XeniumIO 1.1.3
The XeniumIO package provides functions to import 10X Genomics Xenium Analyzer
data into R. The package is designed to work with the output of the Xenium
Analyzer, which is a software tool that processes Visium spatial gene expression
data. The package provides functions to import the output of the Xenium Analyzer
into R, and to create a TENxXenium object that can be used with other
Bioconductor packages.
The 10X suite of packages support multiple file formats. The following table lists the supported file formats and the corresponding classes that are imported into R.
| Extension | Class | Imported as |
|---|---|---|
| .h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
| .mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
| .tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
| peak_annotation.tsv | TENxPeaks | GRanges |
| fragments.tsv.gz | TENxFragments | RaggedExperiment |
| .tsv / .tsv.gz | TENxTSV | tibble |
| Extension | Class | Imported as |
|---|---|---|
| spatial.tar.gz | TENxSpatialList | DataFrame list * |
| .parquet | TENxSpatialParquet | tibble * |
| Extension | Class | Imported as |
|---|---|---|
| .zarr.zip | TENxZarr | (TBD) |
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")))
BiocManager::install("XeniumIO")
library(XeniumIO)
The TENxXenium class has a metadata slot for the experiment.xenium file.
The resources slot is a TENxFileList or TENxH5 object containing the cell
feature matrix. The coordNames slot is a vector specifying the names of the
columns in the spatial data containing the spatial coordinates. The sampleId
slot is a scalar specifying the sample identifier.
TENxXenium(
resources = "path/to/matrix/folder/or/file",
xeniumOut = "path/to/xeniumOut/folder",
sample_id = "sample01",
format = c("mtx", "h5"),
boundaries_format = c("parquet", "csv.gz"),
spatialCoordsNames = c("x_centroid", "y_centroid"),
...
)
The format argument specifies the format of the resources object, either
“mtx” or “h5”. The boundaries_format allows the user to choose whether to
read in the data using the parquet or csv.gz format.
Note that the xeniumOut unzipped folder must contain the following files:
*outs
├── cell_feature_matrix.h5
├── cell_feature_matrix.tar.gz
| ├── barcodes.tsv*
| ├── features.tsv*
| └── matrix.mtx*
├── cell_feature_matrix.zarr.zip
├── experiment.xenium
├── cells.csv.gz
├── cells.parquet
├── cells.zarr.zip
[...]
Note that currently the zarr format is not supported as the infrastructure is
currently under development.
The resources slot should either be the TENxFileList from the mtx format or
a TENxH5 instance from an h5 file. The boundaries can either be a
TENxSpatialParquet instance or a TENxSpatialCSV. These classes are
automatically instantiated by the constructor function.
showClass("TENxXenium")
## Class "TENxXenium" [package "XeniumIO"]
##
## Slots:
##
## Name: resources
## Class: TENxFileList_OR_TENxH5
##
## Name: boundaries
## Class: TENxSpatialParquet_OR_TENxSpatialCSV
##
## Name: coordNames
## Class: character
##
## Name: sampleId
## Class: character
##
## Name: colData
## Class: TENxSpatialParquet
##
## Name: metadata
## Class: XeniumFile
import methodThe import method for a TENxXenium instance returns a SpatialExperiment
class object. Dispatch is only done on the con argument. See ?BiocIO::import
for details on the generic. The import function call is meant to be a simple
call without much input. For more details in the package, see ?TENxXenium.
getMethod("import", c(con = "TENxXenium"))
## Method Definition:
##
## function (con, format, text, ...)
## {
## sce <- import(con@resources, ...)
## metadata <- import(con@metadata)
## coldata <- import(con@colData)
## SpatialExperiment::SpatialExperiment(assays = list(counts = assay(sce)),
## rowData = rowData(sce), mainExpName = mainExpName(sce),
## altExps = altExps(sce), sample_id = con@sampleId, colData = as(coldata,
## "DataFrame"), spatialCoordsNames = con@coordNames,
## metadata = list(experiment.xenium = metadata, polygons = import(con@boundaries)))
## }
## <bytecode: 0x0000023377270d48>
## <environment: namespace:XeniumIO>
##
## Signatures:
## con format text
## target "TENxXenium" "ANY" "ANY"
## defined "TENxXenium" "ANY" "ANY"
The following code snippet demonstrates how to import a Xenium Analyzer output
into R. The TENxXenium object is created by specifying the path to the
xeniumOut folder. The TENxXenium object is then imported into R using the
import method for the TENxXenium class.
First, we cache the ~12 MB file to avoid downloading it multiple times (via BiocFileCache).
zipfile <- paste0(
"https://mghp.osn.xsede.org/bir190004-bucket01/BiocXenDemo/",
"Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip"
)
destfile <- XeniumIO:::.cache_url_file(zipfile)
We then create an output folder for the contents of the zipped file. We use the
same name as the zip file but without the extension (with
tools::file_path_sans_ext).
outfold <- file.path(
tempdir(), tools::file_path_sans_ext(basename(zipfile))
)
if (!dir.exists(outfold))
dir.create(outfold, recursive = TRUE)
We now unzip the file and use the outfold as the exdir argument to unzip.
The outfold variable and folder will be used as the xeniumOut argument in
the TENxXenium constructor. Note that we use the ref = "Gene Expression"
argument in the import method to pass down to the internal splitAltExps
function call. This will set the mainExpName in the SpatialExperiment
object.
unzip(
zipfile = destfile, exdir = outfold, overwrite = FALSE
)
TENxXenium(xeniumOut = outfold) |>
import(ref = "Gene Expression")
## class: SpatialExperiment
## dim: 5006 36
## metadata(2): experiment.xenium polygons
## assays(1): counts
## rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ...
## ENSMUSG00000055670 ENSMUSG00000027596
## rowData names(3): ID Symbol Type
## colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
## colData names(13): cell_id transcript_counts ... segmentation_method
## sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(5): Deprecated Codeword Genomic Control Negative Control
## Codeword Negative Control Probe Unassigned Codeword
## spatialCoords names(2) : x_centroid y_centroid
## imgData names(0):
Note that you may also use the swapAltExp function to set a mainExpName in
the SpatialExperiment but this is not recommended. The operation returns a
SingleCellExperiment which has to be coerced back into a SpatialExperiment.
The coercion also loses some metadata information particularly the
spatialCoords.
TENxXenium(xeniumOut = outfold) |>
import() |>
swapAltExp(name = "Gene Expression") |>
as("SpatialExperiment")
## class: SpatialExperiment
## dim: 5006 36
## metadata(1): TENxFileList
## assays(1): counts
## rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ...
## ENSMUSG00000055670 ENSMUSG00000027596
## rowData names(3): ID Symbol Type
## colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
## colData names(13): cell_id transcript_counts ... segmentation_method
## sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(5): Genomic Control Negative Control Codeword Negative
## Control Probe Unassigned Codeword Deprecated Codeword
## spatialCoords names(0) :
## imgData names(0):
The dataset was obtained from the 10X Genomics website under the
X0A v3.0 section
and is a subset of the Xenium Prime 5K Mouse Pan Tissue & Pathways Panel.
The link to the data can be seen as the url input above and shown below for
completeness.
Click to expand
sessionInfo()
R version 4.5.1 (2025-06-13 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)
Matrix products: default
LAPACK version 3.12.1
locale:
[1] LC_COLLATE=C
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] XeniumIO_1.1.3 TENxIO_1.11.5
[3] SingleCellExperiment_1.31.1 SummarizedExperiment_1.39.1
[5] Biobase_2.69.0 GenomicRanges_1.61.1
[7] Seqinfo_0.99.1 IRanges_2.43.0
[9] S4Vectors_0.47.0 BiocGenerics_0.55.0
[11] generics_0.1.4 MatrixGenerics_1.21.0
[13] matrixStats_1.5.0 BiocStyle_2.37.0
loaded via a namespace (and not attached):
[1] httr2_1.1.2 rjson_0.2.23 xfun_0.52
[4] bslib_0.9.0 lattice_0.22-7 tzdb_0.5.0
[7] vctrs_0.6.5 tools_4.5.1 parallel_4.5.1
[10] curl_6.4.0 tibble_3.3.0 RSQLite_2.4.1
[13] blob_1.2.4 pkgconfig_2.0.3 BiocBaseUtils_1.11.0
[16] Matrix_1.7-3 dbplyr_2.5.0 assertthat_0.2.1
[19] lifecycle_1.0.4 compiler_4.5.1 codetools_0.2-20
[22] htmltools_0.5.8.1 sass_0.4.10 yaml_2.3.10
[25] pillar_1.11.0 crayon_1.5.3 jquerylib_0.1.4
[28] DelayedArray_0.35.2 cachem_1.1.0 magick_2.8.7
[31] abind_1.4-8 tidyselect_1.2.1 digest_0.6.37
[34] purrr_1.0.4 dplyr_1.1.4 bookdown_0.43
[37] arrow_20.0.0.2 fastmap_1.2.0 grid_4.5.1
[40] archive_1.1.12 cli_3.6.5 SparseArray_1.9.0
[43] magrittr_2.0.3 S4Arrays_1.9.1 withr_3.0.2
[46] readr_2.1.5 filelock_1.0.3 rappdirs_0.3.3
[49] bit64_4.6.0-1 rmarkdown_2.29 XVector_0.49.0
[52] bit_4.6.0 hms_1.1.3 SpatialExperiment_1.19.1
[55] memoise_2.0.1 evaluate_1.0.4 knitr_1.50
[58] BiocIO_1.19.0 BiocFileCache_2.99.5 rlang_1.1.6
[61] Rcpp_1.1.0 glue_1.8.0 DBI_1.2.3
[64] BiocManager_1.30.26 VisiumIO_1.5.6 vroom_1.6.5
[67] jsonlite_2.0.0 R6_2.6.1