Package 'SimBu'

July 19, 2025

Title Simulate Bulk RNA-seq Datasets from Single-Cell Datasets

Version 1.11.0

Description SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions. You can either use your own single-cell study for the simulation or the sfaira database. Different pre-defined simulation scenarios exist, as are options to run custom simulations. Additionally, expression values can be adapted by adding an mRNA bias, which produces more biologically relevant simulations.

License GPL-3 + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports basilisk, BiocParallel, data.table, dplyr, ggplot2, tools, Matrix (>= 1.3.3), methods, phyloseq, proxyC, RColorBrewer, RCurl, reticulate, sparseMatrixStats, SummarizedExperiment, tidyr

Suggests curl, knitr, matrixStats, rmarkdown, Seurat (>= 5.0.0), SeuratObject (>= 5.0.0), testthat (>= 3.0.0)

URL https://github.com/omnideconv/SimBu

BugReports https://github.com/omnideconv/SimBu/issues

VignetteBuilder knitr

Config/testthat/edition 3

StagedInstall no

biocViews Software, RNASeq, SingleCell

git_url https://git.bioconductor.org/packages/SimBu

git_branch devel

git_last_commit 216793c

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-18

Author Alexander Dietrich [aut, cre]

Maintainer Alexander Dietrich <alex.dietrich@tum.de>

Contents

calc_scaling_vector	2
census	3
census_monocle	4
check_annotation	4
check_if_tpm	5
compare_matrix_with_annotation	5
dataset	6
dataset_h5ad	7
dataset_merge	8
dataset_seurat	10
	11
dataset_sfaira_multiple	13
dmode	14
	14
download_sfaira_multiple	15
	16
8 = 1	16
	17
	18
6	18
F	19
	20
setup_sfaira	
	22
	23
simulate_bulk	
simulate_sample	27
1	28
2	-0

Index

20

calc_scaling_vector Calculate scaling factor for a dataset

Description

Each scaling factor has a default matrix it will try to use (counts or TPM). If the required matrix is not available, the other one is used and a warning is given.

Usage

```
calc_scaling_vector(
  data,
  scaling_factor,
  custom_scaling_vector,
  scaling_factor_single_cell,
  BPPARAM,
  run_parallel
)
```

census

Arguments

data	dataset object
scaling_factor	name of scaling factor; possible are: census, spike_in, read_number, custom or NONE for no scaling factor
custom_scaling_	_vector
	named vector with custom scaling values for cell-types. Cell-types that do not occur in this vector but are present in the dataset will be set to 1
scaling_factor_	_single_cell
	boolean: decide if a scaling value for each single cell is calculated (default) or the median of all scaling values for each cell type is calculated
BPPARAM	BiocParallel::bpparam() by default; if specific number of threads x want to be used, insert: BiocParallel::MulticoreParam(workers = x)
run_parallel	boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a named vector with a scaling value for each cell in the dataset

census

Applies the Census count transformation on a count matrix

Description

needs a sparse matrix with cells in columns and genes in rows. You can find the detailed explaination here: http://cole-trapnell-lab.github.io/monocle-release/docs/#census

Usage

```
census(
  matrix,
  exp_capture_rate = 0.25,
  expr_threshold = 0,
  BPPARAM = BiocParallel::bpparam(),
  run_parallel = FALSE
)
```

Arguments

	matrix	sparse count matrix; cells in columns, genes in rows
exp_capture_rate		e
		expected capture rate; default=0.25
	expr_threshold	expression threshold; default=0
	BPPARAM	BiocParallel::bpparam() by default; if specific number of threads x want to be used, insert: BiocParallel::MulticoreParam(workers = x)
	run_parallel	boolean, decide if multi-threaded calculation will be run. FALSE by default

Value

a vector for each cell-type, with a scaling factor which can be used to transform the counts of the matrix

Examples

```
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
cen <- SimBu::census(tpm)</pre>
```

census_monocle Census calculation as implemented in monocle

Description

Implementation taken from Monocle2: https://github.com/cole-trapnell-lab/monocle-release/blob/master/R/normalizatio

Usage

```
census_monocle(expr_matrix, exp_capture_rate, expr_threshold)
```

Arguments

```
expr_matrix TPM matrix
exp_capture_rate
expected capture rate; default=0.25
expr_threshold expression threshold; default=0
```

Value

vector with estimated mRNA values per cell in expr_matrix

check_annotation	check for correct column names in annotation file and replace them if
	necessary

Description

check for correct column names in annotation file and replace them if necessary

Usage

```
check_annotation(annotation, cell_column = "cell_type", id_column = 1)
```

Arguments

annotation	dataframe; annotation dataframe
cell_column	name of cell-type column; default is "cell_type"
id_column	name of cell ID column; default is 1, which uses the rownames

Value

annotation dataframe with correct column names

4

check_if_tpm

Description

Checks, if a matrix is TPM-like (columns sum up to 1e6)

Usage

```
check_if_tpm(tpm_matrix, lower_limit = 7e+05)
```

Arguments

tpm_matrix	matrix to check
lower_limit	the lowest sum value, a cell may have

Value

boolean

compare_matrix_with_annotation Check if annotation and matrix have same cells

Description

Otherwise intersection of both is used

Usage

compare_matrix_with_annotation(m, annotation)

Arguments

m	matrix, column names are cells
annotation	data.frame, rownames are genes, cell names are in ID column

Value

intersected matrix

dataset

Description

Build SummarizedExperiment using local annotation and count matrix R objects

Usage

```
dataset(
    annotation,
    count_matrix = NULL,
    tpm_matrix = NULL,
    name = "SimBu_dataset",
    spike_in_col = NULL,
    additional_cols = NULL,
    filter_genes = TRUE,
    variance_cutoff = 0,
    type_abundance_cutoff = 0,
    scale_tpm = TRUE
)
```

Arguments

annotation	(mandatory) dataframe; needs columns 'ID' and 'cell_type'; 'ID' needs to be equal with cell_names in count_matrix		
count_matrix	(mandatory) sparse count matrix; raw count data is expected with genes in rows, cells in columns		
tpm_matrix	sparse count matrix; TPM like count data is expected with genes in rows, cells in columns		
name	name of the dataset; will be used for new unique IDs of cells		
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation		
additional_col	additional_cols		
	list of column names in annotation, that should be stored as well in dataset object		
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff		
variance_cutoff			
	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff (default = 0)		
type_abundance_cutoff			
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types		
<pre>scale_tpm</pre>	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6		

Value

Return a SummarizedExperiment object

dataset_h5ad

Examples

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:1000))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))
annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(rep("T cells CD4", 300))
)
```

ds <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset")</pre>

dataset_h5ad

Build SummarizedExperiment using a h5ad file for the counts

Description

Build SummarizedExperiment using a h5ad file for the counts

Usage

```
dataset_h5ad(
    h5ad_file_counts,
    h5ad_file_tpm = NULL,
    cell_id_col = "ID",
    cell_type_col = "cell_type",
    cells_in_obs = TRUE,
    name = "SimBu_dataset",
    spike_in_col = NULL,
    additional_cols = NULL,
    filter_genes = TRUE,
    variance_cutoff = 0,
    type_abundance_cutoff = 0,
    scale_tpm = TRUE
)
```

Arguments

h5ad_file_counts

	(mandatory) h5ad file with raw count data	
h5ad_file_tpm	h5ad file with TPM count data	
cell_id_col	(mandatory) name of column in Seurat meta.data with unique cell ids; 0 for rownames	
cell_type_col	(mandatory) name of column in Seurat meta.data with cell type name	

cells_in_obs	boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if FALSE, they are taken from var	
name	name of the dataset; will be used for new unique IDs of cells#' @param spike_in_col which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation	
additional_cols	S	
	list of column names in annotation, that should be stored as well in dataset object	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff		
	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff	
type_abundance_cutoff		
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
scale_tpm	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

Value

Return a SummarizedExperiment object

Examples

```
# h5 <- system.file("extdata", "anndata.h5ad", package = "SimBu")
# ds_h5ad <- SimBu::dataset_h5ad(
# h5ad_file_counts = h5,
# name = "h5ad_dataset",
# cell_id_col = "id", # this will use the 'id' column of the metadata as cell identifiers
# cell_type_col = "group", # this will use the 'group' column of the metadata as cell type info
# cells_in_obs = TRUE
# ) # in case your cell information is stored in the var layer, switch to FALSE</pre>
```

dataset_merge Merge multiple SummarizedExperiment datasets into one

Description

The objects need to have the same number of assays in order to work.

Usage

```
dataset_merge(
   dataset_list,
   name = "SimBu_dataset",
   spike_in_col = NULL,
   additional_cols = NULL,
   filter_genes = TRUE,
```

```
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE
)
```

Arguments

dataset_list	(mandatory) list of SummarizedExperiment objects	
name	name of the new dataset	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation	
additional_cols	5	
	list of column names in annotation, that should be stored as well in dataset object	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff	F	
	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff	
type_abundance_cutoff		
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
<pre>scale_tpm</pre>	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

Value

SummarizedExperiment object

Examples

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
annotation <- data.frame(
    "ID" = paste0("cell_", rep(1:300)),
    "cell_type" = c(rep("T cells CD4", 300))
)
ds1 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset1")</pre>
```

ds1 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset1")
ds2 <- SimBu::dataset(annotation = annotation, count_matrix = counts, tpm_matrix = tpm, name = "test_dataset2")
ds_merged <- SimBu::dataset_merge(list(ds1, ds2))</pre>

dataset_seurat

Description

Build SummarizedExperiment using a Seurat object

Usage

```
dataset_seurat(
   seurat_obj,
   counts_layer,
   cell_id_col,
   cell_type_col,
   assay = NULL,
   tpm_layer = NULL,
   name = "SimBu_dataset",
   spike_in_col = NULL,
   additional_cols = NULL,
   filter_genes = TRUE,
   variance_cutoff = 0,
   type_abundance_cutoff = 0,
   scale_tpm = TRUE
)
```

Arguments

seurat_obj	(mandatory) Seurat object with TPM counts	
counts_layer	(mandatory) name of assay in Seurat object which contains count data in 'counts' slot	
cell_id_col	(mandatory) name of column in Seurat meta.data with unique cell ids	
cell_type_col	(mandatory) name of column in Seurat meta.data with cell type name	
assay	name of the Seurat objecy assay that should be used. If NULL (default), the currently active assay is used	
tpm_layer	name of assay in Seurat object which contains TPM data in 'counts' slot	
name	name of the dataset; will be used for new unique IDs of cells	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation	
additional_col	S	
	list of column names in annotation, that should be stored as well in dataset object	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff		
type_abundance.	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff _cutoff	
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
scale_tpm	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

dataset_sfaira

Value

Return a SummarizedExperiment object

Examples

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))</pre>
colnames(counts) <- paste0("cell-", rep(1:300))</pre>
colnames(tpm) <- paste0("cell-", rep(1:300))</pre>
rownames(counts) <- paste0("gene-", rep(1:1000))</pre>
rownames(tpm) <- paste0("gene-", rep(1:1000))</pre>
annotation <- data.frame(</pre>
  "ID" = paste0("cell-", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  ).
  row.names = paste0("cell-", rep(1:300))
)
seurat_obj <- Seurat::CreateSeuratObject(counts = counts, assay = "gene_expression", meta.data = annotation)</pre>
SeuratObject::LayerData(seurat_obj, assay = "gene_expression", layer = "data") <- tpm</pre>
ds_seurat <- SimBu::dataset_seurat(</pre>
  seurat_obj = seurat_obj,
  counts_layer = "counts",
 cell_id_col = "ID",
 cell_type_col = "cell_type",
  tpm_layer = "data",
  name = "seurat_dataset"
)
```

dataset_sfaira Build SummarizedExperiment using a single sfaira entry ID

Description

Build SummarizedExperiment using a single sfaira entry ID

Usage

```
dataset_sfaira(
   sfaira_id,
   sfaira_setup,
   name = "SimBu_dataset",
   spike_in_col = NULL,
```

```
additional_cols = NULL,
force = FALSE,
filter_genes = TRUE,
variance_cutoff = 0,
type_abundance_cutoff = 0,
scale_tpm = TRUE
)
```

Arguments

sfaira_id	(mandatory) ID of a sfaira dataset	
sfaira_setup	(mandatory) the sfaira setup; given by setup_sfaira	
name	name of the dataset; will be used for new unique IDs of cells	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts	
additional_cols	3	
	list of column names in annotation, that should be stored as well in dataset object	
force	boolean, if TRUE, datasets without annotation will be downloaded, FALSE otherwise (default)	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff		
	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff	
type_abundance_cutoff		
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
scale_tpm	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

Value

dataset object

Examples

```
setup_list <- SimBu::setup_sfaira(tempdir())
ds <- SimBu::dataset_sfaira(
    sfaira_id = "homosapiens_lungparenchyma_2019_10x3v2_madissoon_001_10.1186/s13059-019-1906-x",
    sfaira_setup = setup_list,
    name = "test_dataset"
)</pre>
```

12

dataset_sfaira_multiple

Build SummarizedExperiment using multiple sfaira entries

Description

You can apply different filters on the whole data-zoo of sfaria; the resulting single-cell datasets will be combined into a single dataset which you can use for simulation Note: only datasets in sfaira with annotation are considered!

Usage

```
dataset_sfaira_multiple(
    organisms = NULL,
    tissues = NULL,
    assays = NULL,
    sfaira_setup,
    name = "SimBu_dataset",
    spike_in_col = NULL,
    additional_cols = NULL,
    filter_genes = TRUE,
    variance_cutoff = 0,
    type_abundance_cutoff = 0,
    scale_tpm = TRUE
)
```

Arguments

organisms	(mandatory) list of organisms (only human and mouse available)	
tissues	(mandatory) list of tissues	
assays	(mandatory) list of assays	
sfaira_setup	(mandatory) the sfaira setup; given by setup_sfaira	
name	name of the dataset; will be used for new unique IDs of cells	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts	
additional_cols	5	
	list of column names in annotation, that should be stored as well in dataset object	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff		
the standards	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff	
type_abundance_cutoff		
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
<pre>scale_tpm</pre>	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

Value

dataset object

Examples

```
setup_list <- SimBu::setup_sfaira(tempdir())
ds_human_lung <- SimBu::dataset_sfaira_multiple(
   sfaira_setup = setup_list,
   organisms = "Homo sapiens",
   tissues = "lung parenchyma",
   assay = "10x 3' v2",
   name = "human_lung"
)</pre>
```

dmode

use gaussian kernel to calculate the mode of transcript counts

Description

use gaussian kernel to calculate the mode of transcript counts

Usage

dmode(x)

Arguments

x vector of numeric values

Value

most commonly occurring (log-transformed) TPM value

download_sfaira download a specific dataset from sfaira by an ID

Description

download a specific dataset from sfaira by an ID

Usage

```
download_sfaira(
   setup_list,
   ids,
   force = FALSE,
   synapse_user = NULL,
   synapse_pw = NULL
)
```

14

Arguments

setup_list	the sfaira setup; given by setup_sfaira
ids	the IDs of the datasets
force	logical; TRUE if you want to force the download, even though no cell-type annotation exists for this dataset. Default if FALSE
synapse_user	character; username for synapse portal (https://www.synapse.org)
synapse_pw	character; password for synapse portal (https://www.synapse.org)

Value

matrix, gene names and cell IDs

```
download_sfaira_multiple
```

download multiple datasets from sfaira using filters for organism, tissue and/or assay

Description

similar to the filters on the sfaira website (https://theislab.github.io/sfaira-portal/Datasets)

Usage

```
download_sfaira_multiple(
   setup_list,
   organisms = NULL,
   tissues = NULL,
   assays = NULL,
   force = FALSE
)
```

Arguments

setup_list	the sfaira setup; given by setup_sfaira
organisms	list of organisms (only human and mouse available)
tissues	list of tissues
assays	list of assays
force	logical; TRUE if you want to force to download all datasets, otherwise only the ones with cell-type annotation will be returned. Default if FALSE

Value

annotated data object, contains count matrix and annotation

filter_matrix

Description

filter one (or two) expression matrix by genes

Usage

```
filter_matrix(m1, m2 = NULL, filter_genes = TRUE, variance_cutoff = 0)
```

Arguments

m1	Matrix 1	
m2	Matrix 2 (optional)	
filter_genes	boolean	
variance_cutoff		
	numeric, genes below this variance value are removed	

Value

filtered matrix

Description

Generate SummarizedExperiment using multiple parameters

Usage

```
generate_summarized_experiment(
    annotation,
    count_matrix,
    tpm_matrix,
    name,
    spike_in_col,
    additional_cols,
    filter_genes,
    variance_cutoff,
    type_abundance_cutoff,
    scale_tpm
)
```

Arguments

annotation	(mandatory) dataframe; needs columns 'ID' and 'cell_type'; 'ID' needs to be equal with cell_names in count_matrix	
count_matrix	(mandatory) sparse count matrix; raw count data is expected with genes in rows, cells in columns	
tpm_matrix	sparse count matrix; TPM like count data is expected with genes in rows, cells in columns	
name	name of the dataset; will be used for new unique IDs of cells	
<pre>spike_in_col</pre>	which column in annotation contains information on spike_in counts, which can be used to re-scale counts; mandatory for spike_in scaling factor in simulation	
additional_cols		
	list of column names in annotation, that should be stored as well in dataset object	
filter_genes	boolean, if TRUE, removes all genes with 0 expression over all samples & genes with variance below variance_cutoff	
variance_cutoff		
	numeric, is only applied if filter_genes is TRUE: removes all genes with variance below the chosen cutoff	
type_abundance_cutoff		
	numeric, remove all cells, whose cell-type appears less then the given value. This removes low abundant cell-types	
scale_tpm	boolean, if TRUE (default) the cells in tpm_matrix will be scaled to sum up to 1e6	

Value

Return a SummarizedExperiment object

h5ad_to_adata	Use basilisk environment to read h5ad file and access anndata object
---------------	--

Description

Use basilisk environment to read h5ad file and access anndata object

Usage

```
h5ad_to_adata(h5ad_path, cells_in_obs)
```

Arguments

h5ad_path	path to h5ad file
cells_in_obs	boolean, if TRUE, cell identifiers are taken from obs layer in anndata object; if FALSE, they are taken from var

Value

matrix contained on h5ad file as dgCMatrix

merge_scaling_factor Create scaling vector from custom or pre-defined scaling factor

Description

Create scaling vector from custom or pre-defined scaling factor

Usage

```
merge_scaling_factor(data, scaling_factor_values, scaling_factor_name)
```

Arguments

data dataset scaling_factor_values named list of scaling values scaling_factor_name name of scaling factor method

Value

scaling vector

merge_simulations Combine multiple simulations into one result

Description

we recommend to only merge simulations from the same dataset object, otherwise the count matrices might not correspond on the gene level

Usage

merge_simulations(simulation_list)

Arguments

simulation_list

a list of simulations

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

plot_simulation

Examples

```
counts <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::Matrix(matrix(rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))</pre>
colnames(counts) <- paste0("cell_", rep(1:300))</pre>
colnames(tpm) <- paste0("cell_", rep(1:300))</pre>
rownames(counts) <- paste0("gene_", rep(1:1000))</pre>
rownames(tpm) <- paste0("gene_", rep(1:1000))</pre>
annotation <- data.frame(</pre>
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)
dataset <- SimBu::dataset(</pre>
  annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
  name = "test_dataset"
)
s1 <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
s2 <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
s <- SimBu::merge_simulations(list(s1, s2))</pre>
```

plot_simulation Plot the cell-type fractions in your simulated dataset

Description

Plot the cell-type fractions in your simulated dataset

Usage

plot_simulation(simulation)

Arguments

simulation a simulation object generated by simulate_bulk

Value

a gpplot2 barplot

Examples

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)</pre>
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))</pre>
colnames(counts) <- paste0("cell_", rep(1:300))</pre>
colnames(tpm) <- paste0("cell_", rep(1:300))</pre>
rownames(counts) <- paste0("gene_", rep(1:1000))</pre>
rownames(tpm) <- paste0("gene_", rep(1:1000))</pre>
annotation <- data.frame(</pre>
  "ID" = paste0("cell_", rep(1:300)),
  "cell_type" = c(
    rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
  )
)
dataset <- SimBu::dataset(</pre>
  annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
  name = "test_dataset"
)
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
  ncells = 100
)
SimBu::plot_simulation(s)
```

save_simulation Save the expression matrix of a simulated pseudo-bulk dataset to a file

Description

Save the expression matrix of a simulated pseudo-bulk dataset to a file

save_simulation

Usage

save_simulation(simulation, filename, assay = "bulk_counts")

Arguments

simulation	the result of simulate_bulk()
filename	the filename where to save the expression matrix to
assay	name of the assay in simulation to save, default to bulk_counts

Value

write a file

Examples

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))</pre>
```

```
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
annotation <- data.frame(
   "ID" = paste0("cell_", rep(1:300)),
   "cell_type" = c(</pre>
```

```
rep("T cells CD4", 50),
    rep("T cells CD8", 50),
    rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
 )
)
dataset <- SimBu::dataset(</pre>
 annotation = annotation,
  count_matrix = counts,
  tpm_matrix = tpm,
 name = "test_dataset"
)
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100
)
```

```
save_simulation(s, tempfile())
```

setup_sfaira

Description

If you want to download datasets from Sfaira, you need to specify a directory where the datasets are saved into. Additionally, when this function is called for the first time, a conda environment will be established and sfaira along all of its dependencies are installed. This can take some time but will be only performed one single time, as the environment can be re-used.

Usage

```
setup_sfaira(basedir)
```

Arguments

basedir name of the directory, where the raw files will be downloaded into

Value

list with sfaira file directories; must be used as input for other sfaira based functions

Examples

```
setup_list <- setup_sfaira(basedir = tempdir())</pre>
```

sfaira_overview	Gives an overview of the possible datasets you can use from the sfaira
	database

Description

Gives an overview of the possible datasets you can use from the sfaira database

Usage

```
sfaira_overview(setup_list)
```

Arguments

setup_list the sfaira setup; given by setup_sfaira

Value

a dataframe with information on each dataset

Examples

```
setup_list <- setup_sfaira(basedir = tempdir())
# all_datasets <- sfaira_overview(setup_list)</pre>
```

SimBu

SimBu: Bias-aware simulation of bulk RNA-seq data with variable cell type composition

Description

As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. The simulation of 'pseudo-bulk' data, generated by aggregating single-cell RNA-seq (scRNA-seq) expression profiles in pre-defined proportions, offers a scalable and cost-effective way of generating these gold-standard datasets. SimBu was developed to simulate pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modelling of cell-type-specific mRNA bias using experimentally-derived or data-driven scaling factors.

Dataset generation

You will need an annotated scRNA-seq dataset (as matrix file, h5ad file, Seurat object), which is the baseline for the simulations. Use the dataset_* functions to generate a SummarizedExperiment, that holds all important information. It is also possible to access scRNA-seq datasets through the public database Sfaira, by using the functions dataset_sfaira() and dataset_sfaira_multiple().

Simulation

Use the simulate_bulk() function to generate multiple pseudo-bulk samples, which will be returned as a SummarizedExperiment. You can adapt the cell type fractions in each sample by changing the scenario parameter.

Visulaization

Inspect the cell type composition of your simulations with the plot_simulation() function.

simulate_bulk

Simulate whole pseudo-bulk RNAseq dataset

Description

This function allows you to create a full pseudo-bulk RNAseq dataset. You need to provide a SummarizedExperiment from which the cells will be sampled for the simulation. Also a scenario has to be selected, where you can choose how the cells will be sampled and a scaling_factor on how the read counts will be transformed proir to the simulation.

Usage

```
simulate_bulk(
  data,
  scenario = c("even", "random", "mirror_db", "weighted", "pure", "custom"),
  scaling_factor = c("NONE", "census", "spike_in", "custom", "read_number",
    "expressed_genes", "annotation_column", "epic", "abis", "quantiseq"),
  scaling_factor_single_cell = TRUE,
  weighted_cell_type = NULL,
  weighted_amount = NULL,
  pure_cell_type = NULL,
  custom_scenario_data = NULL,
  custom_scaling_vector = NULL,
  balance_even_mirror_scenario = 0.01,
  remove_bias_in_counts = FALSE,
  remove_bias_in_counts_method = "read-number",
  norm_counts = FALSE,
  nsamples = 100,
  ncells = 1000,
  total_read_counts = NULL,
  whitelist = NULL,
  blacklist = NULL,
  seed = NA,
  BPPARAM = BiocParallel::bpparam(),
  run_parallel = FALSE
```

Arguments

)

data	(mandatory) SummarizedExperiment object	
scenario	(mandatory) select on of the pre-defined cell-type fraction scenarios; possible are: even,random,mirror_db,pure,weighted; you can also use the custom scenario, where you need to set the custom_scenario_data parameter.	
scaling_factor	(mandatory) name of scaling factor; possible are: census, spike_in, read_number expressed_genes, custom, epic, abis, quantiseq or NONE for no scaling factor	
scaling_factor_	single_cell	
	boolean: decide if a scaling value for each single cell is calculated (default) or the median of all scaling values for each cell type is calculated	
weighted_cell_type		
	name of cell-type used for weighted scenario	
weighted_amount		
	fraction of cell-type used for weighted scenario; must be between 0 and 0.99	
<pre>pure_cell_type</pre>	name of cell-type for pure scenario	
custom_scenaric	o_data	
	dataframe; needs to be of size nsamples x number_of_cell_types, where each sample is a row and each entry is the cell-type fraction. Rows need to sum up to 1.	
custom_scaling_	vector	
-	named vector with custom scaling values for cell-types. Cell-types that do not occur in this vector but are present in the dataset will be set to 1; mandatory for custom scaling factor	

24

balance_even_mirror_scenario		
	balancing value for the uniform and mirror_db scenarios: increasing it will result in more diverse simulated fractions. To get the same fractions in each sample, set to 0. Default is 0.01.	
<pre>remove_bias_in_</pre>	_counts	
	boolean; if TRUE the internal mRNA bias that is present in count data will be <i>removed</i> using the number of reads mapped to each cell. Default to FALSE	
<pre>remove_bias_in_</pre>	_counts_method	
	'read-number' (default) or 'gene-number'; method with which the mRNA bias in counts will be removed	
norm_counts	boolean; if TRUE the samples simulated with counts will be normalized to CPMs, default is FALSE	
nsamples	numeric; number of samples in pseudo-bulk RNAseq dataset (default = 100)	
ncells	numeric; number of cells in each dataset (default = 1000)	
total_read_cour	nts	
	numeric; sets the total read count value for each sample	
whitelist	list; give a list of cell-types you want to keep for the simulation; if NULL, all are used	
blacklist	list; give a list of cell-types you want to remove for the simulation; if NULL, all are used; is applied after whitelist	
seed	numeric; specifiy a seed for RNG. This effects cell sampling; with a fixed seed you will always sample the same cells for each sample (seed value is incrased by 1 for each sample). Default = NA (two simulation runs will sample different cells).	
BPPARAM	BiocParallel::bpparam() by default; if specific number of threads x want to be used, insert: BiocParallel::MulticoreParam(workers = x)	
run_parallel	boolean, decide if multi-threaded calculation will be run. FALSE by default	

Value

named list; bulk a SummarizedExperiment object, where the assays store the simulated bulk RNAseq datasets. Can hold either one or two assays, depending on how many matrices were present in the dataset cell-fractions is a dataframe with the simulated cell-fractions per sample; scaling_vector scaling value for each cell in dataset

Examples

generate sample single-cell data to work with:

```
counts <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::Matrix(matrix(stats::rpois(3e5, 5), ncol = 300), sparse = TRUE)
tpm <- Matrix::t(1e6 * Matrix::t(tpm) / Matrix::colSums(tpm))</pre>
```

```
colnames(counts) <- paste0("cell_", rep(1:300))
colnames(tpm) <- paste0("cell_", rep(1:300))
rownames(counts) <- paste0("gene_", rep(1:1000))
rownames(tpm) <- paste0("gene_", rep(1:1000))</pre>
```

```
annotation <- data.frame(
  "ID" = paste0("cell_", rep(1:300)),
   "cell_type" = c(</pre>
```

```
rep("T cells CD4", 50),
    rep("T cells CD8", 50),
rep("Macrophages", 100),
    rep("NK cells", 10),
    rep("B cells", 70),
    rep("Monocytes", 20)
 )
)
dataset <- SimBu::dataset(</pre>
  annotation = annotation,
  count_matrix = counts,
 tpm_matrix = tpm,
 name = "test_dataset"
)
# this creates a basic pseudo-bulk dataset with uniform cell-type distribution
# and no additional transformation of the data with 10 samples and 2000 cells each
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
  nsamples = 10,
 ncells = 100
)
# use a blacklist to exclude certain cell-types for the simulation
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "even",
  scaling_factor = "NONE",
 nsamples = 10,
 ncells = 2000,
 blacklist = c("Monocytes", "Macrophages")
)
# use the pure scenario to only have B cells
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "pure",
  scaling_factor = "NONE",
 nsamples = 10,
 ncells = 100,
 pure_cell_type = "B cells"
)
# simulate a dataset with custom cell-type fraction for each of the 3 samples
fractions <- data.frame(</pre>
  "B cells" = c(0.2, 0.4, 0.2),
  "T cells CD4" = c(0.4, 0.2, 0.1),
  "Macrophages" = c(0.4, 0.4, 0.7), check.names = FALSE
)
s <- SimBu::simulate_bulk(dataset,</pre>
  scenario = "custom",
  scaling_factor = "NONE",
  nsamples = 3,
  ncells = 2000,
  custom_scenario_data = fractions
```

26

)

simulate_sample

Description

function to sample cells according to given cell-type fractions. This creates a single pseudo-bulk sample by calculating the mean expression value per gene over all sampled cells. Note: if to-tal_read_counts is used, the cell-fractions are applied to the number of counts, not the number of cells!

Usage

```
simulate_sample(
   data,
   scaling_vector,
   simulation_vector,
   total_cells,
   total_read_counts,
   remove_bias_in_counts,
   remove_bias_in_counts_method,
   norm_counts,
   seed
)
```

Arguments

data	SummarizedExperiment object
scaling_vector	vector with scaling values for each cell; calculated by the calc_scaling_vector function
simulation_vector	
	named vector with wanted cell-types and their fractions
total_cells	numeric; number of total cells for this simulation
total_read_counts	
	numeric; sets the total read count value for each sample
<pre>remove_bias_in_counts</pre>	
	boolean; if TRUE (default) the internal mRNA bias that is present in count data will be <i>removed</i> using the number of reads mapped to each cell
<pre>remove_bias_in_counts_method</pre>	
	'read-number' (default) or 'gene-number'; method with which the mRNA bias in counts will be removed
norm_counts	boolean; if TRUE the samples simulated with counts will be normalized to CPMs, default is FALSE
seed	numeric; fix this value if you want the same cells to be sampled

Value

returns two vectors (one based on counts, one based on tpm; depends on which matrices are present in data) with expression values for all genes in the provided dataset

Index

* internal calc_scaling_vector, 2 census_monocle, 4 check_annotation, 4 check_if_tpm, 5 compare_matrix_with_annotation, 5 dmode, 14 download_sfaira, 14 download_sfaira_multiple, 15 filter_matrix, 16 generate_summarized_experiment, 16 h5ad_to_adata, 17 merge_scaling_factor, 18 simulate_sample, 27 calc_scaling_vector, 2

census, 3
census_monocle, 4
check_annotation, 4
check_if_tpm, 5
compare_matrix_with_annotation, 5

dataset, 6
dataset_h5ad, 7
dataset_merge, 8
dataset_seurat, 10
dataset_sfaira, 11
dataset_sfaira_multiple, 13
dmode, 14
download_sfaira, 14
download_sfaira_multiple, 15

filter_matrix, 16

generate_summarized_experiment, 16

h5ad_to_adata, 17

merge_scaling_factor, 18
merge_simulations, 18

plot_simulation, 19

save_simulation, 20
setup_sfaira, 12, 13, 15, 22, 22

Seurat, 10 sfaira_overview, 22 SimBu, 23 simulate_bulk, 23 simulate_sample, 27 SummarizedExperiment, 6–11, 13, 17, 18, 23–25, 27