Package ‘CNVRanger’

October 16, 2025
Version 1.25.4

Title Summarization and expression/phenotype association of CNV ranges
Depends GenomicRanges, RaggedExperiment

Imports BiocGenerics, BiocParallel, GDSArray, GenomelnfoDb, IRanges,
S4Vectors, SNPRelate, SummarizedExperiment, data.table, edgeR,
gdsfmt, grDevices, lattice, limma, methods, plyr, qgman,
rappdirs, reshape?2, stats, utils

Suggests AnnotationHub, BSgenome.Btaurus.UCSC.bosTau6.masked,
BiocStyle, ComplexHeatmap, Gviz, MultiAssayExperiment,
TCGAutils, TxDb.Hsapiens.UCSC.hg19.knownGene, curatedTCGAData,
ensembldb, grid, knitr, org.Hs.eg.db, regioneR, rmarkdown,
statmod

Description The CNVRanger package implements a comprehensive tool suite for CNV analysis.
This includes functionality for summarizing individual CNV calls across a population,
assessing overlap with functional genomic regions, and association analysis
with gene expression and quantitative phenotypes.

License Artistic-2.0

BugReports https://github.com/waldronlab/CNVRanger/issues
Encoding UTF-8
VignetteBuilder knitr

biocViews CopyNumber Variation, DifferentialExpression, GeneExpression,
GenomeWideAssociation, Genomic Variation, Microarray, RNASeq,
SNP

RoxygenNote 7.2.3

Date 2025-05-08

git_url https://git.bioconductor.org/packages/CNVRanger
git_branch devel

git_last_commit 82ecOea

git_last_commit_date 2025-05-08

Repository Bioconductor 3.22

Date/Publication 2025-10-16

Author Ludwig Geistlinger [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2495-5464>),
Vinicius Henrique da Silva [aut],

https://github.com/waldronlab/CNVRanger/issues
https://orcid.org/0000-0002-2495-5464

cnvEQTL

Marcel Ramos [ctb] (ORCID: <https://orcid.org/0000-0002-3242-0582>),
Levi Waldron [ctb] (ORCID: <https://orcid.org/0000-0003-2725-0694>)

Maintainer Ludwig Geistlinger <ludwig.geistlinger@gmail.com>

Contents
envEQTL e 2
cnvGWAS e 5
cnvOncoPrint L 7
generateGDS L 8
importLrrBaf 10
PIotEQTL e e e e 11
plotManhattan e 12
plotRecurrentRegions 13
populationRanges e e e e 14
setupCnvGWAS . . . L L e 16

Index 18

cnvEQTL CNV-expression association analysis
Description

Testing CNV regions for effects on the expression level of genes in defined genomic windows.

Usage

cnvEQTL (
cnvrs,
calls,
rcounts,
data,
window = "1Mbp"”,
multi.calls = .largest,
min.samples = 10,
min.state.freq = 3,
de.method = c("edgeR", "limma"),
padj.method = "BH",
filter.by.expr = TRUE,
verbose = FALSE

Arguments

cnvrs

calls

A GRanges or character object containing the summarized CNV regions as e.g.
obtained with populationRanges. Alternatively, the assay name if the ’data’
argument is provided.

Either a GRangesList or RaggedExperiment storing the individual CNV calls
for each sample. Alternatively, the assay name if ’data’ is provided.

https://orcid.org/0000-0002-3242-0582
https://orcid.org/0000-0003-2725-0694

cnvEQTL 3

rcounts A RangedSummarizedExperiment or character name storing either the raw RNA-
seq read counts in a rectangular fashion (genes x samples). Alternatively, the
assay name if ’data’ is provided.

data (optional) A MultiAssayExperiment object with ‘cnvrs‘, ‘calls‘, and ‘rcounts’
arguments corresponding to assay names.

window Numeric or Character. Size of the genomic window in base pairs by which each
CNV region is extended up- and downstream. This determines which genes are
tested for each CNV region. Character notation is supported for convenience
such as "100kbp" (same as 100000) or "1Mbp" (same as 1000000). Defaults to
"1Mbp". Can also be set to NULL to test against all genes included in the analysis.

multi.calls A function. Determines how to summarize the CN state in a CNV region when
there are multiple (potentially conflicting) calls for one sample in that region.
Defaults to .largest, which assigns the CN state of the call that covers the
largest part of the CNV region tested. A user-defined function that is passed on
to qreduceAssay can also be provided for customized behavior.

min.samples Integer. Minimum number of samples with at least one call overlapping the
CNV region tested. Defaults to 10. See details.

min.state.freq Integer. Minimun number of samples in each CNV state being tested. Defaults
to 3.

de.method Character. Differential expression method. Defaults to "edgeR".

padj.method Character. Method for adjusting p-values to multiple testing. For available meth-
ods see the man page of the function p.adjust. Defaults to "BH".

filter.by.expr Logical. Include only genes with sufficiently large counts in the DE analysis? If
TRUE, excludes genes not satisfying a minimum number of read counts across
samples using the filterByExpr function from the edgeR package. Defaults to
TRUE.

verbose Logical. Display progress messages? Defaults to FALSE.

Details

Association testing between CNV regions and RNA-seq read counts is carried out using edgeR,
which applies generalized linear models (GLMs) based on the negative-binomial distribution while
incorporating normalization factors for different library sizes.

In the case of only one CN state deviating from 2n for a CNV region under investigation, this
reduces to the classical 2-group comparison. For more than two states (e.g. On, 1n, 2n), edgeR’s
ANOVA-like test is applied to test all deviating groups for significant expression differences relative
to 2n.

To avoid artificial effects due to low expression of a gene or insufficient sample size in deviating
groups, it is typically recommended to exclude from the analysis (i) genes with fewer than r reads
per million reads mapped (cpm, counts per million) in the maximally expressed sample group, and
(i) CNV regions with fewer than s samples in a group deviating from 2n. Use the min.cpm and
min.samples arguments, respectively.

When testing local effects (adjacent or coinciding genes of a CNV region), suitable thresholds for
candidate discovery are r = 3, s = 4, and a nominal significance level of 0.05; as such effects have a
clear biological indication and the number of genes tested is typically small.

For distal effects (i.e. when testing genes far away from a CNV region) more stringent thresholds
such as r = 20 and s = 10 for distal effects in conjunction with multiple testing correction using
a conservative adjusted significance level such as 0.01 is typically recommended (due to power
considerations and to avoid detection of spurious effects).

4 cnvEQTL

Value

A DataFrame containing measures of association for each CNV region and each gene tested in the
genomic window around the CNV region.

Author(s)

Ludwig Geistlinger

References

Geistlinger et al. (2018) Widespread modulation of gene expression by copy number variation in
skeletal muscle. Sci Rep, 8(1):1399.

See Also

findOverlaps to find overlaps between sets of genomic regions,
greduceAssay to summarize ragged genomic location data in defined genomic regions,

glmQLFit and glmQLFTest to conduct negative binomial generalized linear models for RNA-seq
read count data.

Examples

(1) CNV calls
states <- sample(c(0,1,3,4), 17, replace=TRUE)
calls <- GRangesList(
samplel = GRanges(c("chr1:1-10", "chr2:15-18", "chr2:25-34"), state=states[1:3]),
sample2 = GRanges(c("chr1:1-10", "chr2:11-18" , "chr2:25-36"), state=states[4:6]),
sample3 = GRanges(c("chr1:2-11", "chr2:14-18", "chr2:26-36"), state=states[7:9]),
sample4 = GRanges(c("chr1:1-12", "chr2:18-35"), state=states[10:11]),
sample5 = GRanges(c("chr1:1-12", "chr2:11-17" , "chr2:26-34"), state=states[12:14])
sample6 = GRanges(c("chr1:1-12", "chr2:12-18" , "chr2:25-35"), state=states[15:17])

)

(2) summarized CNV regions
cnvrs <- populationRanges(calls, density=0.1)

(3) RNA-seq read counts
genes <- GRanges(c("chr1:2-9", "chr1:100-150", "chr1:200-300",
"chr2:16-17", "chr2:100-150", "chr2:200-300", "chr2:26-33"))
y <- matrix(rnbinom(42,size=1,mu=10),7,6)
names(genes) <- rownames(y) <- paste@("gene”, 1:7)
colnames(y) <- paste@("sample”, 1:6)

library(SummarizedExperiment)
rse <- SummarizedExperiment(assays=list(counts=y), rowRanges=granges(genes))

(4) perform the association analysis
res <- cnveEQTL(cnvrs, calls, rse,
min.samples = 1, min.state.freq = 1, filter.by.expr = FALSE)

cnvGWAS

cnvGWAS

Run the CNV-GWAS

Description

Wraps all the necessary functions to run a CNV-GWAS using the output of setupCnvGWAS function.

(i) Produces the GDS file containing the genotype information (if produce.gds == TRUE), (ii) Pro-
duces the requested inputs for a PLINK analysis, (iii) run a CNV-GWAS analysis using a linear
model (i.e. 1m function), and (iv) export a QQ-plot displaying the adjusted p-values. In this release
only the p-value for the copy number is available (i.e. "P(CNP)’).

Usage
cnvGWAS(
phen.info,
n.cor = 1,

min.sim = @.95,
freq.cn = 0.01,

snp.matrix

FALSE,

method.m.test = "fdr",

lo.phe = 1,

chr.code.name

= NULL,

genotype.nodes = "CNVGenotype”,
coding.translate = "all",
path.files = NULL,

list.of.files

= NULL,

produce.gds = TRUE,

run.lrr = FALSE,
assign.probe = "min.pvalue”,
correct.inflation = FALSE,

both.up.down

= FALSE,

verbose = FALSE

Arguments

phen.info
n.cor

min.sim

freq.cn

snp.matrix

method.m. test

lo.phe

chr.code.name

Returned by setupCnvGWAS
Number of cores to be used

Minimum CNYV genotype distribution similarity among subsequent probes. De-
fault is 0.95 (i.e. 95%)

Minimum CNV frequency where 1 (i.e. 100%), or all samples deviating from
diploid state. Default 0.01 (i.e. 1%)

Only FALSE implemented - If TRUE B allele frequencies (BAF) would be used
to reconstruct CNV-SNP genotypes

Correction for multiple tests to be used. FDR is default, see p.adjust for other
methods.

The phenotype to be analyzed in the PhenInfo$phenotypesSam data-frame

A data-frame with the integer name in the first column and the original name for
each chromosome

cnvGWAS

genotype.nodes Expression data type. Nodes with CNV genotypes to be produced in the gds file.
coding.translate
For ’CNVgenotypeSNPlike’. If NULL or unrecognized string use only biallelic
CNVs. If "all’ code multiallelic CN'Vs as O for loss; 1 for 2n and 2 for gain.

path.files Folder containing the input CNV files used for the CNV calling (i.e. one text
file with 5 collumns for each sample). Columns should contain (i) probe name,
(i) Chromosome, (iii) Position, (iv) LRR, and (v) BAF.

list.of.files Data-frame with two columns where the (i) is the file name with signals and (ii)
is the correspondent name of the sample in the gds file

produce.gds logical. If TRUE produce a new gds, if FALSE use gds previously created
run.lrr If TRUE use LRR values instead absolute copy numbers in the association

assign.probe ‘min.pvalue’ or ‘high.freq’ to represent the CNV segment
correct.inflation
logical. Estimate lambda from raw p-values and correct for genomic inflation.
Use with argument method.m. test to generate strict p-values.

both.up.down Check for CNV genotype similarity in both directions. Default is FALSE (i.e.
only downstream)

verbose Show progress in the analysis

Value

The CNV segments and the representative probes and their respective p-value

Author(s)

Vinicius Henrique da Silva

References

da Silva et al. (2016) Genome-wide detection of CNVs and their association with meat tenderness
in Nelore cattle. PLoS One, 11(6):e0157711.

See Also

1link{setupCnvGWAS} to setup files needed for the CNV-GWAS.

Examples

Load phenotype-CNV information
data.dir <- system.file("extdata”, package="CNVRanger")

phen.loc <- file.path(data.dir, "Pheno.txt")
cnv.out.loc <- file.path(data.dir, "CNVOut.txt")
map.loc <- file.path(data.dir, "MapPenn.txt")

phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc)

Define chr correspondence to numeric, if necessary

df <- '16 1A
25 4A
29 25LG1

30 25LG2

cnvOncoPrint 7

31 LGE22'

chr.code.name <- read.table(text=df, header=FALSE)
segs.pvalue.gr <- cnvGWAS(phen.info, chr.code.name=chr.code.name)

cnvOncoPrint OncoPrint plot for CNV regions

Description

[lustrates overlaps between CNV calls and genomic features across a sample population.

Usage

cnvOncoPrint(
calls,
features,
multi.calls = .largest,
top.features = 25,
top.samples = 100,

)
Arguments

calls Either a GRangesList or RaggedExperiment storing the individual CNV calls
for each sample.

features A GRanges object containing the genomic features of interest, typically genes.
Feature names are either expected as a meta-column symbol or as the names of
the object.

multi.calls A function. Determines how to summarize the CN state in a CNV region when

there are multiple (potentially conflicting) calls for one sample in that region.
Defaults to .largest, which assigns the CN state of the call that covers the
largest part of the CNV region tested. A user-defined function that is passed on
to greduceAssay can also be provided for customized behavior.

top.features integer. Restricts the number of features for plotting to features experiencing
highest alteration frequency. Defaults to 25. Use -1 to display all features.

top.samples integer. Restricts the number of samples for plotting to samples experiencing
highest alteration frequency. Defaults to 100. Use -1 to display all samples.

Additional arguments passed on to ComplexHeatmap: :oncoPrint

Value

None. Plots to a graphics device.

Author(s)

Ludwig Geistlinger

8 generateGDS

See Also

ComplexHeatmap: :oncoPrint

Examples

read in example CNV calls

data.dir <- system.file("extdata"”, package="CNVRanger")
call.file <- file.path(data.dir, "Silval6_PONE_CNV_calls.csv")
calls <- read.csv(call.file, as.is=TRUE)

store in a GRangesList
calls <- makeGRangesListFromDataFrame(calls,
split.field="NE_id", keep.extra.columns=TRUE)

three example genes

genes <- c("chr1:140368053-140522639:-",
"chr2:97843887-97988140:+",
"chr2:135418586-135422028:-"

names(genes) <- c("ATP2C1", "MAP2", "ACTL8")

genes <- GRanges(genes)

plot
cnvOncoPrint(calls, genes, top.samples = 25)

generateGDS Produce CNV-GDS for the phenotyped samples

Description

Function to produce the GDS file in a probe-wise fashion for CN'V genotypes. The GDS file which is
produced also incorporates one phenotype to be analyzed. If several phenotypes are enclosed in the
‘phen.info’ object, the user may specify the phenotype to be analyzed with the ‘lo.phe’ parameter.
Only diploid chromosomes should be included.

Usage

generateGDS(
phen.info,
freq.cn = 0.01,
snp.matrix = FALSE,
lo.phe =1,
chr.code.name = NULL,
genotype.nodes = c("CNVGenotype”, "CNVgenotypeSNPlike"),
coding.translate = NULL,
n.cor =1

Arguments

phen.info Returned by setupCnvGWAS
freq.cn Minimum frequency. Default is 0.01 (i.e. 1%)

generateGDS

snp.matrix

lo.phe

chr.code.name

genotype.nodes

Only FALSE implemented. If TRUE, B allele frequencies (BAF) and SNP geno-
types would be used to reconstruct CNV-SNP genotypes - under development

The phenotype to be analyzed in the PhenInfo$phenotypesSam dataframe

A data-frame with the integer name in the first column and the original name in
the second for each chromosome previously converted to numeric

Nodes with CNV genotypes to be produced in the gds file. Use "CNVGenotype’
for dosage-like genotypes (i.e. from O to Inf). Use ’'CNVgenotypeSNPlike’
alongside for SNP-like CNV genotype in a separated node (i.e. ’0, 1, 2, 3,4 as
’0/0, 0/1, 1/1, 1/2, 2/2°).

coding.translate

n.cor

Value

For ’CNVgenotypeSNPlike’. If NULL or unrecognized string use only biallelic
CNVs. If "all’ code multiallelic CN'Vs as O for loss; 1 for 2n and 2 for gain.

Number of cores

probes.cnv.gr Object with information about all probes to be used in the downstream CNV-GWAS.
Only numeric chromosomes

Author(s)

Vinicius Henrique da Silva

Examples

Load phenotype-CNV information
data.dir <- system.file("extdata", package="CNVRanger")

phen.loc <- file.path(data.dir, "Pheno.txt")
cnv.out.loc <- file.path(data.dir, "CNVOut.txt")
map.loc <- file.path(data.dir, "MapPenn.txt")

phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc)

Construct the data-frame with integer and original chromosome names

Define chr correspondence to numeric, if necessary

df <- '16 1A
25 4A

29 25LG1

30 25LG2

31 LGE22'

chr.code.name <- read.table(text=df, header=FALSE)

probes.cnv.gr <-

generateGDS(phen.info, chr.code.name=chr.code.name)

10 importLrrBaf

importLrrBaf Import LRR and BAF from text files used in the CNV analysis

Description

This function imports the LRR/BAF values and create a node for each one in the GDS file at the
working folder *Inputs’ created by the setupCnvGWAS function. Once imported, the LRR values can
be used to perform a GWAS directly as an alternative to copy number dosage

Usage

importLrrBaf(
all.paths,
path.files,
list.of.files,
gds.file = NULL,
verbose = TRUE

)

Arguments
all.paths Object returned from CreateFolderTree function with the working folder tree
path.files Folder containing the input CNV files used for the CNV calling (i.e. one text

file with 5 collumns for each sample). Columns should contain (i) probe name,
(i1) Chromosome, (iii) Position, (iv) LRR, and (v) BAF.

list.of.files Data-frame with two columns where the (i) is the file name with signals and (ii)
is the correspondent name of the sample in the gds file

gds.file Path to the GDS file which contains nodes harboring respective LRR and BAF
values. The ‘snp.rs.id’, ‘sample.id’, ‘LRR’ and ‘BAF’ nodes are mandatory.
Both the SNPs and samples should follow the order and length in the CN'V.gds
(located at all.paths["Inputs"] folder). ‘path.files’ and ‘list.of.files’ will be ig-
nored if ‘gds.file’ is not NULL

verbose Print the samples while importing

Value

Writes to the specified GDS file by side effect.

Author(s)

Vinicius Henrique da Silva

Examples

Load phenotype-CNV information
data.dir <- system.file("extdata"”, package="CNVRanger")

phen.loc <- file.path(data.dir, "Pheno.txt")
cnv.out.loc <- file.path(data.dir, "CNVOut.txt")
map.loc <- file.path(data.dir, "MapPenn.txt")

plotEQTL 11

phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc)

Extract path names
all.paths <- phen.info$all.paths

List files to import LRR/BAF
list.of.files <- list.files(path=data.dir, pattern="cnv.txt.adjusted$")
list.of .files <- as.data.frame(list.of.files)
colnames(list.of.files)[1] <- "file.names"”
list.of.files$sample.names <- sub(”.cnv.txt.adjusted$",

nn

, list.of.files$file.names)

All missing samples will have LRR = '@' and BAF = '0.5' in all SNPs listed in the GDS file
importLrrBaf(all.paths, data.dir, list.of.files)

Read the GDS to check if the LRR/BAF nodes were added

cnv.gds <- file.path(all.paths["Inputs”], 'CNV.gds')

genofile <- SNPRelate: :snpgdsOpen(cnv.gds, allow.fork=TRUE, readonly=FALSE)
SNPRelate: :snpgdsClose(genofile)

plotEQTL Plot EQTL region

Description

[lustrates differential expression of genes in the neighborhood of a CNV.

Usage

plotEQTL(cnvr, genes, genome, cn = "CN1", cex = 0.8)

Arguments
cnvr A GRanges of length 1, containing the genomic coordinates of the CNV region
of interest.
genes GRanges containing genes in the neighborhood of the CNV region of interest.
genome Character. A valid UCSC genome assembly ID such as *hg19’ or bosTau6’.
cn Character. Copy number state of interest.
cex A numerical value giving the amount by which gene names should be magnified.
Default is 0.8. Use smaller values to decrease font size.
Value

None. Plots to a graphics device.

Author(s)

Ludwig Geistlinger

See Also

Gviz::plotTracks

12 plotManhattan

Examples

CNV region of interest
cnvr <- GRanges("chr1:7908902-8336254")

Two genes in the neighborhood

genes <- c("chr1:8021714-8045342:+", "chr1:8412464-8877699:-"
names(genes) <- c("PARK7", "RERE")

genes <- GRanges(genes)

Annotate differential expression for 1-copy loss
genes$logFC.CN1 <- c(-0.635, -0.728)
genes$AdjPValue <- c(8.29e-09, 1.76e-08)

plot
plotEQTL(cnvr, genes, genome="hg19", cn="CN1")

plotManhattan Manhattan Plot

Description

Manhattan plot for p-values of a CNV-GWAS

Usage

plotManhattan(all.paths, regions, chr.size.order, plot.pdf = FALSE)

Arguments
all.paths Object returned from CreateFolderTree function with the working folder tree
regions GRanges as returned by cnvGWAS

chr.size.order data.frame with two columns: (i) ’chr’: chromosome names (character), and
(i1) ’size’: length of the chromosomes in bp (integer). A GRanges containing
one chromosome per range can be used instead (the chromosomes should be in
the expected order).

plot.pdf Logical plot a to pdf file

Value

Plots to graphics device.

Author(s)

Vinicius Henrique da Silva

plotRecurrentRegions 13

Examples

Load phenotype-CNV information
data.dir <- system.file("extdata"”, package="CNVRanger")

phen.loc <- file.path(data.dir, "Pheno.txt")
cnv.out.loc <- file.path(data.dir, "CNVOut.txt")
map.loc <- file.path(data.dir, "MapPenn.txt")

phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc)
all.paths <- phen.info$all.paths
segs.pvalue.gr <- cnvGWAS(phen.info)

Define the chromosome order in the plot
order.chrs <- c(1:24, "25LG1", "25LG2", 27:28, "LGE22", "1A", "4A")

Chromosome sizes

chr.size.file <- file.path(data.dir, "Parus_major_chr_sizes.txt")

chr.sizes <- scan(chr.size.file)

chr.size.order <- data.frame(chr=order.chrs, sizes=chr.sizes, stringsAsFactors=FALSE)

Plot Manhatthan to a pdf within the 'Results' workfolder
plotManhattan(all.paths, segs.pvalue.gr, chr.size.order)

plotRecurrentRegions Plot recurrent CNV regions

Description

Ilustrates summarized CNV regions along a chromosome.

Usage

plotRecurrentRegions(regs, genome, chr, pthresh = 0.05)

Arguments
regs A GRanges. Typically the result of populationRanges with est.recur=TRUE.
genome Character. A valid UCSC genome assembly ID such as *hg19’ or bosTau6’.
chr Character. A UCSC-style chromosome name such as chrl’.
pthresh Numeric. Significance threshold for recurrence. Defaults to 0.05.

Value

None. Plots to a graphics device.

Author(s)

Ludwig Geistlinger

See Also

Gviz::plotTracks

14 populationRanges

Examples

read in example CNV calls

data.dir <- system.file("extdata”, package="CNVRanger")
call.file <- file.path(data.dir, "Silval6_PONE_CNV_calls.csv")
calls <- read.csv(call.file, as.is=TRUE)

store in a GRangesList
grl <- GenomicRanges::makeGRangesListFromDataFrame(calls,
split.field="NE_id", keep.extra.columns=TRUE)

summarize CNV regions
cnvrs <- populationRanges(grl, density=0.1, est.recur=TRUE)

plot
plotRecurrentRegions(cnvrs, genome="bosTau6", chr="chr1")

populationRanges Summarizing CNV ranges across a population

Description

In CNV analysis, it is often of interest to summarize individual calls across the population, (i.e. to
define CNV regions), for subsequent association analysis with e.g. phenotype data.

Usage

populationRanges(
grl,
mode = c("density”, "R0"),
density = 0.1,
ro.thresh = 0.5,
multi.assign = FALSE,
verbose = FALSE,
min.size = 2,
classify.ranges = TRUE,
type.thresh = 0.1,
est.recur = FALSE

)
Arguments
grl A GRangeslList.
mode Character. Should population ranges be computed based on regional density
("density") or reciprocal overlap ("RO"). See Details.
density Numeric. Defaults to 0.1.
ro.thresh Numeric. Threshold for reciprocal overlap required for merging two overlap-

ping regions. Defaults to 0.5.

multi.assign Logical. Allow regions to be assigned to several region clusters? Defaults to
FALSE.

populationRanges 15

verbose Logical. Report progress messages? Defaults to FALSE.
min.size Numeric. Minimum size of a summarized region to be included. Defaults to 2
bp.

classify.ranges
Logical. Should CNV frequency (number of samples overlapping the region)
and CNV type (gain, loss, or both) be annotated? Defaults to TRUE.

type.thresh Numeric. Required minimum relative frequency of each CNV type (gain / loss)
to be taken into account when assigning CNV type to a region. Defaults to 0.1.
That means for a region overlapped by individual gain and loss calls that both
types must be present in >10 in order to be typed as "both’. If gain or loss calls
are present below the threshold they are ignored.

est.recur Logical. Should recurrence of regions be assessed via a permutation test? De-
faults to FALSE. See Details.

Details

e CNVRuler procedure that trims region margins based on regional density

Trims low-density areas (usually <10% of the total contributing individual calls within a sum-
marized region).

An illustration of the concept can be found here: https://www.ncbi.nlm.nih.gov/pubmed/22539667
(Figure 1)
* Reciprocal overlap (RO) approach (e.g. Conrad et al., Nature, 2010)

Reciprocal overlap of 0.51 between two genomic regions A and B:
requires that B overlaps at least 51% of A, *and* that A also overlaps at least 51% of B
Approach:
At the top level of the hierarchy, all contiguous bases overlapping at least 1bp of individual
calls are merged into one region. Within each region, we further define reciprocally overlap-
ping regions with the following algorithm:

— Calculate reciprocal overlap (RO) between all remaining calls.

— Identify pair of calls with greatest RO. If RO > threshold, merge and create a new CNV.
If not, exit.

— Continue adding unclustered calls to the region, in order of best overlap. In order to add
a call, the new call must have > threshold to all calls within the region to be added. When
no additional calls may be added, move to next step.

— If calls remain, return to 1. Otherwise exit.

 GISTIC procedure (Beroukhim et al., PNAS, 2007) to identify recurrent CN'V regions
GISTIC scores each CNV region with a G-score that is proportional to the total magnitude
of CNV calls in each CNV region. In addition, by permuting the locations in each sample,
GISTIC determines the frequency with which a given score would be attained if the events
were due to chance and therefore randomly distributed. A significance threshold can then be
used to determine scores / regions that are unlikely to occur by chance alone.

Value

A GRanges object containing the summarized CNV ranges.

Author(s)

Ludwig Geistlinger, Martin Morgan

16 setupCnvGWAS

References

Kim et al. (2012) CNVRuler: a copy number variation-based case-control association analysis tool.
Bioinformatics, 28(13):1790-2.

Conrad et al. (2010) Origins and functional impact of copy number variation in the human genome.
Nature, 464(7289):704-12.

Beroukhim et al. (2007) Assessing the significance of chromosomal aberrations in cancer: method-
ology and application to glioma. PNAS, 104(50):20007-12.

See Also

findOverlaps

Examples

grl <- GRangesList(
samplel = GRanges(c("chr1:1-10", "chr2:15-18", "chr2:25-34")),
sample2 = GRanges(c("chr1:1-10", "chr2:11-18" , "chr2:25-36")),
sample3 = GRanges(c("chr1:2-11", "chr2:14-18", "chr2:26-36")),
sample4 = GRanges(c("chr1:1-12", "chr2:18-35")),
sample5 = GRanges(c("chr1:1-12", "chr2:11-17" | "chr2:26-34"))
sample6 = GRanges(c("chr1:1-12", "chr2:12-18" , "chr2:25-35"))

’

)

default as chosen in the original CNVRuler procedure
populationRanges(grl, density=0.1, classify.ranges=FALSE)

density = @ merges all overlapping regions,
equivalent to: reduce(unlist(grl))
populationRanges(grl, density=0, classify.ranges=FALSE)

density = 1 disjoins all overlapping regions,
equivalent to: disjoin(unlist(grl))
populationRanges(grl, density=1, classify.ranges=FALSE)

RO procedure
populationRanges(grl, mode="R0", ro.thresh=0.5, classify.ranges=FALSE)

setupCnvGWAS Setup the folders and files to run CNV-GWAS analysis

Description

This function creates the (i) necessary folders in disk to perform downstream analysis on CNV
genome-wide association and (ii) import the necessary input files (i.e. phenotypes, probe map and
CNV list) from other locations in disk.

Usage

setupCnvGWAS (
name,
phen.loc,

setupCnvGWAS

cnv.out.loc,

17

map.loc = NULL,
folder = NULL,
pops.names = NULL,
n.cor =1

)

Arguments
name String with a project code or name (e.g. 'Projectl’)
phen.loc Path/paths to the tab separated text file containing phenotype and sample info.

cnv.out.loc

When using more than one population, for populations without phenotypes in-
clude the string 'INEXISTENT’ instead the path for a file.

Path(s) to the CNV analysis output (i.e. PennCNV output, SNP-chip general for-
mat or sequencing general format). Itis also possible to use a RaggedExperiment
or a GRangesList object instead if the run includes only one population.

map. loc Path to the probe map (e.g. used in PennCNV analysis). Column names con-
taining probe name, chromosome and coordinate must be named as: Name, Chr
and Position. Tab delimited. If NULL, artificial probes will be generated based
on the CNV breakpoints.

folder Choose manually the project folder (i.e. path as the root folder). Otherwise,
user-specific data dir will be used automatically.

pops.names Indicate the name of the populations, if using more than one.

n.cor Number of cores

Details

The user can import several phenotypes at once. All information will be stored in the list returned by
this function. The user should be aware although several phenotypes can be imported, the cnvGWAS

or generateGDS functions will handle only one phenotype per run.

Value

List ‘phen.info’ with ‘samplesPhen’, ‘phenotypes’, ‘phenotypesdf’, ‘phenotypesSam’, ‘FamID’,

‘SexIds’, ‘pops.names’ (if more than one population) and ‘all.paths’

Author(s)
Vinicius Henrique da Silva

Examples
data.dir <- system.file("extdata"”, package="CNVRanger")
phen.loc <- file.path(data.dir, "Pheno.txt")
cnv.out.loc <- file.path(data.dir, "CNVOut.txt")

map.loc <- file.path(data.dir, "MapPenn.txt")

phen.info <- setupCnvGWAS('Example', phen.loc, cnv.out.loc, map.loc)

Index

cnvEQTL, 2
cnvGWAS, 5, 12, 17
cnvOncoPrint, 7

data.frame, 12
DataFrame, 4

filterByExpr, 3
findOverlaps, 4, 16

generateGDS, 8, 17
glmQLFit, 4
glmQLFTest, 4
GRanges, 2, 7,11-13,15
GRangeslList, 2,7, 14, 17

importLrrBaf, 10
Im, 5
p.adjust, 3,5
plotEQTL, 11
plotManhattan, 12

plotRecurrentRegions, 13
populationRanges, 2, 13, 14

greduceAssay, 3, 4,7

RaggedExperiment, 2,7, 17
RangedSummarizedExperiment, 3

setupCnvGWAS, 5, 10, 16

18

	cnvEQTL
	cnvGWAS
	cnvOncoPrint
	generateGDS
	importLrrBaf
	plotEQTL
	plotManhattan
	plotRecurrentRegions
	populationRanges
	setupCnvGWAS
	Index

