So, finally
0 nd 062
Oa; (=PLL) = 262 8&1 +Z_:1A ki i
Z Ykz) Api
k=1

PLL) =

(&) +f'(b )Z (Tkl +AmYm> AkiVki

0
A " T ) 2
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5 Summary

Likelihoods, from Equations and Al

—LL; = glog (2m0?) + Zn: M —nlog f(b;) + % znjlog(l +Y2) 26

20
—_——— k=1 k=1
scale . . .
residuals jacobian
nd nd ¢
A2
—PLL = ?log (2m6°) + > § <—n10gf § log(1 +Y,ﬂ)>
\—v_/ v =1 =
scale residuals . .
jacobian

The computations in the C code are organised into steps for computing the terms “scale”,
“residuals” and “jacobian”.

Partial derivatives with respect to a;, from Equations FlH and EX:

8 i Tki
Ba, (—LL;) = kZ:l (7 + Aszkz) Ap; 28]
82/1' (_PLL) = Z (Tkl + Aszkl) Aki

B
I
—

Partial derivatives with respect to b;, from Equations fId and P4

a f,(bz) Tki
o (FLL) = T+ g( + AYei) gy 30
0 (b)) Tki
g5, (~PLE) = —n S 4 1 (b );(&2 Yii) Apii
Note that the terms have many similarities — this is used in the implementation in the C
code.
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