Package 'harbChIP'

November 6, 2025

Title Experimental Data Package: harbChIP
Description data from a yeast ChIP-chip experiment
Version 1.49.0
Author VJ Carey
Maintainer VJ Carey <stvjc@channing.harvard.edu></stvjc@channing.harvard.edu>
Depends R (>= 2.10.0), tools, utils, IRanges, Biobase (>= 2.5.5), Biostrings
Imports methods, stats
License Artistic-2.0
biocViews ExperimentData, Saccharomyces_cerevisiae_Data, SequencingData
git_url https://git.bioconductor.org/packages/harbChIP
git_branch devel
git_last_commit 90701ae
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-11-06
Contents
allhex buildUpstreamSeqs2 chkMotif4TF harbChIP sceUpstr upstreamSeqs-class
Index

2 buildUpstreamSeqs2

allhex

utility function: get all hexamers in upstream sequence for an ORF

Description

utility function: get all hexamers in upstream sequence for an ORF

Usage

```
allhex(orf, usobj)
```

Arguments

orf character string, ORF name

usobj upstreamSeqs object

Details

computes Biostrings Views

Value

computes Biostrings Views

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
data(sceUpstr)
allhex("YAL001C", sceUpstr)
```

buildUpstreamSeqs2

workflow component – build an upstreamSeqs instance from a FASTA read

Description

workflow component - build an upstreamSeqs instance from a FASTA read

Usage

```
buildUpstreamSeqs2(fastaRead, organism="sce", provenance="harmen")
```

chkMotif4TF 3

Arguments

fastaRead results of a readFASTA from Biostrings

organism string naming organism

provenance string or structure describing provenance

Details

generates an instance of upstreamSeqs

Value

generates an instance of upstreamSeqs

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
# x = readFASTA(...)
# y = buildUpstreamSeqs2(x)
```

chkMotif4TF

analyze relationship between motif frequency and binding intensity for selected motif and TF

Description

analyze relationship between motif frequency and binding intensity for selected motif and TF

Usage

```
chkMotif4TF(motif, TF, chset, upstr, bthresh=2, countthresh=0)
```

Arguments

motif character string in alphabet known to Biostrings	motif	character string	in alphabet	known to Biostrings
--	-------	------------------	-------------	---------------------

TF name of a TF (sample name in the ChIP-chip data structure chset

chset an ExpressionSet instance harboring ChIP-chip data

upstr an instance of upstreamSeqs

bthresh threshold for binding intensity results to declare TF 'bound' to the upstream

region

countthresh threshold for motif count to be considered 'present' in upstream region

4 harbChIP

Details

Uses countPattern to perform motif count.

Value

```
a list with elements call, table, and test, the latter providing the result of fisher. test
```

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
# slow
## Not run:
data(harbChIP)
data(sceUpstr)
chkMotif4TF("CGGCCG", "RDS1", harbChIP, sceUpstr)
## End(Not run)
```

harbChIP

Experimental Data Package: harbChIP

Description

binding ratios and intergenic region data from a ChIP-chip experiment in yeast

Usage

```
data(harbChIP)
```

Format

The format is: An ExpressionSetObject with covariates:

• txFac: transcription factor symbol from Harbison website CSV file columnnames

Note

derived from web site jura.wi.mit.edu/young_public/regulatory_code/GWLD.html, binding ratios

sceUpstr 5

Examples

```
data(harbChIP)
harbChIP
experimentData(harbChIP)
exprs(harbChIP)[1:6,1:7]
dim(exprs(harbChIP))
pData(featureData(harbChIP))[1:6,]
```

sceUpstr

Biostrings representations of S. cerevisiae upstream regions

Description

Biostrings representations of S. cerevisiae upstream regions

Usage

```
data(sceUpstr)
```

Details

environment-based S4 object with DNAstring elements

Value

environment-based S4 object with DNAstring elements

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
data(sceUpstr)
sceUpstr
getUpstream("YAL001C", sceUpstr)
```

6 upstreamSeqs-class

upstreamSeqs-class Class "upstreamSeqs"

Description

Container for a collection of upstream sequences

Objects from the Class

Objects can be created by calls of the form new("upstreamSeqs", ...). Environments are used to store collections of DNAstrings.

Slots

```
seqs: Object of class "environment" ~~
chrom: Object of class "environment" ~~
revComp: Object of class "environment" ~~
type: Object of class "environment" ~~
organism: Object of class "character" ~~
provenance: Object of class "ANY" ~~
```

Methods

```
Nmers signature(n = "numeric", orf = "character", usobj = "upstreamSeqs"): obtain all
    subsequences of length n as view elements of a DNA string
keys signature(x = "upstreamSeqs"): ...
organism signature(x = "upstreamSeqs"): ...
seqs signature(x = "upstreamSeqs"): ...
show signature(object = "upstreamSeqs"): ...
```

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```
showClass("upstreamSeqs")
data(sceUpstr)
sceUpstr
keys(sceUpstr)[1:5]
```

Index

```
* classes
    upstreamSeqs-class, 6
* datasets
    harbChIP, 4
* models
    allhex, 2
    buildUpstreamSeqs2, 2
    chkMotif4TF, 3
    sceUpstr, 5
allhex, 2
buildUpstreamSeqs2, 2
chkAllUS (chkMotif4TF), 3
chkMotif4TF, 3
countPattern, 4
fisher.test, 4
getUpstream(upstreamSeqs-class), 6
harbChIP, 4
keys (upstreamSeqs-class), 6
keys,upstreamSeqs-method
        (upstreamSeqs-class), 6
Nmers (upstreamSeqs-class), 6
Nmers, numeric, character, upstreamSeqs-method
        (upstreamSeqs-class), 6
organism (upstreamSeqs-class), 6
organism,upstreamSeqs-method
        (upstreamSeqs-class), 6
sceUpstr, 5
seqs (upstreamSeqs-class), 6
seqs,upstreamSeqs-method
        (upstreamSeqs-class), 6
show,upstreamSeqs-method
        (upstreamSeqs-class), 6
upstreamSeqs-class, 6
```