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1 Description

The package Fletcher2013b contains a set of transcriptions networks and related datasets that can
be used to reproduce the results in Fletcher et al. [1]. The first part of this study is available in the
package Fletcher2013a, which contains the time-course gene expression data and has been separated
for better organization on the data distribution. Here we provide the R scripts to reproduce the
bioinformatics analysis. Please refer to Fletcher et al. [1] for more details about the biological
background and experimental design of the study.

2 Data sources for regulatory network inference

The METABRIC breast cancer gene expression dataset [2] was used in two cohorts, a discovery set
(n = 997) and a validation set (n = 995). The METABRIC normal breast expression dataset (n
= 144) was used as a non-cancer, tissue control and a T-cell acute lymphoblastic leukaemia gene
expression dataset (n = 57) was included as a non-related tissue, cancer control [3]. These data sets
are publicly available at:

• METABRIC discovery set EGAD00010000210

• METABRIC validation set EGAD00010000211

• METABRIC normals EGAD00010000212

• T-cell ALL GSE33469

3 Reconstruction of the breast cancer transcription networks

Due to the large-scale datasets and the parallel processing required to compute the transcription
networks, this package provides 4 pre-processed networks named: rtni1st (METABRIC discovery
set), rtni2nd (METABRIC validation set), rtniNormals (METABRIC normals) and rtniTALL
(T-cell ALL). These R objects will be required to reproduce the analyses along the vignette:

> library(Fletcher2013b)
> data(rtni1st)
> data(rtni2nd)
> data(rtniNormals)
> data(rtniTALL)

Next we describe the main methods used to compute the transcription networks, and in the R
package RTN we provide a short tutorial demostrating the inference pipeline.

3.1 Transcription network inference pipeline

In order to make all methods used in this study available for different users, we implemented the R
package called RTN: reconstruction of transcriptional networks and analysis of master regulators,
which is designed for the reconstruction of transcriptional networks using mutual information [4]. It
is implemented by S4 classes in R [5] and extends several methods previously validated for assessing
transcriptional regulatory units, or regulons (e.g. MRA [6] and GSEA [7]. The main advantage
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of using RTN lies in the provision of a statistical pipeline that runs the network inference in a
stepwise process together with a parallel computing algorithm that demands high performance.
The RTN package should be installed prior to running this vignette. Additionally, in RTN we
provide a tutorial showing how to compute a transcriptional network using a toy example, which
is generated with default options and pValueCutoff=0.05. Here, the pre-processed breast cancer
transcription networks were generated by a more stringent threshold, with pValueCutoff=1e-6. To
reproduce these large networks we suggest as minimum computational resources a cluster >= 8
nodes and RAM >= 8 GB per node (specific routines should be tuned for the available resources).
The inference pipeline is executed in four steps: (i) check the consistency of the input data and
remove non-informative probes, (ii) compute the mutual information and remove the non-significant
associations by permutation analysis, (iii) remove unstable interactions by bootstrap and (iv) apply
the data processing inequality filter. These steps are described next.

3.2 Pre-processing of gene expression data

Non-informative microarray probes with low dynamic range of expression were removed from the
gene expression matrices. This procedure aims to filter out probes that exhibit low coefficient
of variation (CV), below the CV median value. For breast cancer samples, this CV threshold
yields a good overlap (>90%) with the corresponding differential expression analysis of cancer vs.
normal cohort samples. The differential expression analysis therefore was used for quality control
purposes. The advantage of using the CV here is that the same procedure could be applied across all
samples, guaranteeing statistical independence between cancer and normal cohorts. In an alternative
approach, for a given gene with multiple probes the RTN package selects the probe exibiting the
maximum CV, which yields higher gene representativity. We have carried out both approaches and
the overall results converged to the same scenario as described in [1].

3.3 Mutual information (MI) computation

The MI algorithm used in the RTN package extends the methods available in minet [8]. The
structure of the regulatory network was derived by mapping all significant interactions between TF
and target probes. The TF list was derived from that used in a previous ARACNe/MRA publication
[6] by converting Affymetrix probe IDs into the equivalent probes on the Illumina Human-HT12
Expression BeadChip. Non-significant interactions were removed by permutation analysis. Unstable
interactions were additionally removed by bootstrap analysis in order to create a consensus bootstrap
network (referred to as the transcriptional network (TN)).

3.4 Application of data processing inequality (DPI)

DPI was applied to the RN with tolerance = 0.0 to remove interactions likely to be mediated by
another TF [9]. As DPI removes the weakest edge of each network triplet, the vast majority of
indirect interactions are likely to be removed. We also tested DPI tolerance ranging from 0.1 to
0.5 in order to assess the stability of the regulatory units identified in the transcriptional networks.
Both the TN and the post-DPI network (filtered transcriptional network) were used in the MRA
analysis.
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4 Master Regulator Analysis (MRA)

The application of MRA has been described in detail in a previous publication [6]. MRA computes
the overlap between two lists: the TFs and their candidate regulated genes (referred to as regulons)
and the gene expression signatures from other sources. In this case, the MRA analytical pipeline
estimates the statistical significance of the overlap between all the regulons in each TN using a
hypergeometric test. The stability of MRA results was tested by comparing the MRA results
between the filtered and unfiltered TN networks, removing master regulators inconsistent with the
previous analysis (i.e. selected regulons must be significant in both TN networks). Next we retrieve
one of the FGFR2 signatures (i.e. differentially expressed genes from Exp1 ) and run the MRA
analysis on METABRIC discovery set:

> sigt <- Fletcher2013pipeline.deg(what="Exp1",idtype="entrez")
> MRA1 <- Fletcher2013pipeline.mra1st(hits=sigt$E2FGF10, verbose=FALSE)

We provide the following functions to run the MRA analysis on the other 3 TN networks:

> MRA2 <- Fletcher2013pipeline.mra2nd(hits=sigt$E2FGF10)
> MRA3 <- Fletcher2013pipeline.mraNormals(hits=sigt$E2FGF10)
> MRA4 <- Fletcher2013pipeline.mraTALL(hits=sigt$E2FGF10)

Each of these MRA pipelines constitutes a wrapper function that uses the pre-processed tran-
scriptional networks together with the MRA algorithm implemented in the RTN package. There-
fore, different signatures can also be interrogated on METABRIC datasets using these functions
(for detailed description and default settings, please see the package’s documentation).

5 Transcriptional network of consensus master regulators

Next, the pipeline function plots a graph representing all regulons identified in the consensus MRA
analysis. The network is generated by the R package RedeR [10] and should require some user input
in order to tune the layout in the software’s interface (Figure 1).

> Fletcher2013pipeline.consensusnet()

As a suggestion, set ’anchor’ to the master regulators at the end of the ’relax’ algorithm for a
better layout control! right-click the square nodes and then assign ’transform’ and ’anchor’!!!

6 Enrichment maps

In addition to the clustering analysis, the regulons were also represented in an association map show-
ing the degree of similarity among them, the number of common targets. Likewise, the similarity is
assessed by the Jaccard coefficient, which is plotted in the association map by the R package RedeR
[10]. In the next pipeline, a graph representation is generated for regulons exhibiting JC ≥ 0.4
(Figure 2).

> Fletcher2013pipeline.enrichmap()

Suggestion: zoom in/out with a scroll wheel, and adjust the graph settings interactively!
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Figure 1: Breast cancer transcriptional network (TN) enriched for the FGFR2 respon-
sive genes. The network shows the 5 MRs, each one comprising one TF (square nodes) and all
inferred targets (round nodes) applying a DPI threshold of 0.01.
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Figure 2: Enrichment map derived from the relevance network in breast cancer. Edge
width depics the overlap of regulons, and shades of orange indicate degree of enrichment of a regulon
in at least one of the three FGFR2 gene signatures.
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7 Session information
R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

loaded via a namespace (and not attached):
[1] compiler_4.6.0 tools_4.6.0

7



References

[1] Michael NC Fletcher, Mauro AA Castro, Suet-Feung Chin, Oscar Rueda, Xin Wang, Carlos
Caldas, Bruce AJ Ponder, Florian Markowetz, and Kerstin B Meyer. Master regulators of
FGFR2 signalling and breast cancer risk. Nature Communications, 4:2464, 2013.

[2] Christina Curtis, Sohrab P. Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M. Rueda, Mark J.
Dunning, Doug Speed, Andy G. Lynch, Shamith Samarajiwa, Yinyin Yuan, and et al. The ge-
nomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature,
486:346–352, 2012.

[3] Pieter Van Vlierberghe, Alberto Ambesi-Impiombato, Arianne Perez-Garcia, J. Erika Haydu,
Isaura Rigo, Michael Hadler, Valeria Tosello, Giusy Della Gatta, Elisabeth Paietta, Janis
Racevskis, Peter H. Wiernik, Selina M. Luger, Jacob M. Rowe, Montserrat Rue, and Adolfo A.
Ferrando. Etv6 mutations in early immature human t cell leukemias. The Journal of Experi-
mental Medicine, 208(13):2571–2579, 2011.

[4] Adam Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo
Favera, and Andrea Califano. Aracne: An algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinformatics, 7(Suppl 1):S7, 2006.

[5] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[6] Maria Stella Carro, Wei Keat Lim, Mariano Javier Alvarez, Robert J. Bollo, Xudong Zhao,
Evan Y. Snyder, Erik P. Sulman, Sandrine L. Anne, Fiona Doetsch, Howard Colman, Anna
Lasorella, Ken Aldape, Andrea Califano, and Antonio Iavarone. The transcriptional network
for mesenchymal transformation of brain tumours. Nature, 463(7279):318–325, 01 2010.

[7] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin L. Ebert,
Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R. Golub, Eric S. Lander, and
Jill P. Mesirov. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United
States of America, 102(43):15545–15550, 2005.

[8] Patrick Meyer, Frederic Lafitte, and Gianluca Bontempi. minet: A r/bioconductor package
for inferring large transcriptional networks using mutual information. BMC Bioinformatics,
9(1):461, 2008.

[9] Adam A Margolin, Kai Wang, Wei Keat Lim, Manjunath Kustagi, Ilya Nemenman, and Andrea
Califano. Reverse engineering cellular networks. Nat. Protocols, 1(2):662–671, 07 2006.

[10] Mauro AA Castro, Xin Wang, Michael NC Fletcher, Kerstin B Meyer, and Florian Markowetz.
Reder: R/bioconductor package for representing modular structures, nested networks and mul-
tiple levels of hierarchical associations. Genome Biology, 13(4):R29, 2012.

8


	Description
	Data sources for regulatory network inference
	Reconstruction of the breast cancer transcription networks
	Transcription network inference pipeline
	Pre-processing of gene expression data
	Mutual information (MI) computation
	Application of data processing inequality (DPI)

	Master Regulator Analysis (MRA)
	Transcriptional network of consensus master regulators
	Enrichment maps
	Session information

