Package 'Uniquorn'

June 20, 2025

Title Identification of cancer cell lines based on their weig	
	mutational/ variational fingerprint

Version 2.29.0

Description 'Uniquorn' enables users to identify cancer cell lines. Cancer cell line misidentification and crosscontamination reprents a significant challenge for cancer researchers. The identification is vital and in the frame of this package based on the locations/ loci of somatic and germline mutations/ variations. The input format is vcf/ vcf.gz and the files have to contain a single cancer cell line sample (i.e. a single member/genotype/gt column in the vcf file).

Imports stringr, R.utils, WriteXLS, stats, doParallel, foreach, GenomicRanges, IRanges, VariantAnnotation, data.table

Depends R (>= 3.5)

License Artistic-2.0

Type Package

Maintainer 'Raik Otto' <raik.otto@hu-berlin.de>

Date 2022-06-28

Author Raik Otto

RoxygenNote 7.2.1

NeedsCompilation no

Suggests testthat, knitr, rmarkdown, BiocGenerics

biocViews ImmunoOncology, StatisticalMethod, WholeGenome, ExomeSeq

VignetteBuilder knitr

Encoding UTF-8

git_url https://git.bioconductor.org/packages/Uniquorn

git_branch devel

git_last_commit 480d043

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-06-19

Contents

add_custom_vcf_to_database	2
add_missing_cls	3
add_penalty_statistics	4
add_p_q_values_statistics	4
create_bed_file	5
identify_vcf_file	6
initiate_canonical_databases	7
init_and_load_identification	8
match_query_ccl_to_database	9
parse_ccle_genotype_data	9
parse_cosmic_genotype_data	0
parse_vcf_file	0
parse_vcf_query_into_db	1
read_library_names	2
read_mutation_grange_objects	2
remove_ccls_from_database	3
remove_library_from_database	4
show_contained_ccls	4
show_contained_variants_for_ccl	5
show_contained_variants_in_library	6
show_which_ccls_contain_variant	6
1	8

Index

add_custom_vcf_to_database

add_custom_vcf_to_database This function adds the variants of parsed custom CCLs to a monet DB instance

Description

add_custom_vcf_to_database This function adds the variants of parsed custom CCLs to a monet DB instance

Usage

```
add_custom_vcf_to_database(
    vcf_input_files,
    ref_gen = "GRCH37",
    library_name = "CUSTOM",
    n_threads = 1,
    test_mode = FALSE
)
```

Arguments

vcf_input_files

a character vector containing the input vcf files. This may be one or many vcf files.

ref_gen	a character string specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
library_name	a character string giving the name of the library to add the cancer cell lines to. Default is "CUSTOM". Library name will be automatically added as a suffix to the identifier.
n_threads	an integer specifying the number of threads to be used.
test_mode	Is this a test? Just for internal use

Message wheather the adding was successful

Examples

```
HT29_vcf_file = system.file("extdata/HT29_TEST.vcf", package = "Uniquorn");
add_custom_vcf_to_database(
    vcf_input_files = HT29_vcf_file,
    library_name = "CELLMINER",
    ref_gen = "GRCH37",
    n_threads = 1,
    test_mode = TRUE
)
```

add_missing_cls add_missing_cls

Description

add_missing_cls

Usage

```
add_missing_cls(res_table, dif_cls)
```

Arguments

res_table	Table that contains the identification results
dif_cls	Missing CLs

Value

Results table with added missing cls

add_penalty_statistics

add_penalty_statistics

Description

Add penalty statistics to results

Usage

```
add_penalty_statistics(match_t, minimum_matching_mutations)
```

Arguments

match_t object that contains the matching variants

minimum_matching_mutations

a numerical giving the minimum amount of mutations that has to match between query and training sample for a positive prediction

Value

The updated statistics

add_p_q_values_statistics

add_p_q_values_statistics

Description

A hypergeometric distribution-assumption allows to calculate the p-values for a significant or nonsignificant overlap in this function

Usage

```
add_p_q_values_statistics(
  g_query,
  match_t,
  p_value,
  ref_gen,
  minimum_matching_mutations,
  top_hits_per_library
)
```

create_bed_file

Arguments

g_query	IRanges object that contains the query variants	
match_t	A table that contains the nubmber of matching variants	
p_value	Threshold for the significance p-value	
ref_gen	Reference genome version	
minimum_matching_mutations		
	Manual lower amount of matching mutations require for a significant match	
	between a query and a reference	
top_hits_per_library		
	limits significant similarities to the first n hits	

Details

 ${\tt add_p_q_values_statistics}\ Calculates\ the\ p-values$

Value

R table with a statistic

create_bed_file create_bed_file

Description

Creates BED files from the found and not found annotated mutations

Usage

```
create_bed_file(
match_t,
vcf_fingerprint,
output_file,
ref_gen,
manual_identifier
```

)

match_t	R table which contains the mutations from the training database for the cancer
	cell lines
vcf_fingerprint	
	contains the mutations that are present in the query cancer cell line's vcf file
output_file	Path to output file
ref_gen	Reference genome version
manual_identifi	er
	Manually enter a vector of CL name(s) whose bed files should be created, independently from them passing the detection threshold

Returns a message which indicates if the BED file creation has succeeded

Description

Identifies a cancer cell lines contained in a vcf file based on the pattern (start & length) of all contained mutations/ variations.

Usage

```
identify_vcf_file(
    vcf_file,
    output_file,
    ref_gen,
    minimum_matching_mutations,
    mutational_weight_inclusion_threshold,
    write_xls,
    output_bed_file,
    top_hits_per_library,
    manual_identifier,
    verbose,
    p_value,
    confidence_score,
    n_threads,
    write_results
}
```

```
)
```

output_file Path of the output file. If blank, autogenerated as name of input file plus '_uniquorn_ident.tab suffix. ref_gen Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37 minimum_matching_mutations The minimum amount of mutations that has to match between query and training sample for a positive prediction mutational_weight_inclusion_threshold Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples.		
suffix. ref_gen Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37 minimum_matching_mutations The minimum amount of mutations that has to match between query and training sample for a positive prediction mutational_weight_inclusion_threshold Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples. write_xls Create identification results additionally as xls file for easier reading output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines	vcf_file	Input vcf file. Only one sample column allowed.
<pre>genome version. Default: GRCH37 minimum_matching_mutations The minimum amount of mutations that has to match between query and training sample for a positive prediction mutational_weight_inclusion_threshold Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples. write_xls Create identification results additionally as xls file for easier reading output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines</pre>	output_file	
The minimum amount of mutations that has to match between query and training sample for a positive prediction mutational_weight_inclusion_threshold Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples. write_xls output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines	ref_gen	6
<pre>sample for a positive prediction mutational_weight_inclusion_threshold Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples. write_xls Create identification results additionally as xls file for easier reading output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines</pre>	minimum_matchin	g_mutations
Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~0 = found in many CL samples. write_xls output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines		
to CL. ~0 = found in many CL samples. write_xls Create identification results additionally as xls file for easier reading output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines	mutational_weig	ht_inclusion_threshold
output_bed_file If BED files for IGV visualization should be created for the Cancer Cell lines		
If BED files for IGV visualization should be created for the Cancer Cell lines	write_xls	Create identification results additionally as xls file for easier reading
If BED files for IGV visualization should be created for the Cancer Cell lines	output_bed_file	
		If BED files for IGV visualization should be created for the Cancer Cell lines

	top_hits_per_library	
		Limit the number of significant similarities per library to n (default 3) many hits.
		Is particularrly used in contexts when heterogeneous query and reference CCLs are being compared.
	<pre>manual_identifi</pre>	ler
		Manually enter a vector of CL name(s) whose bed files should be created, inde- pendently from them passing the detection threshold
	verbose	Print additional information
	p_value	Required p-value for identification. Note that if you set the confidence score, the confidence score overrides the p-value
	confidence_score	
		Cutoff for positive prediction between 0 and 100. Calculated by transforming the p-value by -1 * log(p-value) Note that if you set the confidence score, the confidence score overrides the p-value
	n_threads	Number of threads to be used
	write_results	Write identification results to file

Details

identify_vcf_file parses the vcf file and predicts the identity of the sample

Value

R table with a statistic of the identification result

Examples

```
HT29_vcf_file = system.file("extdata/HT29.vcf", package = "Uniquorn");
identification = identify_vcf_file(
    vcf_file = HT29_vcf_file,
    verbose = FALSE,
    write_results = FALSE
)
```

Description

Parses data into r list variable

Usage

```
initiate_canonical_databases(
    cosmic_file = "CosmicCLP_MutantExport.tsv.gz",
    ccle_file = "CCLE_mutations.csv",
    ccle_sample_file = "sample_info.csv",
    ref_gen = "GRCH38"
)
```

Arguments

cosmic_file	The path to the Cosmic CLP file. The Cosmic file can be obtained from "https://cancer.sanger.ac.uk/ca and should be labeled "CosmicCLP_MutantExport.tsv.gz". Ensure that the right reference genome is used
ccle_file	The path to the ccle DNA genotype data file. It should be labeled "CCLE_mutations.csv". Ensure that the right reference genome is used
ccle_sample_fil	e
	The path to the CCLE sample file. It should be labeled "sample_info.csv" con- taining both the DepMap ID and corresponding cell line name.
ref_gen	Reference genome version

Value

Returns message if parsing process has succeeded

Examples

```
initiate_canonical_databases(
    cosmic_file = "CosmicCLP_MutantExport.tsv.gz",
    ccle_file = "CCLE_mutations.csv",
    ccle_sample_file = "sample_info.csv",
    ref_gen = "GRCH38"
)
```

init_and_load_identification

init_and_load_identification

Description

Initiate the analysis Output basic information

Usage

```
init_and_load_identification(
    verbose,
    ref_gen,
    vcf_file,
    output_dir
)
```

verbose	Print additional information
-	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
vcf_file	Path to vcf_file
output_dir	Output directory for identification results

match_query_ccl_to_database

Details

init_and_load_identification parses vcf file and output basic information

Value

Three file path instances and the fingerprint

match_query_ccl_to_database

match_query_ccl_to_database

Description

Matches query ccl to the database

Usage

```
match_query_ccl_to_database(
  g_query,
  ref_gen = "GRCH37",
  library_name,
  mutational_weight_inclusion_threshold
)
```

Arguments

g_query	IRanges object that contains the variants	
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37	
library_name	a character string giving the name of the library	
<pre>mutational_weight_inclusion_threshold</pre>		
	a numerical giving the lower bound for mutational weight to be included	

Value

The R Table sim_list which contains the CoSMIC CLP fingerprints

parse_ccle_genotype_data

parse_ccle_genotype_data

Description

Parses ccle genotype data

Usage

```
parse_ccle_genotype_data(ccle_file, ccle_sample_file, ref_gen = "GRCH38")
```

Arguments

ccle_file	Path to CCLE file on hard disk	
ccle_sample_file		
	Path to CCLE sample file	
ref_gen	Reference genome version	

Value

The R Table sim_list which contains the CCLE fingerprints

parse_cosmic_genotype_data

parse_cosmic_genotype_data

Description

Parses cosmic genotype data

Usage

parse_cosmic_genotype_data(cosmic_file, ref_gen = "GRCH38")

Arguments

cosmic_file	Path to cosmic clp file in hard disk
ref_gen	Reference genome version

Value

The R Table sim_list which contains the CoSMIC CLP fingerprints

parse_vcf_file Filter Parsed VCF Files

Description

Intern utility function. Filters the parsed VCF file for all informations except for the start and length of variations/mutations.

Usage

```
parse_vcf_file(
    vcf_file,
    ref_gen,
    library_name
)
```

10

Arguments

vcf_file	character string giving the path to the vcf file on the operating system.
ref_gen	Reference genome version
library_name	Name of the reference library

Value

Loci-based DNA-mutational fingerprint of the cancer cell line as found in the input VCF file.

```
parse_vcf_query_into_db
```

parse_vcf_query_into_db This function adds the variants of parsed custom CCLs to a monet DB instance

Description

parse_vcf_query_into_db This function adds the variants of parsed custom CCLs to a monet DB instance

Usage

```
parse_vcf_query_into_db(
  g_query,
  ref_gen = "GRCH37",
  library_name,
  test_mode = FALSE
)
```

Arguments

g_query	a GenomicRanges object
ref_gen	a character string specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
library_name	a character string giving the name of the library to add the cancer cell lines to. Default is "CUSTOM". Library name will be automatically added as a suffix to the identifier.
test_mode	Is this a test? Just for internal use

Value

Message wheather the adding was successful

read_library_names Library Name Reader

Description

This function procides information on the reference library names

Usage

```
read_library_names(ref_gen)
```

Arguments

ref_gen	a character vector specifying the reference genome version. All training sets are
	associated with a reference genome version. Default is "GRCH37".

Value

Returns a character vector of the contained libraries

Examples

read_library_names(ref_gen = "GRCH37")

read_mutation_grange_objects

read_mutation_grange_objects

Description

Read the GRange object for a specific library

Usage

```
read_mutation_grange_objects(
    library_name,
    mutational_weight_inclusion_threshold,
    ref_gen,
    test_mode
)
```

library_name	a character string giving the name of the library
<pre>mutational_weight_inclusion_threshold</pre>	
	a numerical giving the lower bound for mutational weight to be included
ref_gen	Reference genome version. All training sets are associated with a reference genome version. Default: GRCH37
test_mode	Is this a test? Just for internal use

The R Table sim_list which contains the CoSMIC CLP fingerprints

remove_ccls_from_database

Remove Cancer Cell Line

Description

This function removes a cancer cell line training fingerprint (VCF file) from the database. The names of all training sets can be seen by using the function show_contained_cls.

Usage

Arguments

ccl_names	A character vector giving the names of the cancer cell line identifiers to be re- moved. Can be one or many
ref_gen	A character vector specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
library_name	Name of the library from which ccls are to be removed
test_mode	Signifies if this is a test run

Value

Message that indicates whether the removal was succesful.

Examples

```
remove_ccls_from_database(
    ccl_names = "HT29",
    ref_gen = "GRCH37",
    library_name = "CELLMINER",
    test_mode = TRUE
)
```

remove_library_from_database

Description

This function removes a entire library from the database by removing all associated cancer cell line fingerprints from the database.

Usage

```
remove_library_from_database(library, ref_gen = "GRCH37", test_mode = FALSE)
```

Arguments

library	a character vector giving the names of the library to be removed.
ref_gen	a character vector specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
test_mode	is this a test? Just for internal use.

Value

Message that indicates whether the removal was succesful.

Examples

show_contained_ccls show_contained_ccls

Description

This function displays the names, amount of mutations and the overall weight of the mutations of all contained cancer cell line fingerprints for a chosen reference genome and optional library.

Usage

show_contained_ccls(ref_gen, verbose)

ref_gen	a character vector specifying the reference genome version. All training sets are
	associated with a reference genome version. Default is "GRCH37".
verbose	Should DB informations be printed?

R table which contains identifiers of all cancer cell line samples which match the specified parameters (reference genome and library).

Examples

```
## Show all contained cancer cell lines for reference GRCH37:
show_contained_ccls(ref_gen = "GRCH37", verbose = TRUE)
```

show_contained_variants_for_ccl

Variants In Cancer Cell Line

Description

This function shows all mutations present in the database for a selected cancer cell line and reference genome.

Usage

```
show_contained_variants_for_ccl(
    name_ccl,
    ref_gen,
    library_name,
    mutational_weight_inclusion_threshold
)
```

Arguments

name_ccl	a character vector giving the identifier of the cancer cell line for which mutations will be shown.
ref_gen	a character vector specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
library_name	Name of the reference library
<pre>mutational_weight_inclusion_threshold</pre>	
	Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique to CL. ~ 0 = found in many CCL samples.

Value

GenomicRanges object that contains the ccl's variants

Examples

```
## Show all mutations for Cancer Cell Line 'SK_OV_3'
show_contained_variants_for_ccl(
    name_ccl = "SK_OV_3",
    ref_gen = "GRCH37",
    library_name = "CELLMINER",
    mutational_weight_inclusion_threshold = 0
)
```

```
show_contained_variants_in_library
```

All variants contained in reference library

Description

This function shows all variants contained in a reference library for a given inclusion weight. Default inclusion weight is 0 (all variants).

Usage

```
show_contained_variants_in_library(
    ref_gen,
    library_name,
    mutational_weight_inclusion_threshold
)
```

Arguments

ref_gen	a character vector specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".
library_name	Name of the reference library.
<pre>mutational_weight_inclusion_threshold</pre>	
	Include only mutations with a weight of at least x. Range: 0.0 to 1.0 . $1 =$ unique
	to CL. ~ 0 = found in many CL samples.

Value

Returns a GenomicRanges object that contains the variants

Examples

```
## Show all variants contained in reference library CELLMINER
show_contained_variants_in_library(
    ref_gen = "GRCH37",
    library_name = "CELLMINER",
    mutational_weight_inclusion_threshold = 0
)
```

Description

This function displays all cancer cell lines in the database which contain a specified variant. Utilizes closed interval coordinates.

show_which_ccls_contain_variant

Usage

```
show_which_ccls_contain_variant(
    start,
    end,
    chromosome,
    ref_gen,
    library_name,
    mutational_weight_inclusion_threshold
)
```

Arguments

start	Start coordinate	
end	Stop coordinate	
chromosome	Chromosome, 'chr' prefixes are ignored	
ref_gen	a character vector specifying the reference genome version. All training sets are associated with a reference genome version. Default is "GRCH37".	
library_name	Name of the reference library	
<pre>mutational_weight_inclusion_threshold</pre>		
	Include only mutations with a weight of at least x. Range: 0.0 to 1.0. 1= unique	
	to CL. ~ 0 = found in many CCL samples.	

Value

Returns a GenomicRanges object that contains the variant if present. Member ccls can be found in the \$Member_ccl vector

Examples

```
show_which_ccls_contain_variant(
   start = 92030762,
   end = 92030762,
   chromosome = 8,
   ref_gen = "GRCH37",
   library_name = "CELLMINER",
   mutational_weight_inclusion_threshold = 0
)
```

Index

* internal

parse_ccle_genotype_data, 9
parse_cosmic_genotype_data, 10

add_custom_vcf_to_database, 2
add_missing_cls, 3
add_p_q_values_statistics, 4
add_penalty_statistics, 4

create_bed_file, 5

identify_vcf_file, 6
init_and_load_identification, 8
initiate_canonical_databases, 7

match_query_ccl_to_database, 9

parse_ccle_genotype_data, 9
parse_cosmic_genotype_data, 10
parse_vcf_file, 10
parse_vcf_query_into_db, 11

read_library_names, 12
read_mutation_grange_objects, 12
remove_ccls_from_database, 13
remove_library_from_database, 14

show_contained_ccls, 14
show_contained_variants_for_ccl, 15
show_contained_variants_in_library, 16
show_which_ccls_contain_variant, 16